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Preface

The 15th Brainstorming Week on Membrane Computing (BWMC) was held in
Sevilla, from January 31 to February 3, 2017, in the organization of the Research
Group on Natural Computing (RGNC) from the Department of Computer Science
and Artificial Intelligence of Sevilla University. The first edition of BWMC was
organized at the beginning of February 2003 in Rovira i Virgili University, Tarrag-
ona, and all the next editions took place in Sevilla at the beginning of February,
each year.

The program was available at www.gcn.us.es/15bwmc program

In the style of previous meetings in this series, the 15th edition of BWMC
was conceived as a period of active interaction among the participants, with the
emphasis on exchanging ideas and cooperation. Several “provocative” talks were
delivered, mainly devoted to open problems, research topics, conjectures waiting
for proofs, followed by an intense cooperation among the 23 participants – see the
list in the end of this preface. The efficiency of this type of meetings was again
proved to be very high and the present volume illustrates this assertion.

The present volume is meant to be a working instrument, part of the interaction
started during the stay of authors in Sevilla, making possible a further cooperation,
this time having a written support.

A selection of papers from this volume will be considered for publication in
special issues of Theoretical Computer Science.

After each BWMC, one or two special issues of various international journals
were published. Here is their list:

• BWMC 2003: Natural Computing – volume 2, number 3, 2003, and New Gen-
eration Computing – volume 22, number 4, 2004;

• BWMC 2004: Journal of Universal Computer Science – volume 10, number 5,
2004, and Soft Computing – volume 9, number 5, 2005;

• BWMC 2005: International Journal of Foundations of Computer Science –
volume 17, number 1, 2006);

• BWMC 2006: Theoretical Computer Science – volume 372, numbers 2-3, 2007;
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• BWMC 2007: International Journal of Unconventional Computing – volume 5,
number 5, 2009;

• BWMC 2008: Fundamenta Informaticae – volume 87, number 1, 2008;
• BWMC 2009: International Journal of Computers, Control and Communica-

tion – volume 4, number 3, 2009;
• BWMC 2010: Romanian Journal of Information Science and Technology –

volume 13, number 2, 2010;
• BWMC 2011: International Journal of Natural Computing Research – volume

2, numbers 2-3, 2011.
• BWMC 2012: International Journal of Computer Mathematics – volume 99,

number 4, 2013.
• BWMC 2013: Romanian Journal of Information Science and Technology, vol.

17, nr. 1, 2014.
• BWMC 2014: Fundamenta Informaticae, volume 134, numbers 1-2, 2014.
• BWMC 2015: Natural Computing – volume 15, issue 4, 2016 (some papers from

ACMC 2015 were also selected for this special issue).
• BWMC 2016: Theoretical Computer Science – in press (some papers from

ACMC 2016 were also selected for this special issue).

Some of the papers elaborated during the 15th BWMC were submitted to
various journals and conferences. The reader interested in the final version of
these papers is advised to check the current bibliography of membrane computing
available in the domain website http://ppage.psystems.eu.

***
The list of participants as well as their email addresses are given below, with

the aim of facilitating the further communication and interaction:

1. José Antonio Andreu-Guzmán, Universidad de Sevilla (Spain)
andreuguzman36@gmail.com

2. Lucie Ciencialová, Silesian University (Opava, Czech Republic)
ciecilka@gmail.com

3. Rudolf Freund, Technological University of Vienna (Austria)
rudifreund@gmx.at

4. Carmen Graciani, Universidad de Sevilla (Spain)
cgdiaz@us.es

5. Sergiu Ivanov, Université Paris-Est Créteil (France)
sivanov@colimite.fr

6. Gábor Kolonits, Eötvös Loránd University (Hungary)
kolonits.gabor@gmail.com

7. Alberto Leporati, University of Milan-Bicocca (Italy)
leporati@disco.unimib.it

8. Francisco J. Maćıas-Garćıa, Universidad de Sevilla (Spain)
franmaciassevilla@gmail.com
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9. Luca Manzoni, University of Milan-Bicocca (Italy)
luca.manzoni@disco.unimib.it

10. Miguel A. Mart́ınez-del-Amor, Universidad de Sevilla (Spain)
mdelamor@us.es

11. David Orellana-Mart́ın, Universidad de Sevilla (Spain)
dorellana@us.es

12. Ignacio Prez-Hurtado, Universidad of Seville (Spain)
perezh@us.es

13. Mario de J. Pérez-Jiménez, Universidad de Sevilla (Spain) and Academia Eu-
ropaea
marper@us.es

14. Antonio Enrico Porreca, University of MilanBicocca (Italy)
porreca@disco.unimib.it

15. Fernando Rendn-Segador, Universidad de Sevilla (Spain)
fernandojrs90@gmail.com

16. Agust́ın Riscos-Núñez, Universidad de Sevilla (Spain)
ariscosn@us.es

17. Daniel Rodŕıguez-Chavarŕıa, Universidad de Sevilla (Spain)
danrodcha@gmail.com

18. Álvaro Romero-Jiménez, Universidad de Sevilla (Spain)
romero.alvaro@us.es

19. Eduardo Sánchez-Karhunen, Universidad de Sevilla (Spain)
sanchek@gmail.com

20. Jose Maŕıa Sempere-Luna, Politechnical University of Valencia (Spain)
jsempere@dsic.upv.es

21. Luis Valencia-Cabrera, Universidad de Sevilla (Spain)
lvalencia@us.es

22. Gyorgy Vaszil, University of Debrecen (Hungary)
vaszil.gyorgy@inf.unideb.hu

23. Lian Ye, Chongqing University (China)
ylredleaf@cqu.edu.cn

As mentioned above, the meeting was organized by the Research Group on
Natural Computing from Sevilla University (http://www.gcn.us.es)– and all
the members of this group were enthusiastically involved in this (not always easy)
work.

The meeting was partially supported by Universidad de Sevilla, more precisely
by Department of Computer Science and Artificial Intelligence and VI Plan Propio,
Vicerrectorado de Investigación de la Universidad de Sevilla.

Carmen Graciani
Gheorghe Păun

Agust́ın Riscos-Núñez
Luis Valencia-Cabrera
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Summary. We introduce a novel kind of P systems in which the application of rules in
each step is controlled by a function on the applicable multisets of rules. Some examples
are given to exhibit the power of this general concept. Moreover, for three well-known
models of P systems we show how they can be simulated by P systems with a suitable
fairness function.

1 Introduction

Membrane computing is a research field originally founded by Gheorghe Păun
in 1998, see [5]. Membrane systems (also known as P systems) are a model of
computing based on the abstract notion of a membrane and the rules associated to
it which control the evolution of the objects inside. In many variants of P systems,

? The work is supported by National Natural Science Foundation of China (61320106005
and 61033003) and the Innovation Scientists and Technicians Troop Construction
Projects of Henan Province (154200510012).



2 A. Alhazov, R. Freund, S. Ivanov

the objects are plain symbols from a finite alphabet, but P systems operating on
more complex objects (e.g., strings, arrays) have been considered, too, e.g., see [2].

A comprehensive overview of different flavors of membrane systems and their
expressive power is given in the handbook, see [6]. For a state of the art snapshot
of the domain, we refer the reader to the P systems website [9] as well as to the
bulletin series of the International Membrane Computing Society [8].

In this paper we introduce a novel kind of P systems in which the application
of rules in each step is controlled by a function on the applicable multisets of
rules, possibly also depending on the current configuration; we call this function
the fairness function. In the standard variant, the fairness function will be used to
choose those applicable multisets for which the fairness function yields the minimal
value.

After recalling some preliminary notions and definitions in the next section, in
Section 3 we will define our new model of fair P systems and give some examples
to exhibit the power of this general concept. In Section 4, for three well-known
models of P systems we will show how they can be simulated by P systems with a
suitable fairness function. Future research topics finally are touched in Section 5.

2 Preliminaries

In this paper, the set of positive natural numbers {1, 2, . . . } is denoted by N+, the
set of natural numbers also containing 0, i.e., {0, 1, 2, . . . }, is denoted by N. The
set of integers denoted by Z.

An alphabet V is a finite set. A (non-empty) string s over an alphabet V is
defined as a finite ordered sequence of elements of V .

A multiset over V is any function w : V → N; w(a) is the multiplicity of a in w.
A multiset w is often represented by one of the strings containing exactly w(a)
copies of each symbol a ∈ V ; the set of all these strings representing the multiset w
will be denoted by str(w). The set of all multisets over the alphabet V is denoted
by V ◦. By abusing string notation, the empty multiset is denoted by λ.

The families of sets of Parikh vectors as well as of sets of natural numbers
(multiset languages over one-symbol alphabets) obtained from a language family
F are denoted by PsF and NF , respectively. The family of recursively enumerable
string languages is denoted by RE.

For further introduction to the theory of formal languages and computability,
we refer the reader to [6, 7].

