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The operations drip and mate considered in (mem)brane ciimgmesemble the operations cut and
recombination well known from DNA computing. We here comsidets of vesicles with multisets
of objects on their outside membrane interacting by dripraatk in two different setups: in test tube
systems, the vesicles may pass from one tube to another ovidga they fulfill specific constraints;
in tissue-like P systems, the vesicles are immediatelygubtesspecified cells after having undergone
a drip or mate operation. In both variants, computationahgieteness can be obtained, yet with
different constraints for the drip and mate operations.

1 Introduction

One of the basic operations used in the field of DNA computiag itroduced by Tom Head in [20]
more than twenty years ago, when he formalized the operafisplicing, well-known from biology as
an operation on DNA strands: given two strings of symbo#ndy, the splicing operation consists of
cutting x andy at certain positions (determined by the splicing rule) aastipg the resulting prefix of
x together with the suffix of as well as pasting the resulting prefixpfogether with the suffix ok,
respectively. Formally, if we apply the splicing rule, up; us, us), then the results of splicingandy are
zandw wherex = X1U1UpXo, Y = Y1UzUgYo, andz = X1U1UgY2, W = Y1 UgUoXo With Uz, Up, Uz, Ug, X1, X2, Y1, Y2
being strings over a given alphabét In the case of real DNA sequences, the alphabet consistsiof f
letters, i.e. A, C, G, T, representing the four bases adenine, cytosine, guanthéhgmine; the cutting is
realized by restriction enzymes, and the recombinationdasés.

In [11], the range of Turing machines was encoded usingtédraplicing on multisets (sets with
multiplicities associated to their elements). The spljoiperation then mainly was used as a basic tool
for building a generative mechanism, called@icing systenor H systemas formalized by Gheorghe
Paun in the following way: given a set of strings (axiomsyl anset of splicing rules, the generated
language consists of the strings obtained in an iterative lwaapplying the rules to the axioms and/or
to the strings obtained in preceding splicing steps. If we e restriction that only strings over a
designated subset of the alphabet are accepted in the mgwa obtain an extended H system. As
already shown in [8] and then in_[B0] for a class of relatedtays, in that way we can only obtain
regular languages. Yet when considering multisets ofgdras already done in[11] or by adding control
mechanisms as used in the area of formal language theorydee{10]) like checking for the occurrence
or the absence of specific subsequences in the strings,ltedaxtended) H systems were shown to be
very powerful generative mechanisms, i.e., charactéozatof recursively enumerable languages in
terms of various types of H systems were obtained, for exansele/[25] and [15].

The idea of computations using test tubes aslin [1] (LeonaliérAan describes the implementation
of a small instance of the travelling salesman problem) wasdlized totest tube systemssing the
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splicing operation in [[7]; again, computational completss of this computing model could be proved.

The two subprocesses in splicing, i.e., the cutting by ermyamd the recombination by ligases, were
introduced as independent operationsutting and recombination systepg®mputational completeness
of several variants of systems using these operations tfig@nd recombination instead of splicing was
exhibited in [19]; computational completeness of test tapstems using these operations was proved
in [13]; computational completeness of H systems using odt [@aste together with other regulation
mechanisms as checking for the occurrence of specific sywrdosubsequences was shown, too. In
[14], computational completeness of test tube systemgsgiticing or cutting and recombination with
the minimal number of two test tubes was shown; this resalpisnal with respect to the number of test
tubes, because due to Dennis Pixton’s results fforn [30h @ik test tube only regular languages can be
generated.

For an overview on many interesting models and variants id[Bbmputing the interested reader is
referred to the monographs [29] and [21].

About ten years ago, another intriguing paradigm basedalady was introduced by Gheorghe Paun
—membrane systemsoon calledP systemsgsee [26]);multisetsof objectsevolve according tevolution
rules associated with the membranes arranged in a hierarchiieatbrane structure A computation
consists of transitions from ormnfigurationto the next one, usually applying the rules in a maximally
parallel manner (i.e., applying a multiset of rules thatreribe extended anymore); tressultof a halting
computation is given by the objects present in the final candiion in a specifiedutput membraner by
the objects which leave the external membrane of the systeaskinmembrane) during a computation.
In tissue(-like) P systems (e.g., se€el[22]) the membraresmanged in an arbitrary graph structure
instead of a tree structure as in the original model of P gsysteA great variety of variants has been
investigated during the last decade, with the objects baiagic elements or strings, the rules evolving
these objects and/or moving them through membranes (intBrsggor from one cell to another one (in
tissue P systems). Many models have turned out to be corrgnaly complete, even with a quite small
number of membranes or cells, respectively, and with qaistricted variants of rules. The interested
reader is referred to the monographl[27] for an introductmthe wide field of (tissue) P systems and to
the P systems web page [24] for the actual state of the artysteras.

