
Semilinear Sets, Register Machines, and Integer
Vector Addition (P) Systems

Artiom Alhazov1, Omar Belingheri2, Rudolf Freund3,
Sergiu Ivanov4, Antonio E. Porreca2, and Claudio Zandron2

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Str. Academiei 5, Chişinău, MD 2028, Moldova
E-mail: artiom@math.md

2 Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
E-mail: {o.belingheri@campus,porreca@disco,zandron@disco}.unimib.it

3 Faculty of Informatics, TU Wien
Favoritenstraße 9-11, 1040 Vienna, Austria
E-mail: rudi@emcc.at

4 Université Paris Est, France
E-mail: sergiu.ivanov@u-pec.fr

Summary. In this paper we consider P systems working with multisets with integer
multiplicities. We focus on a model in which rule applicability is not influenced by the
contents of the membrane. We show that this variant is closely related to blind register
machines and integer vector addition systems. Furthermore, we describe the computa-
tional power of these models in terms of linear and semilinear sets of integer vectors.

1 Introduction

P systems have been traditionally viewed as hierarchical processors of multi-
sets [11]. In the list of open problems disseminated in 2015 [10], Gheorghe Păun
suggested going beyond the traditional setting and considering multisets in which
objects would not be restricted to having natural multiplicities. Several possible
approaches have been suggested since then, including the one from [3], which de-
fines generalised multisets as taking multiplicities from finitely generated, totally
ordered Abelian groups.

The work [1] takes a different approach — the objects of the P system are
partitioned into two classes: regular objects, which may have any integer multi-
plicity, and “catalysts”, which may only appear in a bounded number of copies
and cannot be consumed without being immediately reproduced. Thus, the reg-
ular objects cannot influence the applicability of rules, while the always bounded

28 A. Alhazov, O. Belingheri, R. Freund, S. Ivanov, A.E. Porreca, C. Zandron

catalysts induce a finite set of “rule teams” which can be applied in parallel in
one step. The virtual absence of applicability conditions and the finiteness of the
“teams” hints at the possibility of seeing them as integer vectors; in this case the
P system itself can be seen as evolving by sequentially adding such vectors to the
contents of its membranes.

Even though this vision is quite reminiscent of the folklore vector addition
systems (VAS), the latter model is actually limited to having natural vectors as
configurations [2, 8]. On the other hand, P systems manipulating integer multi-
sets allow symbols with negative multiplicities to appear. It turns out that vector
addition systems without the limitation of having natural configurations (integer
VAS) have received relatively little attention in the literature [7].

Another related model which has received notoriously little attention are the
blind register machines, whose registers are allowed to range over the whole set
of integers. Blind counter automata have been introduced and studied as string
recogniser devices by Sheila Greibach in [6]; their adaptation to recognising vectors
of integer numbers seems quite relevant to the study of multisets with integer
multiplicities.

In the present work we bring together the three models — P systems over inte-
ger multisets as defined in [1], integer vector addition systems, and blind register
machines — and formally show the connections between their different variants.
We also give detailed characterisations of their computing power in terms of linear
and semilinear sets of natural and integer vectors.

The article is structured as follows. Section 2 recalls some notions used through-
out the paper, in particular semilinear sets and vector addition systems. Section 3
gives a general definition of a register machine over a set A, and then defines blind,
partially blind, and conventional register machines within this general framework.
Section 4 defines the model of integer vector addition P systems and gives some
details as to their semantics. Section 5 investigates the power of blind register ma-
chines and gives characterisations in terms of semilinear sets of vectors. Finally,
Section 6 studies the power integer vector addition systems with and without mem-
branes, and compares different variants of the models between themselves and with
blind register machines.

2 Preliminaries

The reader is assumed to be familiar with the basic notions of formal languages
and membrane computing; see [12] for a comprehensive introduction to both.

2.1 Linear Sets

The N-linear set of Z-vectors (or just linear set of Z-vectors) generated by a set of
vectors A = {a1, · · · ,ad} ⊆ Zn and an offset a0 ∈ Zn is defined as follows:

Semilinear Sets, Register Machines, and Integer Vector Addition (P) Systems 29

〈A,a0〉N =

{
a0 +

d∑
i=1

kiai

∣∣∣ ki ∈ N, 1 ≤ i ≤ d

}
.

We underline that the vectors are over Z, but the coefficients are from N (we will
also consider the special case when A ∪ {a0} ⊆ Nn; this would be an N-linear
set of N-vectors, or just a linear set, a well-known concept from Formal Language
Theory).

A Z-linear set of Z-vectors

〈A,a0〉Z =

{
a0 +

d∑
i=1

kiai | ki ∈ N, 1 ≤ i ≤ d

}
can be considered, too. It corresponds precisely to the linear vector space notion
from the classic course of Linear Algebra. However, it is also a particular case.
Indeed, it is easy to see that 〈A,a0〉Z = 〈B,a0〉N for

B = {a1, · · · ,ad,−a1, · · · ,−ad}.

If the offset a0 is the zero vector, we call the corresponding linear set homoge-
neous.