2.1 (Hierarchical) P Systems

A hierarchical P system (P system, for short) is a construct

Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho),

where O is the alphabet of objects, T ⊆ O is the alphabet of terminal objects,
µ is the membrane structure injectively labeled by the numbers from {1, . . . , n}
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and usually given by a sequence of correctly nested brackets, wi are the multisets
giving the initial contents of each membrane i (1 ≤ i ≤ n), Ri is the finite set of
rules associated with membrane i (1 ≤ i ≤ n), and hi and ho are the labels of the
input and the output membranes, respectively (1 ≤ hi ≤ n, 1 ≤ ho ≤ n).

In the present work, we will mostly consider the generative case, in which Π will
be used as a multiset language-generating device. We therefore will systematically
omit specifying the input membrane hi.

Quite often the rules associated with membranes are multiset rewriting rules (or
special cases of such rules). Multiset rewriting rules have the form u→ v, with u ∈
Oo \{λ} and v ∈ Oo. If |u| = 1, the rule u→ v is called non-cooperative; otherwise
it is called cooperative. Rules may additionally be allowed to send symbols to
the neighboring membranes. In this case, for rules in Ri, v ∈ O × Tari, where
Tari contains the targets out (corresponding to sending the symbol to the parent
membrane), here (indicating that the symbol should be kept in membrane i),
and inj (indicating that the symbol should be sent into the child membrane j of
membrane i).

In P systems, rules are often applied in the maximally parallel way: in any
derivation step, a non-extendable multiset of rules has to be applied. The rules are
not allowed to consume the same instance of a symbol twice, which creates com-
petition for objects and may lead to the P system choosing non-deterministically
between the maximal collections of rules applicable in one step.

A computation of a P system is traditionally considered to be a sequence of
configurations it successively can pass through, stopping at the halting configura-
tion. A halting configuration is a configuration in which no rule can be applied
any more, in any membrane. The result of a computation of a P system Π as de-
fined above is the contents of the output membrane ho projected over the terminal
alphabet T .

Example 1. For readability, we will often prefer a graphical representation of P
systems; moreover, we will use labels to identify the rules. For example, the P
system Π1 = ({a, b}, {b}, [

1
]
1
, a, R1, 1) with the rule set R1 = {1 : a → aa, 2 :

a→ b} may be depicted as in Figure 1.

1 : a→ aa

2 : a→ b

a
1

Fig. 1. The example P system Π1

Due to maximal parallelism, at every step Π1 may double some of the symbols
a, while rewriting some other instances into b.

Note that, even though Π1 might express the intention of generating the set
of numbers of the powers of two, it will actually generate the whole of N+ (due to
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the halting condition). Indeed, for any n ∈ N+, an can be generated in n steps by
choosing to apply, in the first n− 1 steps, 1 : a→ aa to exactly one instance of a
and a → b to all the other instances, and by applying 2 : a → b to every a in the
last step (in fact, for n > 1, in each step except the last one, in which 2 : a → b
is applied twice, both rules are applied exactly once, as exactly two symbols a are
present, whereas all other symbols are copies of b). �

While maximal parallelism and halting by inapplicability have been standard
ingredients from the beginning, various other derivation modes and halting condi-
tions have been considered for P systems, e.g., see [6].

2.2 Flattening

The folklore flattening construction (see [6] for several examples as well as [3] for
a general construction) is quite often directly applicable to many variants of P
systems. Hence, also for the systems considered in this paper we will not explicitly
mention how results are obtained by flattening.

3 P Systems with a Fairness Function

In this section we consider variants of P systems using a so-called fairness function
for choosing a multiset of rules out of the set of all multisets of rules applicable to
a configuration.

3.1 The General Idea of a Fairness Function in P Systems

Take any (standard) variant of P systems and any (standard) derivation mode.
The application of a multiset of rules in addition can be guided by a function
computed based on specific features of the underlying configuration and of the
multisets of rules applicable to this configuration. The choice of the multiset of
rules to be applied then depends on the function values computed for all the
applicable multisets of rules.

Therefore, in general we extend the model of a hierarchical P system to the
model of a hierarchical P system with fairness function (fair P system for short)

Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho, f),

where f is the fairness function defined for any configuration C of Π, the cor-
responding set Applδ(Π,C) of multisets of rules from Π applicable to C in the
given derivation mode δ, and any multiset of rules R ∈ Applδ(Π,C). We then
use the values f(C,Applδ(Π,C), R) for all R ∈ Applδ(Π,C) to choose a multi-
set R′ ∈ Applδ(Π,C) of rules to be applied to the underlying configuration C. A
standard option for choosing R′ is to require it to yield the minimal value for the
fairness function, i.e., we require f(C,Applδ(Π,C), R′) ≤ f(C,Applδ(Π,C)), R)
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for all R ∈ Applδ(Π,C). As usually the derivation mode δ will be obvious from
the context, we often shall omit it.

The fairness function may be independent from the underlying configuration,
i.e., we may write f(Appl(Π,C), R) only; in the simplest case, f is even indepen-
dent from Appl(Π,C), hence, in this case we only write f(R).

Fair or Unfair

One may argue that it is fair to use rules in such a way that each rule should
be applied if possible and, moreover, all rules should be applied in a somehow
balanced way. Hence, a fairness function for applicable multisets should compute
the best value for those multisets of rules fulfilling these guidelines.

On the other hand, we may choose the multiset of rules to be applied in such a
way that it is the unfairest one. In this sense, let us consider the following unfair
example.

Example 2. Consider the P system Π1 = ({a, b}, {b}, [
1

]
1
, a, R1, 1) with the rule

set R1 = {1 : a → aa, 2 : a → b} as considered in Example 1 together with the
fairness function f2 defined as follows: if a rule is applied n times then it contributes
to the function value of the fairness function f2 for the multiset of rules with 2−n.
The total value for f2(R) for a multiset of rules R containing k copies of rule
1 : a → aa and m copies of rule 2 : a → b then is the sum 2−k + 2−m. The
resulting fair P system Π2 = ({a, b}, {b}, [

1
]
1
, a, R1, 1, f2) is depicted in Figure 2;

we observe that it can also be written as (Π1, f2).

1 : a→ aa

2 : a→ b

a; f2
1

Fig. 2. The P system Π2

In this fair P system (or in this case we might also call it maximally unfair)
with one membrane working in the maximally parallel way, we again start with
the axiom a and use the two rules 1 : a→ aa and 2 : a→ b. If we apply only one
of these rules to all m objects a, then the function value is 2−m and is minimal
compared to the function values computed for a mixed multiset of rules using both
rules at least once.

Starting with the axiom a we use the rule 1 : a → aa in the maximal way k
times thus obtaining 2k symbols a. Then in the last step, for all a we use the rule
2 : a→ b thus obtaining 2k symbols b. We cannot mix the two rules in one of the
derivation steps as only the clean use of exactly one of them yields the minimal
value for the fairness function.
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We observe that the effect is similar to that of controlling the application of
rules by the well-known control mechanism called label selection, e.g., see [4], where
either the rule with label 1 or the rule with label 2 has to be chosen. We will return
to this model in Section 4.3. �

The following weird example shows that the fairness function should be cho-
sen from a suitable class of (at least recursive) functions, as otherwise the whole
computing power comes from the fairness function:

Example 3. Take the fair P system Π3 with one membrane working in the maxi-
mally parallel way, starting with the axiom a and using the three rules 1 : a→ aa,
2 : a→ a, and 3 : a→ b, see Figure 3.

1 : a→ aa

2 : a→ a

3 : a→ b

a; fM
1

Fig. 3. The P system Π3

Moreover, let M ⊂ N+, i.e., an arbitrary set of positive natural numbers. The
fairness function fM on multisets of rules over these three rules and a configuration
containing m symbols a is defined as follows: For any multiset of rules R containing
copies of the rules 1 : a→ aa, 2 : a→ a, and 3 : a→ b,

• f(R) = 0 if R only contains m copies of rule 3 and m ∈M ,
• f(R) = 0 if R only contains exactly one copy of rule 1 and the rest are copies

of rule 2,
• f(R) = 1 for any other applicable multiset of rules.

Again the choice is made by applying only multisets of rules which yield the
minimal value f(R) = 0. If we use rule 1 : a→ aa once and rule 2 : a→ a for the
rest, this increases the number of symbols a in the skin membrane by one. Thus,
in m− 1 steps we get m symbols a. If m is in M, we now may use rule 3 : a→ b
for all symbols a, thus obtaining m symbols b, and the system halts. In that way,
the system generates exactly {bm | m ∈M}.