Whereas in P systems and tissue P systems the objects ard pisicle the membranes, in the variant
of membrane systems introduced by Luca Cardelli (ske [5)0objects are placed on the membranes.
The computations in these models also caldeahe calculusare based on specific ways to divide and
fuse membranes and to redistribute the objects on the meert(a.g., see 4], [3].[9]), the rules usually
being applied in a sequential way in contrast to the (madimgarallel way of applying rules in P
systems. Various attempts have already been made to cordiffeeent models from the area of P
systems and of brane calculi (e.g., see [6]) [28]). Follagnhis research line by investigating tissue
P systems with the brane operations mate and drig,_in [16]patational completeness results were
obtained both for symbol objects as well as for string olsjeés we shall see later in this paper, the
notations and results given there allow for drawing a clas@ection to specific models as investigated
in the area of DNA computing and described above.

The rest of the paper is organized as follows: After someimieary definitions, we present our
definitions for the operations drip and mate and then showedlad¢ion of these operations from the area
of (mem)brane computing with the operations cut and pastd usthe area of DNA computing. In
the fourth and in the fifth section, we prove the computali@oanpleteness of test tube systems and of
tissue-like P systems using drip and mate rules working tsnafenultisets. A short summary of results
concludes the paper.
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2 Preliminary Definitions

For the basic elements of formal language theory needecifottowing, we refer to any monograph in
this area, in particular to [32]. We just list a few notionglarotations:N denotes the set of non-negative
integers (natural numbersyX the set of alk-vectors of natural numbers. BY*RE we denote the set of
all recursively enumerable setsloefectors of natural numbers.

V* is the free monoid generated by the alphayainder the operation of concatenation; its unit
element is the empty string, denoted by The length of a stringc € V* is denoted by|x|; by RE
(RE(K)) we denote the family of recursively enumerable languagesr(ak-letter alphabet). For any
family of string language§, PsF denotes the family of Parikh sets of languages filerandNF the
family of Parikh sets of languages frof over a one-letter alphabet. In the following, we will not
distinguish betweel RE, which coincides witiPsRE(1), andRE(1).

Let {as,...,a,} be an arbitrary alphabet; the number of occurrences of a @yaplin x is denoted
by [x|, ; the Parikh vectorassociated with with respect toay, ...,an is (|X,, ,.--, |X|5 ) - The Parikh
imageof a languagd. over {ay,...,a,} is the set of all Parikh vectors of stringslin For a family of
languages-L, the family of Parikh images of languagesHi. is denoted byPsFL A (finite) multiset
(my,a) ... (my,an) with my € N, 1 <i <n, is represented as any strirnghe Parikh vector of which with
respect tay, ..., a, IS (My, ...,My) .

In the following we will not distinguish between a vecton, ...,m,) , its representation by a multiset
(my,as) ... (mn,an) or its representation by a stringwith Parikh vector(|X|,, ,...,|X|5 ) = (My,...,my).

In that sensePsRE(k) = N¥RE.

A deterministic register machirie a construcM = (n, B, lo,In,1), wherenis the number of registers,
B is a set of instruction labeld; is the start labelly, is the halt label (assigned HALT only), andl is a
set of instructions of the following forms:

e |1 :(ADD(r),l2) add 1 to register, and then go to the instruction labeledIby

e |1 :(SUB(r),lp,l3) if registerr is non-empty (non-zero), then subtract 1 from it and go to the
instruction labeled by, otherwise go to the instruction labeled gy

o |h:HALT the halt instruction.

A deterministic register machind accepts a set of (vectors of) natural numbers in the follgwin
way: start with the instruction labeled By, with the first registers containing the input, as well as
all other registers being empty, and proceed to apply iostms as indicated by the labels and by the
contents of the registers. If we reach #¥LT instruction, then the input number (vector) is accepted.
It is known (e.g., see [23]) that in this way we can accepteadlrsively enumerable sets of (vectors of)
natural numbers. In fact, for accepting dny PSRE(k) we need at moskt+ 2 registers.

3 The Operations Mate and Drip

The reader is supposed to be familiar with basic elementseofilonane computing, (e.g., see the mono-
graph [27] and the P systems web pdge [24]), as well as of lmaloali (see, e.g.,[6]).

The operations we are dealing with in this paper are insginedhe ideas from both areas of P
systems and of brane calculi: we consider cells with theatbjeeing placed on the membranes of the
cells (for example, as already considered_in [31] and [28})e-will call themvesiclesn the following
— and the operations mate and drip which are taken from the afrérane calculi and very closely
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related to the model of (mem)brane systems already comsidarvarious papers (e.g., séé [6],1[28],
[2]), where multisets or strings (in the biological intezfation we may speak of proteins) are placed on
the membranes. In order to visualize a vesicle with the setltbf objectav assigned to its membrane
we will use the notatior |, similar to the notation used in the model of (mem)brane syste

The two operations drip and mate we shall use in this papeatefieed as follows:

drip: (ulclv;y,2)
mate: (u|a,blv;x)

These formal notations describe how to split one cell into t&lls (drip) and how to fuse two cells
into one (mate).