A positive-restricted N-linear set of Z-vectors generated by A and an offset
a0 is defined to be the N-linear set of Z-vectors generated by A, restricted to
non-negative vectors only:

〈A, a0〉+Z = {x ∈ 〈A, a0〉Z | x ≥ 0} ,

where x ≥ 0 means that every component of x is non-negative.
We will use the notations ZnLINN, NnLINN, ZnLINZ, and Zn+LINN to refer

to the classes of all N-linear sets of Z-vectors, N-linear sets of N-vectors, Z-linear
sets of Z-vectors, and positive restricted N-linear sets of Z-vectors of dimension n,
correspondingly. Semilinear sets are defined as finite unions of the corresponding
types of linear sets. We will use the notations ZnSLINN, NnSLINN, ZnSLINZ
and Zn+SLINN to refer to the families of N-semilinear sets of Z-vectors, N-
semilinear sets of N-vectors, Z-semilinear sets of Z-vectors, a nd positive-restricted
N-semilinear sets of Z-vectors of dimension n, respectively. In case no particular
restriction is imposed on the dimension, n will be replaced by ∗. We may omit n
if n = 1.

We recall the following general result from number theory known as Bézout’s
identity. Given a set of integers A = {a1, · · · , an} ⊆ Z, there exist integers
x1, · · · , xn ∈ Z such that the following holds:

n∑
i=1

xiai = gcd(a1, · · · , an),

where gcd(a1, . . . , an) in the greatest common divisor of the integers from A. Fur-
thermore, the greatest common divisor is the smallest positive integer which can
be obtained as a linear combination of the elements of A.

30 A. Alhazov, O. Belingheri, R. Freund, S. Ivanov, A.E. Porreca, C. Zandron

2.2 Vector Addition Systems

A vector addition system (VAS) of dimension n ∈ N is defined to be the pair
(w0,W), where w0 ∈ Nn is the start vector, and W is a finite set of vectors from
Zn, called addition vectors. An addition vector w ∈ W is said to be enabled in
a vector x ∈ Nn if x + w ∈ Nn, i.e. all the components of the vector x + w are
non-negative. A VAS evolves from the start vector w0 by sequentially iterating
the addition of vectors from W .

A vector addition system with states (VASS) is a VAS equipped with a finite
state control. Essentially, state labels are assigned to addition vectors and a graph
of states is given which defines the possible sequences of application of addition
vectors.

We will use the notation VAS and VASS to refer to the families of sets of
natural vectors which can be generated by VAS and VASS, respectively.

It was shown in [8] that VASS are equivalent in expressive power to VAS
(without states): any n-dimensional VASS can be simulated by an equivalent (n+
3)-dimensional VAS.

A variation on the model of vector addition systems consists in lifting the
restriction that the valid vectors must have non-negative components. This model
has recently been defined in [7].

An integer vector addition system (Z-VAS) of dimension n ∈ N is the pair
(w0,W), where w0 ∈ Zn is the start vector, and W ⊆ Zn is finite set of addition
vectors. A Z-VAS evolves from w0 by sequentially applying the addition vectors
from W . The set of vectors generated by a Z-VAS is defined to be the set of
reachable vectors.

An integer vector addition systems with states (Z-VASS) is a Z-VAS equipped
with a state control and is defined as a tuple (w0, Q, q0, qh, p, δ), where w0 ∈ Zn
is the start vector, Q is a finite set of state labels, q0 ∈ Q is the starting state,
qh ∈ Q is the halting state, p : Q \ {qh} → Zn is a function assigning a vector to
every state from Q \ {qh}, and δ : Q→ 2Q is a state transition function assigning
to each state the set of possible successor states.

A Z-VASS starts in w0 and in state q0, applies the addition vector p(q0),
and non-deterministically moves into one of the states from δ(q0). This process
is iteratively repeated, until the halting state qh is reached. The vector language
generated by a Z-VASS is defined as the set of all vectors which are reachable in
the halting state qh.

We will use the notations Z-VAS and Z-VASS to refer to the sets of integer
vectors generated by Z-VAS or Z-VASS.

3 Register Machines

Definition 1. A register machine over the set A is the tuple MA =
(n,A,Q, q0, qh, P), where n ∈ N, A is a (possibly infinite) register alphabet, Q
is a finite set of state labels, q0 is the initial state, qh ∈ Q is the halting state, and

Semilinear Sets, Register Machines, and Integer Vector Addition (P) Systems 31

P is a mapping associating an instruction to every state of MA. An instruction is
a function p : An → An×2Q associating to every n-tuple of values from A another
n-tuple of such values and a set of states from Q. A configuration C ∈ Q×An of
MA is a tuple combining a state and n values from A.

MA can be seen as storing values of type A in its n registers. A configuration
of MA therefore defines its current state and the values of its n registers. When
in state q ∈ Q, MA can execute the instruction P (q), which will compute (1) new
values for all registers of MA and (2) a set of possible new states; MA can non-
deterministically transition into one of these states.