To make this example a little bit less weird, we may only allow computable
sets M. Still, the whole computing power is in the fairness function fM alone, with
fM only depending on the multiset of rules. �

We now again return to Example 2 and illustrate how the same result can be
obtained by using another fairness function in the standard unfair mode using the
multsets of rules with minimal fairness value; on the other hand, we will also show
what happens if we try to be fair and use the rules in a balanced way.
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Example 4. Consider the P system Π1 = ({a, b}, {b}, [
1

]
1
, a, R1, 1) with the rule

set R1 = {1 : a → aa, 2 : a → b} as considered in Example 1 together with
the fairness function f4(R) for any multiset R of rules defined as follows: consider
f4(R) = |str(R)|, i.e., f4(R) is the number of different strings representing the mul-
tiset R. The resulting fair P system Π4 = (Π1, f4) = ({a, b}, {b}, [

1
]
1
, a, R1, 1, f4)

is depicted in Figure 4.

1 : a→ aa

2 : a→ b

a; f4
1

Fig. 4. The P system Π4

With the standard selection of multisets of rules to be applied by choosing
those with the minimal value of the fairness function, we obtain the same result
for the set of multisets generated by Π4, i.e., {a2n | n ∈ N}, because only the pure
multisets of rules R containing only copies of rule 1 or only copies of rule 2 yield
f(R) = 1, whereas any mixed multiset of rules containing both rules at least once
yields a bigger value.

On the other hand, if we try to be fair and use both rules in a balanced way,
i.e., by choosing those multisets of rules yielding the maximum values of f4, then
the generated set is the singleton {b}, which can be generated in one step from
the axiom a by using rule 2 : a→ b. Any other derivation starting with using rule
1 : a → aa will not yield any result due to running into an infinite computation
without any chance to halt: as soon as aa has been generated, only once the rule
1 : a → aa and once the rule 2 : a → b can be used as only this combination of
rules yields f4(〈1, 2〉) = |{12, 21}| = 2 > 1 = f4(〈1, 1〉) = f4(〈2, 2〉) (we here use
the brackets 〈, 〉 to describe a multiset). �

The problem with halting observed in the example above when using only
non-cooperative rules seems to be an inherent one when using a fair (balanced)
selection of multisets of rules. These variants may deserve further investigations in
the future, but in this paper we will restrict ourselves to the standard (maximally
unfair) selection of multisets of rules to be applied as in the previous examples.

4 First Results

In this section, we show three general results. The first one describes how priorities
can be simulated by a suitable fairness function in P systems of any kind working in
the sequential mode. The second one exhibits how P systems with energy control,
see [1], can be simulated by suitable fair P systems for any arbitrary derivation



8 A. Alhazov, R. Freund, S. Ivanov

mode. Finally we show how P systems with rule label control, see [4], can be
simulated by suitable fair P systems for any arbitrary derivation mode.

4.1 Simulating Priorities in the Sequential Derivation Mode

In the sequential derivation mode, exactly one rule is applied in every derivation
step of the P system Π. Given a configuration C and the set of applicable rules
Appl(Π,C) not taking into account a given priority relation < on the rules, we
define the fairness function to yield 0 for each rule in Appl(Π,C) for which no rule
in Appl(Π,C) with higher priority exists, and 1 otherwise. Thus, only a rule with
highest priority can be applied. More formally, this result now is proved for any
kind of P systems working in the sequential derivation mode:

Theorem 1. Let (Π,<) be a P system of any kind with the priority relation < on
its rules and working in the sequential derivation mode. Then there exists a fair
P system (Π, f) with fairness function f simulating the computations in (Π,<)
selecting the multisets of rules with minimal values.

Proof. First we observe that the main ingredient Π is exactly the same in both
(Π,<) and (Π, f), i.e., we only replace the priority relation < by the fairness
function f . As already outlined above, for any configuration C of Π we now define
f for any rule r as follows (we point out that here the fairness function not only
depends on {r}, but also on Appl(Π,C)):

• f(Appl(Π,C), {r}) = 0 if and only if there exists no rule r′ ∈ Appl(Π,C) such
that r < r′, and

• f(Appl(Π,C), {r}) = 1 if and only if there exists a rule r′ ∈ Appl(Π,C) such
that r < r′.

If we now define the task of f as choosing only those rules with minimal value, i.e.,
a rule r can be applied to configuration C if and only if f(Appl(Π,C), {r}) = 0,
then we obtain the desired result. �

4.2 Simulating Energy Control

Recently we have considered P systems where a specific amount of energy is as-
signed to each rule, see [1]. There, only those multisets of rules are applied which
use the minimal amount of energy. In a similar way the amount of energy coming
up with a multiset of rules can be seen as the value of the fairness function. The
minimal amount of energy then exactly corresponds with the minimal fairness.

In this paper, from the two variants of energy-controlled P systems we only
consider the one where the energy is directly assigned to the rules. This variant
of P systems is called a rule energy-controlled P system. The multisets or sets of
rules to be applied to a given configuration must fulfill the condition of yielding
the minimal amount of energy.
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Formally, in a rule energy-controlled P system the rules are of the form (p, v)
where p is a rule of a specific type like cooperative or non-cooperative and v is an
integer energy value. The total energy value of a mutiset of rules can be defined
in different ways, but in the following we will assume it to simply be the sum of
energy values of the rules in the multiset and denote this function computing the
energy value of a multiset of rules in this way by σ.

Theorem 2. Let (Π,σ) be a rule energy-controlled P system working in any
derivation mode, using any kind of rules and using the sum function σ for comput-
ing the energy value of a multiset of rules. Then there exists a fair P system (Π ′, f)
with fairness function f simulating the computations in (Π,σ) with f selecting the
multisets of rules with minimal values.

Proof. By definition, in the rule energy-controlled P system (Π,σ) a multiset of
rules can be applied to given configuration only if the application of σ yields the
minimal value in Z. The fair P system (Π ′, f) with fairness function f now is
constructed from (Π,σ) by replacing any rule with energy (p, v) by the rule p
itself, but on the other hand defining the fairness function f for a multiset of rules
to take v as the value assigned to the rule p having been obtained from (p, v). By
summing up these values for the whole multiset and selecting only those multisets
of rules applicable to a given configuration in the given derivation mode which
have minimal values, f fulfills the same task in (Π ′, f) as σ does in (Π,σ). Hence,
in any derivation mode, (Π ′, f) simulates exactly step by step the derivations in
(Π,σ), obviously yielding the same computation results. �

4.3 Simulating Label Selection

In P systems with label selection only rules belonging to one of the predefined
subsets of rules can be applied to a given configuration, see [4].

For all the variants of P systems defined in Section 2, we may consider to label
all the rules in the sets R1, . . . , Rm in a one-to-one manner by labels from a set H
and to take a set W containing subsets of H. Then a P system with label selection
is a construct

Π ls = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho, H,W ),

where Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho) is a P system as in Section 2,
H is a set of labels for the rules in the sets R1, . . . , Rm, and W ⊆ 2H . In any
transition step in Π ls we first select a set of labels U ∈ W and then apply a
non-empty multiset R of rules applicable in the given derivation mode restricted
to rules with labels in U .

The following proof exhibits how the fairness function can also be used to
capture the underlying derivation mode.
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Theorem 3. Let (Π,H,W ) be a P system with label selection using any kind of
rules in any kind of derivation mode. Then there exists a fair P system (Π ′, f)
with fairness function f simulating the computations in (Π,H,W ) with f selecting
the multisets of rules with minimal values.

Proof. By definition, in the P system (Π,H,W ) with label selection a multiset
of rules can be applied to given configuration only if all the rules have labels in
a selected set of labels U ∈ W . We now consider the set of all multisets of rules
applicable to a configuration C, denoted by Applasyn(Π,C), as it corresponds to
the asynchronous derivation mode (abbreviated asyn); from those we select all R
which obey to the label selection criterion, i.e., there exists a U ∈ W such that
the labels of all rules in R belong to U , and then only take those which also fulfill
the criteria of the given derivation mode restricted to rules with labels from U .

Hence we define (Π ′, f) by taking Π ′ = Π and, for any derivation mode δ, fδ
for any multiset of rules R ∈ Applasyn(Π,C) as follows:

• fδ(C,Applasyn(Π,C), R) = 0 if there exists a U ∈ W such that the labels of
all rules in R belong to U , and, moreover, R ∈ Applδ(ΠU , C), where ΠU is the
restricted version of Π only containing rules with labels in U , as well as

• fδ(C,Applasyn(Π,C), R) = 1 otherwise.

According to our standard selection criterion, we choose only those multisets of
rules where the fairness function yields the minimal value 0, i.e., those R such
that there exists a U ∈ W such that the labels of all rules in R belong to U and
R is applicable according to the underlying derivation mode with rules restricted
to those having a label in U , which exactly mimicks the way of choosing R in
(Π,H,W ). Therefore, in any derivation mode δ, (Π ′, fδ) simulates exactly step
by step the derivations in (Π,H,W ), obviously yielding the same computation
results. �

5 Conclusions and Future Research

In this article, we introduced and partially studied P systems with the application
of rules in each step being controlled by a function on the applicable multisets of
rules.