Following the notations of |2] used in the model of (mem)raystems these operations are inter-
preted for the concept of vesicles used in this paper asiello

The drip operatior(u[c|v;y,2) splits a vesicle (membrane, cell) ., into the two vesicleg |,
and[ |,,,, (ula,blv;x) fuses a vesicle carrying the multisetaand the vesicle carrying the multisaw
into one vesicle which then has the multisekvw i.e.,abis replaced by and the remaining multisets

are taken as they are. In fact, this means that from the twicless$ |, and[ |, We get the vesicle

sua
[ ]SUXVW

When dealing with strings, the formal notation is exactlg same as given above for the case of
multisets of objects with the only difference ttsaty, zvw andsucvwhave to be interpreted as strings in
exactly the sequence they are written which means that ioabe of the drip operation, we start from a
string sucvwwhich then is split at the siteyielding the two new stringsuyandzvw hencesandw are
not arbitrary anymore.

In the general case,b,c,s,u,v,w,x,y,z can be arbitrary strings over an alphabet(no matter
whether these are interpreted as multisets of objects ecttliras strings). Computational complete-
ness for tissue P systems and (mem)brane systems with nthtdripnoperations working on strings
using a minimal number of membranes was shown in [18] and [17]

In contrast to this general case which we shall use in thiepagveral restrictions were imposed in
[2]:
1. a,b,ceV;
2. b=A,z=A;
3. VA A UXFEA.
As a special variant of the drip rule dealing with a multisattbe skin membrane of a vesicle we

also consider the one-sided drip rule where the whole rebieainultiset on the membrane of the vesicle
to be divided is put to the first target vesicle, i.e.,

dripl: (ulc|v;y,2)

which in this case means that from a vesiclg, ., we get the two vesicles], and[ |, ,.

In contrast to[[2], where the weight of a drip rulelc|v;y,z) is defined as the length of the multiset
ucv and the weight of a mate rul@ia,b|v;x) as the length of the multisetxy, we here — as already
considered, for example, in [18] — defihevyz to be the weight of the drip ruleu|c|v;y, z) and|uabvX
to be the weight of a mate rul@|a, b|v;x). When using drip rules, one-sided drip rules, and mate rules
of weight at mosk we shall writedripy, driply, andmate, respectively, as parameters in the systems
(test tube systems and tissue-like P systems) defined iutlveasding sections.
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3.1 Relating DNA Computing and Membrane Computing

As already exhibited in_[12], we may observe a coincidendh aperations well known from the area
of DNA computing when looking carefully into the definitiomd the operations mate and drip and
the results of applying them to strings: in [19], the openagicutting and recombinatiomf strings,
operations which are closely related to the splicing opamatwere considered; as we shall exhibit in
the following lines, cutting respectively its more generatiantcutis similar to the operation drip and
recombination respectively its more general varandteis similar to the operation mate.

Thecutting operation means cutting a string into two pieces, with agidinings on the cutting sites
of the cut pieces; theecombinationoperation means fusing two strings thereby eliminatingssuigs
at the fusion sites of both strings. The substrings addekeatutting sites and those eliminated at the
fusion sites can be interpreted, for example, as electtltaiges of molecules.

More general variants are tloeit andpasteoperations formally to be written as follows:

cut: (ulc|v;y,2)
cut one string into two strings
paste: (ula,blv;x)
recombine two strings into one

The cut operatiorfulc|v;y,z) means splitting one string into two strings: a strewgvwis split into the

two stringssuyandzvw; i.e., c is eliminated and replaced lyyat the end of the first substring and by

at the beginning of the second substring; formally this camhtten assucvw—- (suyzvw). The paste
operation(ula,b|v;x) means fusing two strings to one string: a striwggand a stringovw are fused

to the single stringsuxvw i.e., ab is replaced by and the remaining substrings are taken as they are;
formally this can be written asua bvw) —> sucvw In cutting and recombinatiosystems, we have the
restrictionsx=A andc=A.

Looking carefully into these notations of the operationsand paste as well as drip and mate and
the effect of applying them to strings or multisets, we mmathat we have gatientical notations:

mate/ paste:  (u|a,b|v;X)
drip/cut: (ulclv;y,2)

With respect to the interpretation in tissue P systems walterand drip operations, a string assigned to
a cell corresponds with this string itself in the interptieta of DNA computing. Hence, we observe that
the mate and drip operationand thecut and paste operationgre closely related. In that way, results
established and questions/problems raised for systemg tis¢ mate and drip operations may also be
established/raised for the corresponding systems usmguhand paste (cutting and recombination)
operations and vice versa.