Definition 2. A k-step (finite) computation of the register machine MA = (n,A,Q, q0, qh, P)
is a finite sequence of configurations (Ci)0≤i≤k such that,

1. C0 = (q0,a0), where some of the components of a0 (registers) may contain
input values;

2. Ck = (qh,ak), where some of the components of an (registers) may contain
output values;

3. for every 0 ≤ i < k, Ci = (qi,ai), Cj = (qj ,aj), P (qi)(ai) = (aj , H), and
qj ∈ H.

MA therefore transitions from a configuration to another by sequentially ap-
plying its instructions. Whenever MA is in state qi, it retrieves the corresponding
instruction P (qi) and applies it to the tuple describing the values of the registers.
The result, P (qi)(ai), gives the new values for the registers and a set of states H
from which MA picks qj and moves into it. The last configuration Ch is habitually
referred to as the halting configuration.

Often, in order to be able to express the instructions in a sensible way, one
considers some kind of structure over the set A; one example of such a structure
may be a finitely generated Abelian group. Classical definitions of register machines
rely on (sub)sets of integers and on the associated structure of a linearly ordered
finitely generated Abelian group.

In what follows, we describe the existing models of register machines using
the abstract language we have just introduced, and we show that blind register
machines actually represent the least restricted variant.

Definition 3. A blind register machine is a register machine B over the finitely
generated Abelian group (Z,+). The instructions of blind register machines can be
of the following two types:

1. (ADD(i), q, s)(a1, . . . , ai, . . . , an) =
(
(a1, . . . , ai + 1, . . . , an), {q, s}

)
, and

2. (SUB∗(i), q)(a1, . . . , ai, . . . , an) =
(
(a1, . . . , ai − 1, . . . , an), {q}

)
.

The computations of blind register machines are defined as a computation of
the corresponding register machine over (Z,+).

32 A. Alhazov, O. Belingheri, R. Freund, S. Ivanov, A.E. Porreca, C. Zandron

Definition 4. A blind register machine accepts an input vector by resetting all
registers to zero in the halting configuration. A blind register machine generates
(or computes from an input) a vector of numbers by resetting all registers not
containing the output to zero.

We will use the notation PsZBRM (resp., PsNBRM) to refer to the class
of sets of vectors of integer (resp., natural) numbers accepted by blind register
machines.

All other well known types of register machines can be defined as subtypes of
blind register machines.

Definition 5. A partially blind register machine is a blind register machine whose
registers are only allowed to contain non-negative numbers: for any computation
(Ci)1≤i≤k of a partially-blind register machine and for any Ci = (qi,ai), 1 ≤ i ≤ k,
every component of ai is non-negative.

Thus, if the partially blind register machine B′ decides at some point to decre-
ment a register whose value is already zero, it will produce an illegal configuration
which will render the whole computation invalid. This means that B′ still cannot
check its registers for zero, but it knows that all of them are non-negative at any
given time. The computations of partially blind machines therefore satisfy a con-
dition which renders them strictly stronger than blind register machines [6]: the
registers may never go below zero.

Definition 6. A partially blind register machine accepts an input vector by re-
setting all registers to zero in the halting configuration. A partially blind register
machine generates (or computes from an input) a vector of numbers by resetting
all registers not containing the output to zero in the halting configuration.

We will use the notation PsPBRM to refer to the class of sets of vectors of
natural numbers accepted by partially blind register machines.

We can now also define conventional register machines in our general frame-
work.

Definition 7. A (conventional) register machine is a register machine over (Z,+)
with the following two types of instructions:

1. (ADD(i), q, s)(a1, . . . , ai, . . . , an) =
(
(a1, . . . , ai + 1, . . . , an), {q, s}

)
, and

2. (SUB(i), q, z)(a1, . . . , ai, . . . , an) ={(
(a1, . . . , ai − 1, . . . , an), {q}

)
, if ai > 0,(

(a1, . . . , ai, . . . , an), {z}
)
, if ai = 0.

Computations of conventional register machines are defined as computations
of the corresponding register machines over (Z,+) with the restriction that, in the
initial configuration, all registers must contain non-negative values.

It follows from the form of instructions allowed in conventional register ma-
chines that their registers contain non-negative values at any time. Therefore, one

Semilinear Sets, Register Machines, and Integer Vector Addition (P) Systems 33

can see such register machines as an even more powerful form of partially blind
register machines (and thus a particular case of blind register machines), in which
the machine is allowed to check whether any given register is zero.

We would like to remark that by considering other types of instructions or
restrictions on the class of valid computations, one can characterise many other
variants of register machines. For example, reversal-bounded counter automata are
register machines in which one can only switch from incrementing to decrementing
a register (and conversely) a bounded number of times [9].

4 Integer Vector Addition P Systems

In the article [10], Gheorghe Păun suggested exploring multisets with negative
multiplicities. Several possible answers were suggested. In [3], the authors define
generalised multisets as having multiplicities from totally ordered Abelian groups.
The work [1] takes a different approach and partitions the alphabet of objects into
two categories: the regular objects, which may have any integer multiplicity, and
the so-called “catalysts”, which are only allowed to appear in a bounded number
of copies. Like in purely catalytic P systems, the “catalysts” in this model are used
to guide the applicability of rules.