We have given several examples exhibiting the power of using suitable fairness
functions. Moreover, we have shown how priorities can be simulated by a suitable
fairness function in P systems of any kind working in the sequential mode as well
as how P systems with energy control or label selection can be simulated by fair
P systems with a suitable fairness function for any derivation mode.

Yet with all these examples and results we have just given a glimpse on what
could be investigated in the future for P systems in connection with fairness func-
tions:
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• consider other variants of hierarchical P systems working in different derivation
modes, e.g., also taking into consideration the set derivation modes;

• extend the notion of fair to tissue P systems, i.e., P systems on an arbitrary
graph structure;

• extend the notion of fair to P systems with active membranes, there probably
also controlling the division of membranes;

• investigate the effect of selecting the multiset of rules to be applied to a given
configuration by other criteria than just taking those yielding the minimal
values for the fairness function;

• consider other variants of fairness functions, either less powerful or taking into
account other features of Appl(Π,C) and/or the multiset of rules R;

• investigate the effect of selecting the multiset to be applied to a given config-
uration by requiring it to contain a balanced (really fair) amount of copies of
each applicable rule;

• show similar simulation results with suitable fairness functions as in Section 4
for other control mechanisms used in the area of P systems;

• . . .
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sergiu.ivanov@u-pec.fr

5 TIMC-IMAG/DyCTiM, Faculty of Medicine of Grenoble
5 avenue du Grand Sablon, 38700, La Tronche, France
sergiu.ivanov@univ-grenoble-alpes.fr

Summary. P systems are a model of hierarchically compartmentalized multiset rewrit-
ing. We introduce a novel kind of P systems in which rules are dynamically constructed
in each step by non-deterministic pairing of left-hand and right-hand sides. We define
three variants of right-hand side randomization and compare each of them with the power
of conventional P systems. It turns out that all three variants enable non-cooperative P
systems to generate exponential (and thus non-semi-linear) number languages. We also
give a binary normal form for one of the variants of P systems with randomized rule
right-hand sides. Finally, we also discuss extensions of the three variants to tissue P
systems, i.e., P systems on an arbitrary graph structure.

? The work is supported by National Natural Science Foundation of China (61320106005
and 61033003) and the Innovation Scientists and Technicians Troop Construction
Projects of Henan Province (154200510012).



14 A. Alhazov, R. Freund, S. Ivanov

1 Introduction

Membrane computing is a research field originally founded by Gheorghe Păun
in 1998, see [13]. Membrane systems (also known as P systems) are a model of
computing based on the abstract notion of a membrane. Formally, a membrane is
treated as a container delimiting a region; a region may contain objects which are
acted upon by the rewriting rules associated with the membranes. Quite often, the
objects are plain symbols coming from a finite alphabet, but P systems operating
on more complex objects (e.g., strings, arrays) are often considered, too, e.g.,
see [9].

A comprehensive overview of different flavors of membrane systems and their
expressive power is given in the handbook which appeared in 2010, see [14]. For
a state of the art snapshot of the domain, we refer the reader to the P systems
website [17], as well as to the bulletin of the International Membrane Computing
Society [16].

Dynamic evolution of the set of available rules has been considered from the
very beginning of membrane computing. Already in 1999, generalized P systems
were introduced in [8]; in these systems the membranes, alongside the objects,
contain operators which act on these objects, while the P system itself acts on
the operators, thereby modifying the transformations which will be carried out
on the objects in the subsequent steps. Among further ideas on dynamic rules,
one may list rule creation [4], activators [1], inhibiting/deinhibiting rules [7], and
symport/antiport of rules [6]. One of the more recent developments in this direc-
tion are polymorphic P systems [2, 3, 12], in which rules are defined by pairs of
membranes, whose contents may be modified by moving objects in or out.

We remark that the previous studies on dynamic rule sets either treated the
rules as atomic entities (symport/antiport of rules, operators in generalized P
systems), or allowed virtually unlimited possibilities of tampering with their shape
(polymorphic P systems). In the present work, we propose a yet different approach
which can be seen as an intermediate one.

In P systems with randomized rule-right-hand sides (or with randomized RHS,
for short), the available left-hand sides and right-hand sides of rules are fixed,
but the associations between them are re-evaluated in every step: a left-hand side
may pick a right-hand side arbitrarily (randomly). In Section 3, we present three
different formal definitions of this intuitive idea of randomized RHS:

1. rules exchange their RHS,
2. each rule randomly picks an RHS from a common collection of RHS, shared

between the rules,
3. each rule randomly picks an RHS from a possible collection of RHS associated

with the rule itself.

P systems with randomized RHS may have a real-world (possibly biological)
application for representing systems in a hostile environment. The modifications
such P systems effect on their rules may be used to represent perturbations caused
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by the environment (mutations), somewhat in the spirit of faulty Turing machines
(e.g., see [5]).

In this article, we will focus on the expressive power of P systems with random-
ized RHS, as well as on comparing them to the classical model with or without
cooperative rules. One of the central conclusions of the present work is that non-
cooperative P systems with randomized RHS can generate exponential number
languages, thus (partially) surpassing the power of conventional P systems.

This paper is structured as follows. Section 2 recalls some preliminaries about
multisets, strings, permutations, as well as conventional P systems. Section 3 de-
fines the three variants of RHS randomization. Section 4 discusses the computa-
tional power of the three variants of P systems with randomized RHS. Section 5
shows a binary normal form for one of the variants of P systems with randomized
RHS. Section6 discusses extensions of the three variants of RHS randomization to
tissue P systems. Finally, Section 7 summarizes the results of the article and gives
some directions for future work.

2 Preliminaries

In this paper, the set of positive natural numbers {1, 2, . . . } is denoted by N+, the
set of natural numbers also containing 0, i.e., {0, 1, 2, . . . }, is denoted by N. Given
k ∈ N+, we will call the set N+

k = {x ∈ N+ | 1 ≤ x ≤ k} an initial segment of N+.
An alphabet V is a finite set. The families of recursively enumerable, context-

free, linear, and regular languages, and of languages generated by tabled Linden-
mayer systems are denoted by RE, CF , LIN , REG, and ET0L, respectively. The
families of sets of Parikh vectors as well as of sets of natural numbers (multiset lan-
guages over one-symbol alphabets) obtained from a language family F are denoted
by PsF and NF , respectively.

For further introduction to the theory of formal languages and computability,
we refer the reader to [14, 15].

2.1 Linear Sets over N

A linear set over N generated by a set of vectors A = {ai | 1 ≤ i ≤ d} ⊂fin Nn
(here A ⊂fin B indicates that A is a finite subset of B) and an offset a0 ∈ Nn is
defined as follows:

〈A,a0〉N =

{
a0 +

∑d

i=1
kiai

∣∣∣∣∣ ki ∈ N, 1 ≤ i ≤ d

}
.

If the offset a0 is the zero vector 0, we call the corresponding linear set homoge-
neous; we also use the short notation 〈A〉N = 〈A,0〉N.

We use the notation NnLINN = {〈A,a0〉N | A ⊂fin Nn, a0 ∈ Nn}, to refer to
the class of all linear sets of n-dimensional vectors over N. Semi-linear sets are
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defined as finite unions of linear sets. We use the notation NnSLINN to refer
to the classes of semi-linear sets of n-dimensional vectors. In case no restriction
is imposed on the dimension, n is replaced by ∗. We may omit n if n = 1. A
finite union of linear sets which only differ in the starting vectors is called uniform
semilinear:

NnSLINU
N =

{⋃
b∈B〈A,b〉N | A ⊂fin Nn, B ⊂fin Nn

}
Let us denote such a set by 〈A,B〉N.

Note that a uniform semilinear set 〈A,B〉N can be seen as a pairwise sum of
the finite set B and the homogeneous linear set 〈A〉N:

〈A,B〉N = {a + b | a ∈ 〈A〉N,b ∈ B}.

This observation immediately yields the conclusion that the sum of two uniform
semilinear sets 〈A1, B1〉N and 〈A2, B2〉N is uniform semilinear as well and can be
computed in the following way:

〈A1, B1〉N + 〈A2, B2〉N = {a + b | a ∈ 〈A1 ∪A2〉N,b ∈ B1 +B2}.

As is folklore,

PsCF = PsLIN = PsREG = N∗SLINN.

2.2 Multisets

A multiset over V is any function w : V → N; w(a) is the multiplicity of a in w.
A multiset w is often represented by one of the strings containing exactly w(a)
copies of each symbol a ∈ V . The set of all multisets over the alphabet V is
denoted by V ◦. By abusing string notation, the empty multiset is denoted by λ.
The projection (restriction) of w over a sub-alphabet V ′ ⊆ V is the multiset w|V ′

defined as follows:

w|V ′(a) =

{
w(a), a ∈ V ′;
0, a ∈ V r V ′.