As a specific example of relating the two areas of DNA compguand membrane computing, we
take over the idea of working with sets from DNA computingéasl of working with multisets as usually
done in the area of membrane computing to the modassiie-like P systems with mate and drip rules.
On the other hand, we will use the drip and mate rules in tdst gystems working on multisets of
elementary objects placed on membranes.

4 Test Tube Systems with Drip and Mate Rules

In this section, we prove our first main result establishimg domputational completeness of variants of
test tube systems with mate and drip rules working on setsuttisats, i.e., as objects in the test tubes
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we consider sets of vesicles carrying multisets of elemmgrathjects (symbols) on their skin membrane,
and as operations acting in the test tubes we take the apesatrip and mate processing these vesicles.

We use the following general definition for test tube systasisn [14], where the contents of the
tubes is redistributed to selected test tubes accordingetifs filters:

A test tube systetfa TTSfor short) o is a construct
(07 OT7 n7Aap7 Da E)
where

1. Ois a set ofobjects;

. Or is a set otterminal objects, @ C O;

. n,n>1,is the number of test tubes an

. A= (Aq,...,Ay) is a sequence of sets akiomswhereA; CO, 1 <i <n;

g A W N

. pis asequencéps, ..., pn) Of sets oftest tube operationsyherep; contains specific operations for
the test tubdi, 1 <i <n;

6. D is a (finite) set ofprescribed output/input relationbetween the test tubes m of the form
(i,F,]),where 1<i<n,1<j<n,i# ], andF is a (recursive) subset @; F is called a filter
between the test tubdsandT;;

7. EC{i|1<i<n} specifies the set afutput tubes

In the interpretation used i [14], the computations in y&eamo run as follows: At the beginning
of each computation step the axioms are distributed oven test tubes according #, hence, test tube
T; starts its first computation step wih. Now letL; be the contents of test tullge at the beginning
of a computation step. Then in each test tube the rulgs aperate orlL;, i.e., we obtaing* (L),
where p* (L) = U2_op™ (L) with p™ (L;) being defining inductively as followsp® (L;) = L; and
o™ (L) =p™ (L)up, (pi(”) (Li)) for n > 0; for any seL, pi (L) is the set of all objects obtained by
applying rules fromp; to objects fromL. The next substep is the redistribution of {he(L;) over all
test tubes according to the corresponding output/inpatiogls fromD, i.e., if (i,F, j) € D, then the test
tubeT; from p* (L;) getsp;* (Li) whereas the rest gf* (L;) that cannot be distributed to other test tubes
remains inT;. The final result of the computations inconsists of all terminal objects fro@r that can
be extracted from aautput tube ffromE, i.e., we takep; (L¢) N Or.

In this paper, we allow a more relaxed view of processing therations in the test tubes and the
succeeding redistribution of the objects therein, i.e.ag®ume that at any moment objects fulfilling the
specific constraints given by a filtér,F, j) € D may pass from test tubg to test tubeT;, with some
copies remaining ifM;. In the limit, the same results can be obtained in that waydke strict inter-
pretation as described before, yet our more relaxed irg&gon allows for a much easier description of
development of objects as will be seen in the following.

The multisets only consisting of terminal objects found esigles in an output tube form the set
of results generated by a test tube system, and the familyl eéieh sets of multisets over a terminal
alphabet with cardinalitk generated by test tube systems using at most tubes, axioms of weight
at mostl, drip rules of weight at mosi, and mate rules of weight at mosis denoted by

TT Sy (axiom,dripg, matg,) (k) = PSRE(K) .
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Theorem 1. T Ts(axiom, matg,) (k) = PsREk) forallm> 3,1 >3,p>5,k> 1.

Proof. LetM = (n, B, po, pn, | ) be a register machine withregisters accepting € PSRE(k); moreover,
let Bapp andBsyg denote the sets of labels of the ADD- and SUB-instructions iespectively, i.e.,

Baop = {|1||1Z(ADD(F),|2)E|},
Bsyg = {|1’|1Z(SUB(I’),|2,|3)G|}.