In this work, we generalise this model to the concept of integer vector addition
P systems. Before defining this model, we define the following natural extension
of multisets.

Definition 8. A Z-multiset over the (finite) alphabet O is a mapping w : O → Z.
The value w(a) is called the multiplicity of a in w. An object a ∈ O is said to
apear in w if w(a) 6= 0. A multiset w is said to be empty if no objects appear in it.

Thus, Z-multisets can also be seen as vectors of integers, indexed by elements
of O. We will use the notation ZO to refer to the set of all Z-multisets over O.

Definition 9. An integer vector addition P system (Z-VAPS) is the construct

Π = (O, T, µ, w1, . . . , wn, R, hi, ho),

where O is a finite alphabet of objects, T ⊆ O is the set of terminal objects, µ is the
membrane structure injectively labelled by the numbers from {1, . . . , n} and usually
given by a sequence of correctly nested brackets, wi are the Z-multisets giving the
initial contents of every membrane i, 1 ≤ i ≤ n, R is a finite set of rules of the
form r : {1, . . . , n} → ZO, and hi and ho are the labels of the input and the output
membranes, respectively (1 ≤ hi ≤ n, 1 ≤ ho ≤ n).

Thus, integer vector addition P systems manipulate vectors of integers, indexed
by the objects from O (Z-multisets). A rule r ∈ R assigns such a vector to every
membrane of Π; applying r means adding (by componentwise addition) the vector
r(i) to the vector representing the contents of the membrane i, for every 1 ≤

34 A. Alhazov, O. Belingheri, R. Freund, S. Ivanov, A.E. Porreca, C. Zandron

i ≤ n. Therefore, one may see r as only having a right-hand side and as being
unconditionally applicable. Such a form comes in naturally, since, as also pointed
out in [3, 1], considering multiplicities over Z renders the usual rule applicability
conditions irrelevant. We also remark that this way of defining the rules generalises
naturally to a tissue-like membrane structure, i.e. a membrane structure which is
not required to be a tree, but can be an arbitrary graph (cf. [5]).

We will use the tuple notation to describe rules of vector addition P systems —
a rule r will be given by the set

{
(i, r(i)) | 1 ≤ i ≤ n, r(i) is not empty

}
.

In [1], the authors use a special symbol δ to command the dissolution of the
membrane in which it is produced. To allow for the same possibility in vector
addition P systems, we will define the rules as functions of the form {1, . . . , n} →
ZO∪{δ}, i.e. as functions assigning Z-multisets over O ∪ {δ} to each membrane. If
r(i)(δ) = 1 for the elementary membrane i, the application of r will dissolve this
membrane after adding the multiplicities of symbols different from δ to its contents.
We may even allow r(i)(δ) = k > 1, in which case k successive membranes in
the hierarchy will be dissolved, but only the contents of the innermost dissolved
membrane will be copied into the corresponding parent membrane (the contents
of the intermediary membranes will be lost).

Allowing dissolution makes it possible to introduce a rule applicability condi-
tion: r is applicable if every membrane i, for which r(i) is not empty, is still present
in the system.

The integer vector addition P system Π evolves by sequentially applying rules
from R until a halting configuration is reached. Remark that, because of the use
of Z-multisets, the only way to use the classical halting condition is to dissolve all
the membranes to which the rules of Π may contribute. This corresponds to the
approach proposed in [1] which consists in dissolving all the working membranes
until the result reaches a membrane without any rules. Thus, the classical halting
condition becomes somewhat degenerate; it is therefore only natural to discuss
other halting conditions, for example:

• unconditional halting — the system may halt at any moment, independently
of rule applicability or contents of the membranes;

• halting by zero — the system halts when it reaches a configuration in which all
multisets representing the contents of all membranes are empty.

One may see unconditional halting as corresponding to the way in which the
language generated by a grammar is defined [4]: essentially, the contents of the
output membrane of Π in any configuration Π can reach, projected on the terminal
alphabet T , is part of the vector language generated by Π. On the other hand,
halting by zero corresponds to the way in which blind register machines recognise
input vectors.

We will use the symbols uncond, zero, and inappl to refer to unconditional
halting, halting by zero, and halting by inapplicability of rules. Similarly, we will
use the symbols acc and gen to refer to the accepting and generating modes. We
will use the notation PsZVAPS(m,h), m ∈ {acc, gen}, h ∈ {uncond, zero, inappl},

Semilinear Sets, Register Machines, and Integer Vector Addition (P) Systems 35

to refer to the class of sets of vectors of integers accepted or generated by integer
vector addition P systems working with the corresponding halting conditions. We
will add the symbol δ to refer to the vector languages associated with Z-VAPS
with dissolution rules (PsZVAPS(m,h, δ)) and the symbol δ∗ to refer to the lan-
guages of Z-VAPS which are allowed to dissolve multiple membranes at a time
(PsZVAPS(m,h, δ∗)). Finally, we will replace Z by N to refer to the languages of
vectors of naturals (non-negative integers).