Example 1. The string aab can represent the multiset w : {a, b} → N with w(a) = 2
and w(b) = 1. The projection w|{a} = w′ is defined as w′(a) = w(a) = 2 and
w′(b) = 0.

We will (ab)use the symbol ∈ to denote the relation “is a member of” for
multisets. Therefore, for a multiset w, a ∈ w will stand for w(a) > 0.

2.3 Strings and Permutations

A (non-empty) string s over an alphabet V traditionally is defined as a finite
ordered sequence of elements of V . Equivalently, we can define a string of length
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k as a function assigning symbols to positions: s : N+
k → V . Thus, the string

s = aab can be equivalently defined as the function s : N+
3 → {a, b} with s(1) = a,

s(2) = a, and s(3) = b. We will use the traditional notation |s| to refer to the
length of the string s (i.e., the size k of the initial segment N+

k it is defined on).
In addition, the size of the empty string λ is 0.

A string s : N+
k → V is not necessarily surjective (there may be symbols from

V that do not appear in s). We will use the notation set(s) to refer to the set of
symbols appearing in s (the image of s):

set(s) =
{
a ∈ V | a = s(i) for some i ∈ N+

|s|
}
.

Given a string s : N+
k → V , a prefix of length k′ ≤ k of s is the restriction of s

to N+
k′ ⊆ N+

k. For example, aa is a prefix of length 2 of the string aab. We will
use the notation prefk′(s) to denote the prefix of length k′ of s.

Given a finite set A, a permutation of A is any bijection ρ : A → A. Given a
permutation σ : N+

k → N+
k and a string s : N+

k → V of length k, applying σ to
s is defined as σ(s) = s ◦ σ (where ◦ is the function composition operator).

Example 2. Following the widespread tradition, we will write permutations in
Cauchy’s two-line notation. The permutation σrev of N+

3 which “reverses the
order” of the numbers, can be written as follows:

σrev =

(
1 2 3
3 2 1

)
.

Applying σrev to a string reverses it:

σrev(aab) = baa.

Any finite set B trivially can be represented by one of the strings listing all of its
elements exactly once. All such strings are equivalent modulo permutations. Given
a fixed enumeration B = {b1, . . . , bn}, we define the canonical string representation
of B to be the string δ(B) = b1 . . . bn.

2.4 Rule Sides

We consider arbitrary labeled multiset rules r : u→ v over an alphabet V , where
r is the rule label we attach for convenience, and u and v are strings over V
representing multisets. As usual, the application of such a rule means replacing
the multiset represented by u by the multiset represented by v.

For a given rule r : u→ v, we define the left-hand-side and the right-hand-side
functions as follows:

lhs(u→ v) = lhs(r) = (u),
rhs(u→ v) = rhs(r) = (v).

Using the brackets ( and ), for a given string w, the notation (w) is used to
describe the multiset represented by w. As usual, we will extend the notations
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for these functions lhs and rhs lifted to sets of rules: given a set of rules R,
lhs(R) = {lhs(r) | r ∈ R} and rhs(R) = {rhs(r) | r ∈ R}. Furthermore, for
any string (finite ordered sequence) of rules ρ : N+

k → R we define the strings of
left-hand sides lhs(ρ) = lhs ◦ ρ and of right-hand sides rhs(ρ) = rhs ◦ ρ.

Example 3. Take R = {r1 : aa→ ab, r2 : cc→ cd} and consider the string of rules
ρ = r1r1r2. Then lhs(ρ) = (aa)(aa)(cc) and rhs(ρ) = (ab)(ab)(cd). Thus, lhs(ρ)
and rhs(ρ) can be considered as strings of multisets.

We will (ab)use the symbol → for combining two strings of multisets α, β :
N+

k → V ◦ of the same length k. The string α → β will be defined as follows, for
any i ∈ N+

k:
(α→ β)(i) = α(i)→ β(i).

Example 4. Consider the following two strings of multisets: α = (aa)(aa)(cc) and
β = (ab)(ab)(cd). α→ β is simply the string of rules that can be obtained by taking
the multisets from α as left-hand sides and β as right-hand sides, in the given order:
α → β = (aa) → (ab)(aa) → (ab)(cc) → (cd) (which exactly corresponds with ρ
from Example 3).

2.5 (Hierarchical) P Systems

A (hierarchical) P system is a construct

Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho),

where O is the alphabet of objects, T ⊆ O is the alphabet of terminal objects,
µ is the membrane structure injectively labeled by the numbers from {1, . . . , n}
and usually given by a sequence of correctly nested brackets, wi are the multisets
giving the initial contents of each membrane i (1 ≤ i ≤ n), Ri is the finite set of
rules associated with membrane i (1 ≤ i ≤ n), and hi and ho are the labels of the
input and the output membranes, respectively (1 ≤ hi ≤ n, 1 ≤ ho ≤ n).

In the present work, we will mostly consider the generative case, in which Π will
be used as a multiset language-generating device. We therefore will systematically
omit specifying the input membrane hi.

Quite often the rules associated with membranes are multiset rewriting rules (or
special cases of such rules). Multiset rewriting rules have the form u→ v, with u ∈
Oo \{λ} and v ∈ Oo. If |u| = 1, the rule u→ v is called non-cooperative; otherwise
it is called cooperative. Rules may additionally be allowed to send symbols to
the neighboring membranes. In this case, for rules in Ri, v ∈ O × Tari, where
Tari contains the targets out (corresponding to sending the symbol to the parent
membrane), here (indicating that the symbol should be kept in membrane i),
and inh (indicating that the symbol should be sent into the child membrane h of
membrane i). Note that all variants of the function rhs, as well as the operator
→ from the previous section can be naturally extended to rules having right-hand
sides with target indications (from O × Tari).
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In P systems, rules are often applied in the maximally parallel way: in any
derivation step, a non-extendable multiset of rules has to be applied. The rules are
not allowed to consume the same instance of a symbol twice, which creates com-
petition for objects and may lead to the P system choosing non-deterministically
between the maximal collections of rules applicable in one step.

A computation of a P system is traditionally considered to be a sequence of
configurations it can successively pass through, stopping at the halting configura-
tion. A halting configuration is a configuration in which no rule can be applied
any more, in any membrane. The result of a computation of a P system Π as de-
fined above is the contents of the output membrane ho projected over the terminal
alphabet T .

Example 5. For readability, we will often prefer a graphical representation of P
systems. For example, the P system Π1 = ({a, b}, {b}, [

1
]
1
, a, R, 1) with the rule

set R = {a→ aa, a→ b} may be depicted as in Figure 1.

a→ aa

a→ b

a
1

Fig. 1. The example P system Π1

Due to maximal parallelism, at every step Π1 may double some of the symbols
a, while rewriting some other instances into b.

Note that, even though Π1 might express the intention of generating the set
of numbers of the powers of two, it will actually generate the whole of N+ (due to
halting). Indeed, for any n ∈ N+, an can be generated in n steps by choosing to
apply, in the first n − 1 steps, a → aa to exactly one instance of a and a → b to
all the other instances, and by applying a→ b to every a in the last step (in fact,
for n > 1, in each step except the last one, in which a → b is applied twice, both
rules are applied exactly once, as exactly two symbols a are present, whereas all
other symbols are copies of b).

While maximal parallelism and halting by inapplicability are staple ingredients,
various other derivation modes and halting conditions have been considered for P
systems, e.g., see [14].

We will use the notation OPn(coo) to denote the family of P systems with at
most n membranes, with cooperative rules. To denote the family of such P systems
with non-cooperative rules, we replace coo by ncoo. To denote the family of lan-
guages of multisets generated by these P systems, we prepend Ps to the notation,
and to denote the family of the generated number languages, we prepend N .
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3 P Systems with Randomized RHS

In this section we consider three different variants of defining P systems with
randomized RHS. We immediately point out that, despite the common intuitive
background, the details of the resulting semantics vary quite a lot.

3.1 Variant 1: Random RHS Exchange

In this variant of P systems, rules randomly exchange right-hand sides at the
beginning of every evolution step. This variant was the first to be conceived and
is the closest to the classical definition.

A P system with random RHS exchange is a construct

Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, ho),

where the components of the tuple are defined as in the classical model (Sec-
tion 2.5).

As different from conventional P systems, Π does not apply the rules from Ri
directly. Instead, for each membrane 1 ≤ i ≤ n, we take the canonical representa-
tion of Ri, i.e., δ(Ri), and non-deterministically (randomly) choose a permutation
σ : N+

|Ri| → N+
|Ri| to compute the canonical representation of Rσi from δ(Ri) as

follows:
δ(Rσi ) = lhs(δ(Ri))→ σ(rhs(δ(Ri))).

We now extract the set of rules Rσi = set(δ(Rσi )) described by the string δ(Rσi )
as constructed above. Π will then apply the rules from Rσi according to the usual
maximally parallel semantics in membrane i.