Then we constructa TT8
(0,0r,3,A,p,D,{3})

with three test tubes and mate rules of weight five generatimgth the contents of registérepresented
as the number of symbols as follows:

The objects inO are vesicles of the form |, with w being a multiset over an alphabétto be
specified below; yet we may simply represent such an objeanig\string representing; hence, we can
also writeO = V* where

V. = BU{X)Y,ZFlu{a[1<i<kju{b|1<i<n}
U {A|l €Bapp} U{A,A A" |l € Bsys}.

In the same sense, we will wri@r = V{ with Vp = {g | 1 <i <k}.
In the first test tubdy, we initialize the simulation of a computation in the registnachinevl with

obtaining (vesicles carrying) multisets of the fobmlﬁl...ak”kbgl...bﬂk using the axioms

(X,Zlo} U{abY |1 <i <k}

and the mate rule€X |,Y |;) and(X |,Z | lo; ); with applying the second rule, we start the simulation of
a computation in the register machikk

Moreover,l1 : (ADD(r),l2) € | is simulated by the axiorA,I2b, and the mate ruléX | 11, Ay, | I2br;).

Forly : (SUB(r),l2,13) €1, the subtract case is simulated using the axfgy» and the mate ruléX |
l1ibr, A, | l2;). The case when we guess the contents of registerbe zero is started with using the
axiom A[, together with the mate ruleX |13, A ;). The computation is then continued in test tde
where the rulegX | Aj A |I3;) with the axiomA/' |3 allows for sending back the multiset in case that the
guess has been correct. Appearance checking (testingdtstmbolb; is present) in the zero case for
l1: (SUB(r),l2,13) € | is accomplished by the corresponding filter in

(L,Urcren(Vr U{XFU{bi [ 1<i<niAr}U{A] |l1:(SUB(r),l2,13) €1})",2)

from test tuber; to test tubel, and

(2,(V —{A,A"|1 €Bsyg}) ", 1)

from test tub€r, back to test tubd;.

The terminal results are collected in test tdhdy eliminating the symboX which is present in every
multiset representing a configuration of a computatioMias soon as the final lablglhas appeared with
using the mate rulg| I,X, F [;) with the axiomF in test tubeT; and then letting these terminal multisets
get through the filtef1,{a | 1 <i < k}",3) from test tub€T; to test tubeTs.
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The sets of axioms, rules, and prescribed output/inputioela (filters)A, p, andD, respectively, can
easily be collected from the descriptions given above:

A = (A,A2,0),
A = {X,Zlo,F}ufabY|1<i<Kk}
U {Alaby |11 (ADD(r),12) € 1}
U {A| |2,A| ||1 (SUB(Y |2,|3 |}
A = {A“g“l (SUB(r),l2,l3) |}
p = (p1.p2,0),
o = {OXLY ), (X],Z 1163, (| 1nXF )}
U {(X 1A, [1obrs) |11 : (ADD(r). 1) € 1}
U X b, Ay [ 127), (X [T, A [ (SUB(r), l2,18) €17,
P2 = {(X‘A{l,Af/“g')“l (SUB Jo,l3) € |}
D — {(1 u1<r<n(VTU{X}U{b.|1<|<n|7ér}U{A| 1y 2 (SUB(r), I, 13) € 1})*,2),

(2,(V —{ALA' [l €Bsus}) ", 1), (L{a | 1<i <k} :3)}-

As desired, we use only three test tubes, axioms of weighbat three, and mate rules of weight at
most five; moreover, the filters in the prescribed outputfimplations of the TT$® are of the very special
and simple form(i,W*, j) with W C V or finite unions of such filters. These observations comptete
proof. O

As an alternative to having all the axioms in the test tubesdisated in the proof constructed above,
we may use the single axiogiand the drip rule

(Igl:A,)
for each axiomA. Hence, we immediately obtain the following result:

Corollary 2. TT & (axiom,dripg, matg,) (k) = PSREk) forallm>3,1 >1,p>5,q0>4,k> 1.

Proof. All required axioms can be computed from the single ax@iy using the drip rulé| g|;A,) —

well as by using| g |;g,) for g itself — in each of the two test tub&s andT,. As a small technical detail
we mention that the computations in these new test tuberagsteed an additional step at the beginning
to initialize the two test tube§, andT, with the corrsponding set of axioms. O

Another interesting variant is the use of one-sided dripgihstead of mate rules: looking carefully
into the proof of Theorem 1 and the mate rules used there wiadhat the second vesicle always
carries an axiom. In general,hif/ is the whole second vesicle, then the mate rule

(ulab|vx)
can be simulated by the one-sided drip rule

( )7

i.e., we put everything to the first vesicle and thus in fadawbonly one result by applying this rule.

Corollary 3. TT & (axiom,driply) (k) = PsREKk) forallm> 3,1 >1,q9>4,k> 1.

Proof. According to the proof of Corollary 2, we can get every axioyralbne-sided drip rule. Moreover,
as explained above, every mate r(ilg a, b | v;x) used in the proof of Theorem 1 can be replaced by the
one-sided drip rul¢u | a|;vx,). O
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5 Tissue-like P Systems with Mate and Drip Rules

In this section, we prove our main result establishing thematational completeness of variants of
tissue-like P systems with mate and drip rules working os semultisets.