We immediately observe that PsZVAPS(m, inappl) = {∅}, because if a Z-
VAPS has any rules at all, it can never halt by rule inapplicability.

5 On the Power of Blind Register Machines

In this section, we will focus on relating integer vector addition systems to blind
register machines, as well as on expressing the power of both models in terms
of semilinear vectors of numbers. We will show that blind register machines and
Z-VASS generate exactly N-linear sets of Z-vectors.

The work [2] also discusses the computational power of blind and partially blind
register machines, but it uses a different definition of blindness: a blind register
machine is defined as a partially blind register machine which may halt with any
values in the registers. In the present paper we use a definition which is closer to
Sheila Greibach’s blind and partially register machines [6].

We will start by giving a proof of the quite intuitive result that blind regis-
ter machines recognise exactly the same sets of integer vectors as integer vector
addition systems with states generate.

Theorem 1. PsZBRM = Z-VASS.

Proof. Take a blind register machine B = (n,Z, Q, q0, qh, P); we will construct
a Z-VASS Γ = (w0, S, s0, sh, p, δ) with w0 = (0, . . . , 0) ∈ Zn, S = Q, s0 = qh,
sh = q0. The set δ(p) will contains all the states of B from which p can be reached:

δ(s) = {q ∈ Q | P (q) = (SUB(i), s) or P (q) = (ADD(i), s, s′)
or P (q) = (ADD(i), s′, s)}.

The vector p(s) associated with a state s ∈ S does the opposite effect of the
instruction associated with the same state in B:

p(s) =

{
1i, if P (s) = (SUB(i), q),

−1i, if P (S) = (ADD(i), q, q′),

where 1i ∈ Zn is a vector whose only non-zero component is the i-th component.
It follows from the construction of Γ that, for every computation of B accepting

an input vector x, there exists a computation of Γ halting on the same vector,
and conversely, which proves that PsZBRM ⊆ Z-VASS.

36 A. Alhazov, O. Belingheri, R. Freund, S. Ivanov, A.E. Porreca, C. Zandron

To prove the converse inclusion, it suffices to take an arbitrary integer vector
addition system and construct a blind register machine by reversing the arrows in
the state control graph and by simulating the inverse effect of the addition vectors
using multiple states.

The same construction can be used to show that partially blind register machine
are equivalent in power to conventional vector addition systems with states. Taking
into consideration the result on equivalence between (conventional) VAS and VAS
with states from [8], we formulate the following characterisation of the power of
partially blind register machines.

Theorem 2. PsPBRM = VASS = VAS.

We will now show that blind register machines do not recognise more than
N-semilinear sets of Z-vectors.

Lemma 1. PsZBRM ⊆ Z∗SLINN.

Proof. Consider a blind n-register machine B. At every step, B can increment or
decrement a register, independently of the contents of the registers. Consider the
alphabet of actions of B: AB = {ADD(i), SUB(i) | 1 ≤ i ≤ n}; every computation
of B can be represented as a string over this alphabet. Let valid(AB) ⊆ A∗B be
the strings over A∗B which correspond to all computations of B. Pick such a string
w ∈ valid(AB). Since the actions do not depend on the contents of the registers,
any permutation of w which is in valid(AB) will have the same effect as w. In
particular, B will halt with the same values in its registers. Therefore, the set of
vectors B recognises can be described as follows:

N(B) =
{
−(a1, . . . , an) | w ∈ valid(AB), ai = |w|ADD(i) − |w|SUB(i)

}
,

where |w|x is the number of copies of the symbol x ∈ AB in the string w.
Because B cannot read the values of its registers, the set valid(AB) is the

regular language given by the state control of B. Therefore, the Parikh image
Ps
(
valid(AB)

)
is an N-semilinear set. This means that N(B) is an N-semilinear

set of Z-vectors, and so is the set of vectors including only the values of the output
registers of B. Consequently, PsZBRM ⊆ Z∗SLINN, which is the statement of
the lemma.

We will now show that blind register machines can recognise all N-semilinear
sets of Z-vectors.

Lemma 2. PsZBRM ⊇ Z∗SLINN.

Proof. Consider an N-semilinear set A of Z-vectors. There exists a finite collection
of sets of generators Ai ⊆ Zn and offsets ai ∈ Zn such that A =

⋃
i〈Ai,ai〉Z.

Consider a blind register machine B which starts by non-deterministically choosing
a set of generators Ai and the corresponding offset ai. B then repeats the following
procedure until the set Ai is exhausted:

Semilinear Sets, Register Machines, and Integer Vector Addition (P) Systems 37

1. remove a generator a from Ai;
2. subtract a from the vector describing the registers of B a number of times

chosen non-deterministically.

At the end, B subtracts the vector ai from its registers. If B manages to reset all
its registers using this procedure, then, by construction, the input vector belongs
to 〈Ai,ai〉Z ⊆ A (and the computation of the machine gives a way to construct
this vector from Ai and ai). This implies the statement of the lemma.

It follows from Lemmas 1 and 2 that blind register machines recognise exactly
the N-semilinear sets of Z-vectors.