In other words, Π non-deterministically permutes the right-hand sides of rules
in each membrane i, and then applies the obtained rules according to the maxi-
mally parallel semantics.

Note that we first have to transform the set Ri into its canonical string repre-
sentation δ(Ri) in order to be able to obtain a correct representation of the |Ri|
rules and from that a correct representation of the |Ri| rules in Rσi , even if the
number of different left-hand sides and/or different right-hand sides of rules does
not equal |Ri|.

Example 6. Consider the P system Π2 = ({a, b}, {b}, [
1

]
1
, a, R, 1) with the rule

set R = {a→ aa, c→ b}. Π2 is graphically represented in Figure 2.
The number language generated by Π2 (the set of numbers of instances of b

that may appear in the skin after Π2 has halted) is exactly {2n | n ∈ N+}. Indeed,
while Π2 applies the identity permutation on the right-hand sides, a → aa will
double the number of symbols a, while the rule c → b will never be applicable.
When Π2 exchanges the right-hand sides of the rules, the rule a → b will rewrite
every symbol a into a symbol b. After this has happened, no rule will ever be
applicable any more and Π2 will halt with 2n symbols b in the skin, where n + 1
is the number of computation steps taken.
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a→ aa

c→ b

a
1

Fig. 2. The P system Π2 with random RHS exchange generating the number language
{2n | n ∈ N}.

We will use the notation

OPn(rhsExchange, coo)

to denote the family of P systems with random RHS exchange, with at most n
membranes, with cooperative rules. To denote the family of such P systems with
non-cooperative rules, we replace coo by ncoo. To denote the family of languages
of multisets generated by these P systems, we prepend Ps to the notation, and to
denote the family of the generated number languages, we prepend N .

3.2 Variant 2: Randomized Pools of RHS

In this variant of P systems, every membrane has some fixed left-hand sides and a
pool of available right-hand sides to build rules from. An RHS from the pool can
only be used once.

A P system with randomized pools of RHS is a construct

Π = (O, T, µ, w1, . . . , wn, H1, . . . Hn, ho),

where Hi defines the left- and right-hand sides available in membrane i and the
other components of the tuple are defined as in the classical model (Section 2.5).

For 1 ≤ i ≤ n, Hi = (li, ri) is a pair of strings of multisets over O. The string
ri may contain target indications (i.e., be a string of multisets over O×Tari). The
strings li and ri are not necessarily of the same length. The length of the shortest
of the two strings li and ri is denoted by

ki = min(|li|, |ri|).

At the beginning of every computation step in Π, for every membrane i, we
construct the set of rules it will apply in the following way:

1. non-deterministically choose two (random) permutations

σl : N+
|li| → N+

|li|, σr : N+
|ri| → N+

|ri|;

2. take the first ki elements out of σl(li) and σr(ri):

l′i = prefki(σl(li)), r′i = prefki(σr(ri));
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3. construct the set of rules Ri to be applied in membrane i by combining the
left- and right-hand sides from l′i and r′i:

Ri = set(l′i → r′i).

In step (3), we combine the strings l′i and r′i using the operator → defined in
Subsection 2.4 and then apply the operator set to obtain the corresponding set of
rules from the string representation.

After having constructed the set Ri for each membrane i, Π will proceed to
applying the obtained rules according to the usual maximally parallel semantics.

When computing the strings l′i and r′i, we apply two different permutations σl
and σr to li and ri, in order to ensure fairness for the participation of left-hand
and right-hand sides when |li| 6= |ri|. For example, if we only permuted ri in the
case in which |li| > |ri|, the left-hand sides located at positions k > |ri| in li would
never be used.

We do not explicitly prohibit repetitions in li or in ri, but we avoid repeated
rules by constructing Ri using the set function.

Example 7. Consider the following P system with randomized pools of RHS:
Π3 = ({a, b}, {b}, [

1
]
1
, a,H, 1), with H =

(
(a), (aa)(b)

)
; (a) stands for the mul-

tiset containing an instance of a, while (aa)(b) is the string denoting the two
multisets (aa) and (b). The graphical representation of Π3 is given in Figure 3.

a aa
b

a
1

Fig. 3. The P system Π3 with randomized pools of RHS generating the number language
{2n | n ∈ N}.

The pair H = (l, r) of strings of multisets is represented by listing the multisets
of l and r in two columns and by drawing a vertical line between the two columns.

Π3 follows exactly the same pattern as Π2 from Example 6: while the identity
permutation is applied to r, Π3 keeps doubling the symbols a in the skin. Once
the multisets (aa) and (b) are permuted in r, and thus the rule a → b is formed,
all symbols a are rewritten into symbols b in one step and Π3 must halt. Note that
randomly taking the right-hand sides from a given pool avoids having the extra
dummy rule c→ b in Π2.

We will use the notation

OPn(rhsPools, coo)

to denote the family of P systems with randomized pools of RHS, with at most n
membranes, with cooperative rules. To denote the family of such P systems with
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non-cooperative rules, we replace coo by ncoo. To denote the family of languages
of multisets generated by these P systems, we prepend Ps to the notation, and to
denote the family of the generated number languages, we prepend N .

3.3 Variant 3: Individual Randomized RHS

In this variant of P systems, each rule is constructed from a left-hand side and a
set of possible right-hand sides.

A P system with individual randomized RHS is a construct

Π = (O, T, µ, w1, . . . , wn, P1, . . . Pn, ho),

where Pi is the set of productions associated with the membrane i and the other
components of the tuple are defined as in the classical model (Section 2.5).

A production is a pair u→ R, where u ∈ O◦ is the left-hand side and R ⊆ O◦
is a finite set of right-hand sides. The right-hand sides in R may have target
indications, i.e., for a production in membrane i, we may consider R ⊆ (O ×
Tari)

◦. At the beginning of each computation step, for every membrane i, for
each production u → R ∈ Ri, Π will non-deterministically (randomly) pick a
right-hand side v from R and will construct the rule u → v (this happens once
per production). Π will then apply the rules thus constructed according to the
maximally parallel semantics.

Example 8. Generating the language of the powers of two is the easiest compared
with Variants 1 and 2. Indeed, consider the P system with individual random-
ized RHS Π4 = ({a, b}, {b}, [

1
]
1
, a, P, 1) with only one production: P = {a →

{aa, b})}. Its graphical representation is given in Figure 4.

a→ {aa, b}
a

1

Fig. 4. The P system Π4 with individual randomized RHS generating the number lan-
guage {2n | n ∈ N}.

Π4 works exactly like Π2 and Π3 from Examples 6 and 7: it doubles the number
of symbols a and halts by rewriting them to b in the last step.

We will use the notation

OPn(rndRhs, coo)

to denote the family of P systems with individual randomized RHS, with at most
n membranes, with cooperative rules. To denote the family of such P systems with
non-cooperative rules, we replace coo by ncoo. To denote the family of languages
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of multisets generated by these P systems, we prepend Ps to the notation, and to
denote the family of the generated number languages, we prepend N .

We will sometimes want to set an upper bound k on the number of right-
hand sides per production. To refer to the family of P systems with individual
randomized RHS with such an upper bound, we will replace rndRhs by rndRhsk

in the notation above.

3.4 Halting with Randomized RHS

The conventional (total) halting condition for P systems can be naturally lifted to
randomized RHS: a P system Π with randomized RHS (Variant 1, 2, or 3) halts
on a configuration C if, however it permutes rule right-hand sides in Variant 1, or
however it builds rules out of the available rule sides in Variants 2 and 3, no rule
can be applied in C, in any membrane.

Note that, for Variants 1 and 3, the permutations chosen do not affect the
applicability of rules, because applicability only depends on left-hand sides, which
are always the same in any membrane. The situation is different for Variant 2,
because the number of available left-hand sides in a membrane of Π may be bigger
than the number of available right-hand sides. Therefore, if Π is a P system with
randomized pools of RHS, the way rule sides are permuted may affect the number
of rules applicable in a given configuration. This is why, for Π to halt on C, we
require no rule to be applicable for any permutation.

In this paper, we will mainly consider P systems with randomized pools of RHS
in which, in every membrane, there are at least as many right-hand sides as there
are left-hand sides. To refer to P systems with this restriction, we will use the
notation rhsPools′. In these systems, the problem with the applicability of rules
as described above can be avoided.

3.5 Equivalence Between Variants 1 and 2

Before discussing the computational power of the P systems with randomized RHS
in general, we will briefly point out a strong relationship between P systems with
random RHS exchange and P systems with randomized pools of RHS, with the
restriction that every membrane contains at least as many right-hand sides as it
has left-hand sides, i.e., for P systems with randomized RHS of type rhsPools′.

Theorem 1. For any k ∈ {coo, ncoo}, the following holds:

PsOPn(rhsExchange, k) = PsOPn(rhsPools′, k).