A tissue-like P systems with mate and drip rutgssystenfor short)I1 is a construct
(V,Vr,n,A/R/ip)
where
1. Vis afinite set oBymbols;
2. Vt is a set otterminal symbols, ¥C V;
3. n,n>1, is the number of cells ifl;
4. A= (Aq,...,An) is a sequence of sets akioms,whereA; C V*, 1 <i < n, describing the initial
contents of the cells;
5. Ris a set ofrulesof the form
Tiir—T,
withi,j e {l|1<1<n},i# |, andr being a drip or mate rule ovéf;
6. ip € {I | 1 <I < n} specifies theutput cell

A computation inll starts with the initial configuration described By a computation step then
consists of applying the ruleg : r — T; in thei-th cell — the application of a rul& : r — T; means
applyingr to objects in (the source) célj and sending the resulting vesicle(s) to (the target)GeHin
a maximal way in that sense that every vesicle that can undbegapplication of a rule will be affected
by a suitable rule, yet as we are dealing with sets of vesitiesalso means that any vesicle or any pair
of vesicles has to be used with every possible rule by whichntbe affected.

The multisets only consisting of terminal objects found @sigles in the output celp form the
set of results generated by, and the family of all such sets of multisets over a termimglhabet with
cardinalityk generated by tissue-like P systems using at mosells, axioms of weight at most drip
rules of weight at mogf, and mate rules of weight at mgsis denoted by

tPy (axiom, dripg, matg,) (k) = PSRE(K) .

Theorem 4. tR(axiom,dripg, matg,) (k) = PsREk) forallm>5,1 >3,p>5,q>5,k> 1.

Proof. Let M = (n,B, po, pn,|) be a register machine withregisters accepting € PSRE(k); then we
construct a tissue-like P systdr
(V>VT75> A7 R7 5)

generatind-. We start with the following initial vesicles in the five cll

At = {Bs|se{X,Zlo,F}U{abY |1<i<k}
U{Albr |11 (ADD(r) 1) € 1}
U{A|l|2,A|/1 [1g: (SUB(I’),|2,|3) € |}},

Ay = 0,

Az = {Er|3,FrDr ‘ l1: (SUB(I‘),|2,|3) € |},

Ay = {A|l1:(SUB(r),l2,13) €1},

Ag .
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In general, for generating a multisein the first cellT; we use the following rules ifi; andT:

Ti: (I Bs[RBBss) — T,

To: (| R BiBs|;) — T; generatesin Ty,

T2: (|R Bs|;) — Ti regainsBs in Ty.

Moreover, for sending back froffp to T; a multiset containing the specific symi¥lindicating a

multiset on a vesicle representing a configuration of a cdatjmn in the register machird, we use the
special symboR with the rule

T: (X|,R];) = T

For the initialization as already explained in the proof tiebrem 1, we take = X, s= glby;Y for
1<i <k, ands= Zlg as well as the rules

Ti:(X],Y[;) = T, and

Ti:(X|,Z]lo;) — To;
with applying the second rule, we start the simulation of mpotation in the register machimé.

For simulating an ADD-instructiohy : (ADD(r),l2) € | we takes= A, I2b, and the rule

Ty (X ‘ |;|_,A|1 ‘ |2br;) — To.

For simulating a SUB-instructioh : (SUB(r),l2,l3) € | in the case that subtraction is possible we
takes= A, |> and the rule

Ty (X ‘ |;|_br,A|l ’ |2;) — To.

In all the cases described so far, the main work is done byeaafuhe formT; : r — T, using a rule
in T, with the result being sent to cél}, where with the application of the rule

T2 . (X |,R|;) —)T]_
we already described before, the result is sent back tarcell

For simulating a SUB-instructioh : (SUB(r),l2,l3) € | in the case that subtraction is not possible
we takes = A,’1 and guess that nig occurs, but now send the result to cEl

T1: (X | |1,|A|/1;) — Ta.

Checking for the occurrence &f now is accomplished by the following rules affecting a viesic
containingX within a cycle of 2; in even computation steps, the rle (| B;,X | by;) — Ty “kills”
vesicles containing, by sending them to cell; thereby also erasing the symb$lso that it cannot be
affected by a rule anymore. If i occurs, then one step later the rilile (\ A,’l, E | I3;) — T, sends the
vesicle with the desired labk) back to cellT; via cell T, (hence, in total the simulation of this case takes
four steps). The symbol&;,B;,C, andD,,E;,F, respectively, allow for having the desired checking
symbolsB; andE; in Tz at the right moment, i.e., if a vesicle has “survived}’, thenE, will finish the
simulation of the zero-case of the SUB-instruction.