Theorem 3. PsZBRM = Z∗SLINN.

Consequently, if one takes only the natural vectors recognised by blind register
machines, one obtains positive-restricted N-semilinear sets of Z-vectors.

Corollary 1. PsNBRM = Z∗+SLINN.

6 On the Power of Z-VA(P)S

In this section we will describe the power of integer vector addition (P) systems
in terms of semilinear sets of vectors and blind register machines. We will start
by pointing out that Z-VAPS without dissolution and with unconditional halting
generate exactly the sets reachable by Z-VAS.

Lemma 3. PsZVAPS(gen, uncond) = Z-VAS.

Proof. The effect of rules of Z-VAPS without dissolution does not depend on the
contents of the membranes. Consider the set of rules R of such a P system Π;
we will construct a Z-VAS Γ whose starting vector is the initial contents of the
output membrane ho of Π, and whose addition vectors are given by the projection
{r(ho) | r ∈ R}. Since Π can halt at any moment, its output is exactly the
reachable vectors of Γ . Therefore PsZVAPS(gen, uncond) ⊆ Z-VAS.

The converse inclusions follows from the fact that any Z-VAS can be seen as a
one-membrane Z-VAPS working with unconditional halting.

The same kind of reasoning allows us to characterise the power of Z-VAPS
working in recognising mode and halting by reaching zero vectors in all membranes.

Lemma 4. PsZVAPS(acc, zero) = Z-VAS.

On the other hand, because of the direct equivalence between Z-VAS and N-
linear sets of Z-vectors, we can write the previous two results in the following
way.

Theorem 4. PsZVAPS(gen, uncond) = PsZVAPS(acc, zero) = Z∗LINN = Z-
VAS.

38 A. Alhazov, O. Belingheri, R. Freund, S. Ivanov, A.E. Porreca, C. Zandron

Allowing membrane dissolution together with unconditional halting allows gen-
erating at most unions of vector languages generated by families of Z-VAS which
may only differ in their start vectors. We will call such families uniform and will
denote the class of vector languages generated by such families by Z-VAS∪.

Lemma 5. PsZVAPS(gen, inappl, δ) ⊆ Z-VAS∪.

Proof. Consider a Z-VAPS Π with normal membrane dissolution and halting by
inapplicability of rules. First of all, we remark that the contents of the output
membrane ho only depend on the evolution of the membranes located within.
Furthermore, ho must have no rules associated, otherwise the system will never
halt (or will end up dissolving ho if ho is not the skin, in which case no output will
be yielded either). Finally, only those inner membranes of ho which are dissolved
contribute to its final contents.

Consider one of the membranes h located somewhere within ho. If it has no in-
ner membranes, its evolution is described by a Z-VAS. If h has one inner membrane
h′ which is elementary (it contains no other membranes), then we can distinguish
two phases in the evolution of h: before and after the dissolution of h′ (and before
the dissolution of h itself). Given that the contents of h′ must eventually be merged
with those of h, we can just as well consider that, during the first phase, the rules
contributing to h are extended by the corresponding additions carried out by the
rules contributing to h′. Since the order in which the rules of Z-VAPS are applied
does not affect the result, we can consider that h contains no inner membranes at
all, but possesses a double set of contributing rules instead: one which combines
the original rules contributing to h and to h′, and another which only includes the
original rules contributing to h. Therefore, we can correctly describe the evolution
of h by taking at least some of the vectors a Z-VAS can reach.

We remark that the rule dissolving h′ in this case may only be applied once,
and its effect can be simulated by adding the vector it produces to the starting
multiset of the containing membrane h.

The reasoning from the previous paragraphs can be applied to a membrane
which contains multiple elementary membranes, as well as, inductively, to all in-
ner membranes of the output membrane ho: we can replace ho by a new elementary
membrane h′o, and take some of the vectors generated in it into the output lan-
guage. Remark now that the moment at which a membrane is dissolved is not
correlated with its contents and only depends on whether all of its inner mem-
branes have been dissolved already. This means that, if the depth of the membrane
structure contained in ho is d, d steps of evolution are necessary and suffice for dis-
solving all the inner membranes of ho. Therefore, the contents of the membrane ho
in the halting configurations of Π are given by all the vectors that can be reached
in membrane h′o in at least d steps. These are the vectors which can be reached by
the family of Z-VAS {(wi,W) | wi ∈Wd}, where W contains the addition vectors
defined by the rules contributing to the new membrane h′o, and Wd is the (finite)
set of vectors which h′o can reach in exactly d steps.

Semilinear Sets, Register Machines, and Integer Vector Addition (P) Systems 39

It turns out that this family of Z-VAPS can generate all vector languages from
Z-VAS∪.

Lemma 6. PsZVAPS(gen, inappl, δ) ⊇ Z-VAS∪.