Proof. Any membrane with random RHS exchange trivially can be transformed
into a membrane with randomized pools of RHS by listing the left-hand sides of
the rules in the pool of LHS and the right-hand sides of the rules in the pool of
RHS.
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Conversely, consider a membrane i with randomized pools of RHS, with the
string li of LHS and the string ri of RHS, |li| ≤ |ri|. We can transform it into a
membrane with random RHS exchange as follows. For every LHS u from li, pick
(and remove) an RHS v from ri, and construct the rule u → v. According to our
supposition, we will exhaust the LHS before (or at the same time as) the RHS. For
every RHS v′ which is left, we add a new (dummy) symbol z′ to the alphabet, and
add the rule z′ → v′. Since the symbol z′ is new and does not appear in any RHS,
it will never be produced and the rule z′ → v′ will essentially serve as a stash for
the RHS v′. �

3.6 Flattening

The folklore flattening construction (see [14] for several examples as well as [10] for
a general construction) is quite directly applicable to P systems with individual
randomized RHS.

Proposition 1 (flattening). For any k ∈ {coo, ncoo}, the following is true:

PsOP1(rndRhs, k) = PsOPn(rndRhs, k).

Proof (sketch). Since in the case of individual randomized RHS, randomization has
per rule granularity (whereas in the other two variants randomization occurs at the
level of membranes), we can simulate multiple membranes by attaching membrane
labels to symbols. For example, a production ab→ {cd, f} in membrane h becomes
ahbh → {chdh, fh}, while the send-in production a → {(b, ini), (b, inj)} becomes
ah → {bi, bj}. �

On the other hand, for Variants 1 and 2 similar results cannot be proved in
such a way, a situation which happens very seldom in the area of P systems,
especially in the case of variants of the standard model. Yet intuitively, it is easy
to understand why this happens, as in both Variants 1 and 2 the right-hand sides
in just one membrane can randomly be chosen for any left-hand side, whereas
different membranes can separate the possible combinations of left-hand sides and
right-hand sides of rules. A formal proof showing that flattening is impossible for
the types rhsExchange and rhsPools′ will be given in the succeeding section by
constructing a suitable example.

4 Computational Power of Randomized RHS

In this section, we look into the computational power of the three different versions
of P systems with randomized right-hand sides. We first shortly consider the case
of cooperative rules and then focus on the case of non-cooperative rules.
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4.1 Cooperative Rules

The following result concerning the relationship between P systems with individual
randomized RHS and conventional P systems holds for both cooperative and non-
cooperative rules:

Proposition 2. For any n ∈ N+ and α ∈ {ncoo, coo}, PsOPn(rndRhs, α) ⊇
PsOPn(α).

Proof. Any conventional P system can be trivially seen as a P system with in-
dividual randomized RHS in which every production has exactly one right-hand
side. �

Now, the computational completeness of cooperative P systems trivially implies
the computational completeness of P systems with individual randomized RHS.

Corollary 1. For any n ∈ N+, PsOPn(rndRhs, coo) = PsRE.

4.2 Non-cooperative Rules

First we mention an upper bound for the families PsOPn(ρ, ncoo), for any variant
ρ ∈ {rhsExchange, rhsPools′, rndRhs}:

Proposition 3. For any n ∈ N+ and ρ ∈ {rhsExchange, rhsPools′, rndRhs},

PsOPn(ρ, ncoo) ⊆ PsET0L.

Proof. No matter how the rule sets are constructed in the three different variants,
we always get a finite set of different sets of rules—tables—corresponding to tables
in ET0L-systems, which can also mimic the contents of different membranes in
the usual way by using symbols marked with the corresponding membrane label.

�

Next we show one of the central results of this paper: randomized rule right-
hand sides allow for generating non-semilinear languages already in the non-
cooperative case.

Theorem 2. The following is true for ρ ∈ {rhsExchange, rhsPools′, rndRhs}:

{2m | m ∈ N} ∈ NOPn(ρ, ncoo) \NOPn(ncoo).

Proof. The statement follows (for n ≥ 1) from the constructions given in Exam-
ples 6, 7, and 8 and from the well-known fact that non-cooperative P systems
operating under the total halting condition cannot generate non-semilinear num-
ber languages (for example, see [14]). �
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This result is somewhat surprising at a first glance, but becomes less so when
one remarks that the constructions from all three examples only effectively use one
rule to do the multiplication, which is non-deterministically changed to a “halting”
rule. Since there is only one rule acting at any time, randomized right-hand sides
allow for clearly delimiting different derivation phases.

It turns out that this approach of synchronization by randomization can be
exploited to generate even more complex non-semilinear languages.

Theorem 3. Given a fixed subset of natural factors {f1, . . . , fk} ⊆ N, the following
is true for any ρ ∈ {rhsExchange, rhsPools′, rndRhs}:

L = {fn1
1 · . . . · f

nk

k | n1, . . . , nk ∈ N} ∈ NOP1(ρ, ncoo).

Proof. First consider the P system with randomized pools of RHS Π5 =
({a, b}, {b}, [

1
]
1
, a,H, 1) with H = (l, r), l = (a) and r =

(
af1
)
. . .
(
afk
) (
b
)
. This

P system is graphically represented in Figure 5.

a af1

...

afk

b

a
1

Fig. 5. The P system Π5 with randomized pools of RHS generating the number language
{fn1

1 · . . . · f
nk
k | n1, . . . , nk ∈ N}.

Similarly to the P systems from Examples 6, 7, and 8, Π5 halts by choosing to
pick the right-hand side b and constructing the rule a→ b. If Π5 picks a different
right-hand side, it will multiply the contents of the skin membrane (membrane 1)
by one of the factors fi, 1 ≤ i ≤ k. This proves that L ∈ NOP1(rhsPools′, ncoo),
and, according to Theorem 1, L ∈ NOP1(rhsExchange, ncoo) as well: take the P
system with the rules {a → af1 , z2 → af2 , . . . , zk → afk , zk+1 → b} (the rules
with zj in their left-hand sides are dummy rules).

To show that L ∈ NOP1(rndRhs, ncoo), just construct a P system with the
only production a→ {af1 , . . . , afk , b}. �

Therefore, randomizing the right-hand sides of rules in non-cooperative P sys-
tems allows for generating non-semilinear languages which cannot be generated
without randomization. A natural question to ask is whether randomizing the
RHS leads to a strict increase in the computational power. The answer is trivially
positive for P systems with individual randomized RHS (Variant 3).

Proposition 4. For any n ∈ N+, PsOPn(rndRhs, ncoo) ) PsOPn(ncoo).
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Proof. The inclusion follows from Proposition 2, as any conventional P system can
be trivially seen as a P system with individual randomized RHS in which every
production has exactly one right-hand side. Theorem 3 proves the strictness of the
inclusion. �

On the other hand, the other two variants of randomizing right-hand sides—
random RHS exchange (Variant 1) and randomized pools of RHS (Variant 2)—
actually prevent one-membrane P systems with non-cooperative rules from gen-
erating some semilinear languages, which result also shows that flattening is not
possible for these two variants.

In what follows, we will use the expression “only one rule is applied” to refer
to the fact that only one given rule u → v is applied in a certain configuration,
possibly in multiple copies. Dually, by saying “at least two rules are applied”, we
mean that at least two different rules, u→ v and u′ → v′, are applied, possibly in
multiple copies each.

Theorem 4. For ρ ∈ {rhsExchange, rhsPools′}, the following holds:

Lab = {an | n ∈ N} ∪ {bn | n ∈ N} /∈ PsOP1(ρ, ncoo).

Proof. Consider a P system Π with randomized RHS of the variant given by ρ
and with non-cooperative rules. We immediately remark that no left-hand side in
Π may be a or b, because in this case Π will never be able to halt with its only
(skin) membrane containing either the multiset an or bn. Furthermore, any RHS
of Π contains combinations of symbols a, b, or LHS symbols. Indeed, if an RHS
contained a symbol not belonging to these three classes, instances of this symbol
would pollute the halting configuration. Finally, Π contains no RHS v such that
a ∈ v and b ∈ v. If Π did contain such an RHS, then any computation could be
hijacked to produce a mixture of symbols a and b.

With these remarks in mind, the statement of the theorem follows from the
contradicting Lemmas 1 and 2, which are shown immediately after this proof. �

Lemma 1. Take a Π ∈ OP1(ρ, ncoo), ρ ∈ {rhsExchange, rhsPools′}, such that it
generates the number language Ps(Π) = Lab. Then it must have a computation in
which more than one rule is applied (two different left-hand sides are employed)
in at least one step.

Proof. Suppose that Π applies exactly one rule in every step of every computation.
We make the following two remarks:

1. Since the words in Lab are of unbounded length, Π must have an LHS t and
an RHS v such that t ∈ v, otherwise all computations of Π would have one
step and would only produce words of bounded length.