Ta: (A 3B, CGA) — T,

T3 (| Br,Cr |Ar,) —>T4,

T3 (| Br,X | br;) —>T4,

T4: (| Dy |;Efl3, R Dy) — Ts, for Iy : (SUB(r),lz,13) €1,

Tz3: (| El3,F | Dy;) — Ta,

T3 (| ALE | l3;) — T2, for Iy : (SUB(r),l2,13) € 1.
To obtain the output vesicles T, we apply the rule
Ty (|hx ‘,F ‘,) — Ts.
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In sum, we obtain the following set of rulés

R = {T1:(|Bs|iR, B’SBSS) — Ty,
T1: (| Bs|;R B{BsS) — To,
T2 . (| R,B/SS|;) —)T]_
|se {X,Zlp,F}U{abY|1<i<k}
U{A,l2by | I1: (ADD(r),l2) €1}
U{A|1|2,A|/1 | 112 (SUB(r),lp,l3) € |}}

U {T]_ : (X |,Y |,) — T, Ty : (X |,Z | |0;) —)TZ}

U {T2:(X,R[;) =T, Ti: (InX|,F |;) — Ts}

U {T]_ : (X | |1>A|1 | |2br;) — T | l1: (ADD(I’),lz) € |}

U {T]_ : (X | |1,| Alll;) — T3, Ty : (X | Ilbr>A|1 | |2;) — To,
Ts: (’ B, X ’ br;) — Ty, T3 (‘ A|/17Er ’ |3;) — Ty,

Ta: (A 1B, CGA) = T3, T3: (| B, G | Ary) — T,
Ta: (| Dy [Efl3,FDy) — T3, T3 : (| Efl3, R | Dy;) — Ta,
T3: (| A|/17Er | |3;) — T | l1: (SUB(r),|2,|3) S |}

We emphasize once more that the simulation of any computatep of the register machihétakes
an even number of steps (i.e., two or four), and also in th@limihase, i.e., the generation of the axioms
and the initial configurationXwlp with w € {ajb; | 1 <i < k}" in the first cellT; takes an even number
of steps, which guarantees that the zero-check performatebinterplay of rules in the cell$; and
T4 works correctly. Finally, we mention the computationlinnever stops and every elementlotvill
appear as the multiset on a vesicle in the output cell at sooraent during the computation In and
will be sent to cellTs again in each odd step of the computation after its first ajppea inTs, as every
computation of the register machifdecan be started again after any even number of computatipa ste
in M. These observations complete the proof. O

6 Conclusion

As in DNA computing, we have considered sets of objects &uwstdf multisets as mostly considered in
the area of P systems. The operations cut and recombinaétbkivawn from DNA computing have their
counterparts as the operations drip and mate consideretkimbrane computing. We have investigated
the computational power of specific variants of the openatidrip and mate on sets of vesicles with
multisets of objects on their outside membrane acting inttd® systems, where the vesicles pass from
one tube to another one provided they fulfill specific comstsaand in tissue-like P systems, where the
vesicles are passed to specified cells after having undergoinip or mate operation. In both setups, we
have proved computational completeness, even with diffarariants of the drip and mate operations.
As far as the descriptional complexity of the test tube systevith respect to the number of test tubes
and of the tissue-like P systems with respect to the numbeeks and in both cases with respect to
the weight of the mate and drip operations is concerned,aunpg the obtained results in these respects
remains as a challenging task for future research.
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134

Drip and Mate Operations Acting in Test Tube Systems andigidige P systems

References

[1]
(2]

[3]
[4]
[5]
[6]
[7]
(8]

L.M. Adleman (1994):Molecular computation of solutions to combinatorial prebils Science266(11), pp.
1021-1024.

D. Besozzi, N. Busi, G. Franco, R. Freund & Gh. Paun (2006vo universality results for (mem)brane
systems In: Miguel Angel Gutiérrez-Naranjo, Gheorghe Paun, sifju Riscos-NUfiez & Francisco José
Romero-Campero, editorg=ourth Brainstorming Week on Membrane Computing, Sevikuary 30 -
February 3, 2006. Volume Fénix Editora, pp. 49-62.

N. Busi (2005):0n the computational power of the mate/bud/drip brane dakuinterleaving vs. maximal
parallelism In: Pre-Proc. Sixth Workshop on Membrane Computing, WMC6, Neiustriapp. 235-252.
N. Busi & R. Gorrieri (2005):0n the computational power of brane calculih: Third Workshop on Com-
putational Methods in Systems Biolaggpringer-Verlag, pp. 16—43.

L. Cardelli (2005):Brane calculi. Interactions of biological membranda: Proc. Computational Methods
in System Biology 2004 (CMSB 2004), LNCS 30Q&ringer, pp. 257-280.