Proof. Consider a finite family of Z-VAS F = {(wi,W) | 1 ≤ i ≤ n}. We will
define a Z-VAPS Π generating the vectors reachable by the systems from F in
the following way. Π will have two nested membranes and two groups of rules.
The first group of rules will apply the vectors from W to the inner membrane. A
rule of the second group will add one of the vectors wi to the inner membrane
and dissolve it immediately. By construction, the vectors appearing in the halting
configurations of Π are exactly the vectors which can be reached by the Z-VAS
from F , which proves the lemma.

The following theorem summarises the two preceding lemmas.

Theorem 5. PsZVAPS(gen, inappl, δ) = Z-VAS∪.

Interestingly, the class Z-VAS∪ is strictly in between the classes Z-VAS and
Z-VASS.

Lemma 7. Z-VAS (Z-VAS∪.

Proof. The inclusion is trivial. Consider now two Z-VAS having the axioms (0, 0)
and (0, 1), and sharing the only addition vector (1, 1). The language of vectors
reachable by these two systems is L = {(a, a), (a, a + 1) | a ∈ N}. Suppose there
exists a Z-VAS Γ generating the same vector language L. In order to generate all
pairs of natural numbers (a, a), it must start with the axiom (0, 0) and have an
addition vector of the form (1, 1). Then, in order to generate the pairs (a, a+ 1),
Γ needs to have an addition vector of the form (x, x+ 1). However, applying this
addition vector twice yields the vector (2x, 2x + 2) /∈ L, which contradicts the
supposition and proves that the inclusion from the statement of the lemma is
strict.

The following lemma describes the relationship between Z-VAS∪ and Z-VASS.

Lemma 8. Z-VAS∪ (Z-VASS.

Proof. The work of a finite family F of Z-VAS can be simulated by a Z-VASS by
non-deterministically choosing a state in which one of the start vectors of F will
be added, and by subsequent direct simulation of the application of the shared
addition vectors.

Consider now the Z-VASS Γ with the starting vector (0, 0), which applies the
addition vector (0, 0) in the starting state q0 and the non-deterministically chooses
between q(1,0) and q(0,1). In q(1,0), Γ may apply the addition vector (1, 0) indefi-
nitely, before transitioning into qh. Similarly, in q(0,1), Γ may apply the addition
vector (0, 1) indefinitely, before moving into qh. Thus, the vector language gener-
ated by Γ is L = {(a, 0), (0, a) | a ∈ N}.

40 A. Alhazov, O. Belingheri, R. Freund, S. Ivanov, A.E. Porreca, C. Zandron

Suppose there exists a family of Z-VAS which generate the same language. The
shared addition vectors of this family must therefore include both (1, 0) and (0, 1).
But then, this family must also generate vectors in which both components are
non-zero and which therefore do not belong to L. This contradicts our supposition
and proves that the inclusion in the statement of the lemma is strict.

The previous lemma also gives an example of a Z-semilinear set which cannot
be generated by uniform family of Z-VAS systems, which implies the following
result.

Corollary 2. Z-VAS∪ (Z∗SLINN.

It follows from the Theorem 5, Lemmas 7 and 8, as well as from the charac-
terisations from the previous section, that the languages recognised by Z-VAPS
with normal dissolution and conventional halting are situated strictly in between
N-linear sets of Z-vectors and N-semilinear sets of Z-vectors.

Theorem 6. Z∗LINN (PsZVAPS(gen, inappl, δ) (Z∗SLINN.

Finally, we show that allowing dissolution of multiple membranes by one rule
allows generating all Z-semilinear languages and therefore renders such Z-VAPS
equivalent in power to blind register machines.

Theorem 7. PsZVAPS(gen, inappl, δ∗) = Z∗SLINN.

Proof (Sketch). Consider a family F of n Z-VAS, each of which generates a Z-
linear set of vectors. One can construct an integer vector addition P system Π
with multiple dissolution in the following way. Π will have n + 2 membranes
organised in a linear structure. The rules of Π will simulate the i-th Z-VAS in the
membrane at depth i+ 1 (the depth of the skin is 0); moreover, Π will have a rule
producing the start vector wi and introducing n− i copies of δ into the membrane
at depth i + 1, for 1 ≤ i ≤ n. These rule effectively finalise the simulation of the
i-th Z-VAS. Finally, Π will have rules introducing i copies of δ into the innermost
membrane, for 1 ≤ i ≤ n, which will “select” the membrane at depth i + 1 and
will allow it to eventually apply its dissolution rules and put the result into the
skin. Thus, Π generates the semilinear language generated by the family F .

To prove the inverse inclusion, we will rely on Lemma 1. Consider a Z-VAPS
Π with multiple dissolution. We will construct a blind register machine B which
recognises the vector language generated by Π in the following way. B will have
a group of working register per membrane of Π which will represent the mul-
tiplicities of the symbols in this membrane. B will start with the vector x in
its input registers, and will simulate the applications of rules of Π in its working
registers. Whenever Π dissolves a membrane (or multiple membranes), B will non-
deterministically guess the multiplicities of each symbol in the dissolved membrane
and will copy the guessed values into the working registers representing the corre-
sponding parent membrane. When all inner membranes of the output membranes
have been dissolved (B can encode the information about the membrane structure

Semilinear Sets, Register Machines, and Integer Vector Addition (P) Systems 41

in its state), B will simultaneously decrement the working registers representing
the contents of the skin and the input registers. If, earlier during the simulation,
B had guessed the value of a register wrongly, or, at the end of the simulation,
the values of the input registers and the working registers representing the skin
did not match, some registers of B will be zero and the vector x will be rejected.
It follows from the construction that B will accept exactly the vector generated
by Π, which implies the statement of the theorem.

7 Conclusion

In this paper we continued the investigation of P systems with multisets with
integer multiplicities, proposed in [10] and already studied in [3] and [1]. We focused
on the model originally described in [1] and generalised it to integer vector addition
P systems, in which the applicability of rules does not in any way depend on the
contents of the membranes. Interestingly enough, this P system variant exhibits
very strong connection with blind register machines and integer vector addition
systems — two models which have received little to no attention in the scientific
literature up to now.

We studied a number of working modes of and halting conditions for integer
vector addition P systems and gave exact characterisations of the power of the
corresponding variants in terms of linear and semilinear sets over Z and over N. We
also pointed out a number of relations between the classes of languages generated
or accepted by the model.

Some non-trivial open questions are revealed by our research. One of them
concerns the semantics of multiple dissolution. In P systems, dissolution typically
concerns one membrane at a time; in the present paper we suggest considering the
possibility of dissolving multiple containing membranes in one step. The seman-
tics we propose discards the contents of the dissolved intermediary membranes,
so only the multiset of the innermost dissolved membrane is transferred to the
corresponding parent membrane. Other semantics of multiple dissolution may be
possible and are certainly worth exploring.

A very interesting open question concerns the types of semilinear sets. In this
paper we only deal with semilinear sets with generators and initial offsets from Nn
and Zn, restricted to non-negative values or not. It is however possible to consider
the generators, the offsets, and the coefficients to belong to Nn or Zn, alternatively.
This yields 8 possibly different kinds of semilinear sets, not including restrictions
to non-negative values. Exploring the relations between these kinds of semilinear
sets may be useful in further refining certain characterisations.

Finally, we point out that classical halting by inapplicability of rules is not
necessarily well adapted for dealing with generalisations of multisets to integers.
We give examples of different halting conditions inspired by other models of com-
puting, but our list is far from exhaustive and is definitely worth to be extended.

42 A. Alhazov, O. Belingheri, R. Freund, S. Ivanov, A.E. Porreca, C. Zandron

References

1. O. Belingheri, A. E. Porreca, and C. Zandron. P systems with hybrid sets, 2016.
Workshop on Membrane Computing, submitted.

2. R. Freund, O. Ibarra, Gh. Păun, and H.-C. Yen. Matrix languages, register machines,
vector addition systems. Third Brainstorming Week on Membrane Computing, pages
155–167, 2005.

3. R. Freund, S. Ivanov, and S. Verlan. P systems with generalized multisets over
totally ordered abelian groups. In Int. Conf. on Membrane Computing, volume 9504
of Lecture Notes in Computer Science, pages 117–136. Springer, 2015.

4. R. Freund, M. Kogler, and M. Oswald. A general framework for regulated rewriting
based on the applicability of rules. In J. Kelemen and A. Kelemenová, editors,
Computation, Cooperation, and Life, volume 6610 of Lecture Notes in Computer
Science, pages 35–53. Springer Berlin Heidelberg, 2011.

5. R. Freund and S. Verlan. A formal framework for static (tissue) P systems. In
G. Eleftherakis, P. Kefalas, Gh. Păun, G. Rozenberg, and A. Salomaa, editors, Mem-
brane Computing, volume 4860 of Lecture Notes in Computer Science, pages 271–284.
Springer Berlin Heidelberg, 2007.

6. S. A. Greibach. Remarks on blind and partially blind one-way multicounter machines.
Theoretical Computer Science, 7(3):311–324, 1978.

7. C. Haase and S. Halfon. Integer vector addition systems with states. In J. Ouaknine,
I. Potapov, and J. Worrell, editors, Reachability Problems: 8th International Work-
shop, RP 2014, Oxford, UK, September 22-24, 2014. Proceedings, pages 112–124.
Springer, 2014.

8. J. Hopcroft and J.-J. Pansiot. On the reachability problem for 5-dimensional vector
addition systems. Theoretical Computer Science, 8(2):135–159, 1979.

9. O. H. Ibarra. Automata with reversal-bounded counters: A survey. In H. Jürgensen,
J. Karhumäki, and A. Okhotin, editors, Descriptional Complexity of Formal Sys-
tems: 16th International Workshop, DCFS 2014, Turku, Finland, August 5-8, 2014.
Proceedings, pages 5–22. Springer, 2014.

10. Gh. Păun. Some quick research topics.
http://www.gcn.us.es/files/OpenProblems bwmc15.pdf.

11. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,
61:108–143, 1998.

12. Gh. Păun, G. Rozenberg, and A. Salomaa. The Oxford Handbook of Membrane
Computing. Oxford University Press, Inc., New York, NY, USA, 2010.