L. Cardelli & Gh. Paun (2006)An universality result for a (mem)brane calculus based otefdaip opera-
tions Intern. Journal of Foundations of Computer 34i(1), pp. 49—-68.

E. Csuhaj-VarjQ, L. Kari & Gh. Paun (1996Jest tube distributed systems based on splic®gmnputers and
Al 15, pp. 2-3.

K. Culik & T. Harju (1991): Splicing semigroups of dominoes and DNAscrete Math31(3), pp. 261-277.

[9] V. Danos & S. Pradalier (2005Brane calculi. Interactions of biological membrands: Proc. Computa-

[10]
[11]

[12]

[13]
[14]
[15]
[16]
[17)
[18]
[19]
[20]
[21]

[22]

tional Methods in System Biology 2004 (CMSB 2004), LNCS 308gringer, pp. 134-148.

J. Dassow & Gh. Paun (199(egulated Rewriting in Formal Language TheoBpringer-Verlag New York,
Inc., Secaucus, NJ, USA.

K.L. Denninghoff & R.W. Gatterdam (1989Dn the undecidability of splicing systenistern. J. Computer
Math.27, pp. 133-145.

R. Freund (2008)An integrating view on DNA computing and membrane compulindg=C’08: Proceedings
of the 9th WSEAS International Conference on Evolutionaoyrputing World Scientific and Engineering
Academy and Society (WSEAS), Stevens Point, Wisconsin, ppA15-20.

R. Freund, E. Csuhaj-Varju & F. Wachtler (1997gst tube systems with cutting/recombination operations
In: Proceedings PSB’9¥orld Scientific, pp. 163-174.

R. Freund & F. Freund (1996)Test tube systems or how to bake a DNA calketa Cybern.12(4), pp.
445-459.

R. Freund, L. Kari & Gh. Paun (1999PNA computing based on splicing: the existence of universai-
puters Theory of Computing Systend?, pp. 69-112.

R. Freund & M. Oswald (2006)ftwo universality results for (mem)brane systemsN. Busi & C. Zandron,
editors: Proceedings MeCBIC 200¥enice.

R. Freund & M. Oswald (2007)Mem(brane) systems and tissue P systems with mate and diiptmms
In: Proceedings 16. Theorietag Automaten und Formale SprapheBl1-56.

R. Freund & M. Oswald (2007)Tissue P systems and (mem)brane systems with mate and érgtiops
working on strings Electron. Notes Theor. Comput. Stif1(2), pp. 105-115.

R. Freund & F. Wachtler (1996)Universal systems with operations related to splicinGomputers and
Artificial Intelligencel5(4), pp. 273-294.

T. Head (1987)Formal language theory and DNA: an analysis of the geneeatapacity of specific recom-
binant behaviorsBull. Math. Biology49, pp. 737-759.

T. Head, Gh. Paun & D. Pixton (199)anguage Theory and Molecular Genetichapter 7. In Rozenberg
& Salomaal[32].

C. Martin-Vide, Gh. Paun, J. Pazos & A. Rodriguezé®g2003): Tissue P systemsTheor. Comput. Sci.
296(2), pp. 295-326.



Rudolf Freund & Marian Kogler 135

[23] M.L. Minsky (1967):Computation: Finite and Infinite MachineBrentice Hall.
[24] The P Systems Web Pagettp://ppage.psystems. eu .

[25] Gh. Paun (1996)Regular extended H systems are computationally univetsadutom. Lang. Comt (1),
pp. 27-36.

[26] Gh. Paun (2000)Computing with membraned. of Computer and System S6i.(1), pp. 108—143.

[27] Gh. Paun (2002)viembrane Computing. An IntroductioBpringer-Verlag, Berlin.

[28] Gh. Paun (2005)0ne more universality result for P systems with objects ombranes In: Proceedings of
the Third Brainstorming Week on Membrane Computing, Se\Bpain), January 31st - February .4th.
263-274.

[29] Gh. Paun, G. Rozenberg & A. Salomaa (200BNA Computing: New Computing Paradigms (Texts in
Theoretical Computer Science. An EATCS Serigp)inger-Verlag New York, Inc., Secaucus, NJ, USA.

[30] D. Pixton (2000):Splicing in abstract families of languageBheor. Comput. Sc234(1-2), pp. 135-166.

[31] A.Paun & B. Popa (2006P Systems with proteins on membran€sndam. Inf72(4), pp. 467-483.

[32] G. Rozenberg & A. Salomaa, editors (199Aandbook of Formal Languages, 3 volumé&pringer-Verlag
New York, Inc., Secaucus, NJ, USA.



	Introduction
	Preliminary Definitions
	The Operations Mate and Drip
	Relating DNA Computing and Membrane Computing

	Test Tube Systems with Drip and Mate Rules
	Tissue-like P Systems with Mate and Drip Rules
	Conclusion