2. Every such RHS v must contain at most one kind of LHS, i.e., if t1 and t2 are
two LHS of Π then t1 ∈ v and t2 ∈ v implies t1 = t2. If this were not the case,
after using v, Π would have to apply two different rules (assuming that Π has
at least as many RHS as LHS).
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According to these observations, as well as to those from the proof of Theo-
rem 4, any RHS v of Π is the of the form v = αβ, where α ∈ {ak, bk | k ∈ N},
β ∈ {tk | k ∈ N}, and t is an LHS of Π. Note that both α and β may be empty.
According to observation (1), Π must have at least an RHS for which β 6= λ and
there exists such an RHS which must be applied an unbounded number of times.

In what follows, we will separately treat the cases in which Π contains or does
not contain mixed RHS, i.e., RHS for which both α 6= λ and β 6= λ.

No mixed RHS:

Suppose that any RHS of Π which contains a left-hand side is of the form tk2 . Then,
according to our previous observations on the possible forms of the RHS of Π, all
RHS containing a are of the form ai and all RHS containing b are of the form bj .
According to the remarks from the proof of Theorem 4, a and b must not be LHS
of Π. Therefore, in any computation of Π, all of a’s and b’s are produced in the
last step. But then, the number of terminal symbols Π produces in a computation
can be calculated as a product of the sizes of the RHS of the rules it has applied,
which implies that there exists such a p ∈ N such that ap /∈ Ps(Π) and therefore
Ps(Π) 6= Lab. (p may be picked to be the smallest prime number greater than the
length of the longest RHS of Π.)

Mixed RHS:

It follows from the previous paragraph that, in order to generate the number
language Lab, Π should contain and apply at least one RHS of the form aitk11 and
at least one RHS of the form bjtk22 . Take a computation C of Π producing a and
applying the rule t→ aitk11 at a certain step. Instead of this rule, apply t→ bjtk22 ,
and, in the following step, the rule t2 → aitk11 . (We can do so because Π is allowed
to pick any permutation of RHS.) Now, Π may continue applying the same rules
as in C and eventually halt with a configuration containing both a and b. This
implies that Ps(Π) 6= Lab.

It follows from our reasoning that, if Π applies exactly one rule in any step of
any computation, it cannot produce Lab, which proves the lemma. �

Lemma 2. Take a Π ∈ OP1(ρ, ncoo), ρ ∈ {rhsExchange, rhsPools′}, such that it
generates the number language Ps(Π) = Lab. Then, in every computation of Π,
exactly one rule is applied (one left-hand side is employed) in every step.

Proof. Suppose that, in every computation of Π, there exists a step at which at
least two different rules are applied. This immediately implies that Π has no RHS
of the form ai or bj , for i, j ≥ 0. Indeed, consider a computation producing the
multiset an and a step in it at which more than one rule is applied. Then Π can
replace one of the RHS introduced into the system at this step by bj and thus end
up with a mix of a’s and b’s in the halting configuration. Therefore, all RHS of
Π containing a have the form aiva and all RHS containing b have the form bjvb,
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where va and vb are non-empty multisets which only contain LHS symbols (which
are neither a nor b).

Now, consider a computation Ca of Π halting on the multiset an, and take the
last step sa at which at least two different rules are applied. We will consider three
different cases, based on whether a and an LHS t appear in the configurations of
Ca after step sa.

Both a and t are present:

Suppose both a and an LHS t are present at step sa + 1 in computation Ca. Then
t is the only LHS present, because, by our hypothesis, only one rule is applied
(maybe in multiple instances) at step sa + 1. In this case, replace the rule applied
at step sa + 1 in Ca by t → bjvb, where bjvb is a right-hand side of Π used in a
computation Cb producing b’s. From step sa + 2 on in the modified computation,
just apply the same rules as applied to the symbols of vb (and to those derived from
vb) in Cb. The modified computation will reach a halting configuration containing
a mix of a’s and b’s.

Only a is present:

Suppose only a is present at step sa + 1 in computation Ca. Then all of the
RHS used at step sa are λ, because Π has no RHS of the form ai. Then, replace
one of these empty RHS by bjvb, where bjvb is a right-hand side of Π used in a
computation Cb producing b’s. As before, just apply the same rules as in Cb in the
modified computation to get a mix of a’s and b’s in the halting configuration.

No symbols a are present:

Suppose now that there are no instances of a present at step sa+1 in computation
Ca. Recall that Π has no RHS of the form ai. Since we suppose that sa is the last
step at which at least two different rules are applied, this means that, in order to
produce any a’s in Ca, Π must have and use an RHS of the form aitk. This RHS
contains (multiple copies of) exactly one kind of LHS symbol: t.

Consider a computation Cb halting on the multiset bn. We pick n sufficiently
big to ensure that Cb uses at least two RHS containing b: bjvb and bj

′
v′b (possibly

the same). Without losing generality, we may suppose that these two RHS are
either used at the same step in Cb or that bj

′
v′b is used at a later step than bjvb.

Then, replace bj
′
v′b by aitk, pick one of the LHS symbols t′ ∈ v′b and apply the

same rules to t (and to the symbols derived from t) in the modified derivation
as were applied to t′ (and to the symbols derived from t′) in Cb. The modified
derivation will therefore contain a mix of a’s and b’s in the halting configuration.

It follows from our reasoning that, if in any derivation of Π there is a step at
which at least two different rules are applied, then Ps(Π) 6= Lab, which proves the
lemma. �
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The previous two lemmas are contradicting each other, which means that there
exist no one-membrane P systems with random RHS exchange or with random
pools of RHS which generate the union language Lab = {an | n ∈ N}∪{bn | n ∈ N}
(this is the statement of Theorem 4). Together with Theorem 3, this leads us to
the curious conclusion that one-membrane non-cooperative P systems with random
RHS exchange or with randomized pools of RHS are incomparable in power to the
conventional P systems.

Corollary 2. For ρ ∈ {rhsExchange, rhsPools′}, the following two statements are
true:

PsOP1(ρ, ncoo) \ PsOP1(ncoo) 6= ∅, (1)

PsOP1(ncoo) \ PsOP1(ρ, ncoo) 6= ∅. (2)

Proof. Statement (1) follows from Theorem 3. Statement (2) follows from Theo-
rem 4. �

Theorem 4 also allows us to draw a negative conclusion as to the computational
completeness of one-membrane non-cooperative P systems with random RHS ex-
change (Variant 1) and non-cooperative P systems with randomized pools of RHS
(Variant 2).

Corollary 3. For ρ ∈ {rhsExchange, rhsPools′}, the following is true:

PsOP1(ρ, ncoo) ( PsRE.

It turns out that allowing multiple membranes strictly increases the expressive
power of Variants 1 and 2 and allows for easily generating all semilinear languages,
as shown by the following theorem.

Theorem 5. For ρ ∈ {rhsExchange, rhsPools′}, the following holds:

N∗SLINN ∈ PsOP∗(ρ, ncoo).

Proof. Consider the following semilinear language of d-dimensional vectors L =⋃
1≤i≤n〈Ai,bi〉N, where Ai ⊂fin Nd and bi ∈ Nd. We construct the corresponding

P system with randomised pools of RHS:

Π6 =
(
O, T, [ [ ]

2
. . . [ ]

n+1
]
1
, w0, λ, . . . , λ,H1, . . . Hn+1, 1

)
,

with the alphabet and the initial contents of the skin defined as follows:

• O = {a1, . . . , ad, t} contains a symbol per each dimension of the vectors, plus
the special symbol t,

• T = {a1, . . . , ad} contains exactly one symbol per dimension of vectors,
• w0 = t.
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The pools of LHS and RHS H1 = (l1, r1) associated with the skin membrane 1 of
Π6 are:

l1 = (t), r1 =
(
u1 (t, in2)

)
. . .
(
un (t, inn+1)

)
,

where the multiset ui corresponds to the offset bi: Ps(ui) = bi, 1 ≤ i ≤ n. Finally,
the pools of rule sides Hi+1 = (li+1, ri+1) associated with inner membrane i + 1
are defined as follows:

li+1 = (t), ri+1 =
(
t (vi1, out)

)
. . .
(
t (viki , out)

) (
λ
)
,

where the multisets vij , 1 ≤ j ≤ ki, correspond to the vectors of the set Ai =
{ai1, . . . ,aiki}: Ps(vij) = aij , 1 ≤ j ≤ ki. By abuse of notation, we write (w, out)
to mean that every symbol instance in w gets the target indication out. Π6 is
graphically represented in Figure 6.

t t (v11, out)
. . .

t (v1k1 , out)
λ

λ
2

t t (vn1, out)
. . .

t (vnkn , out)
λ

λ
n+ 1

. . .

t u1 (t, in2)
. . .

un (t, inn+1)

t

1

Fig. 6. The P system Π6 with randomized pools of RHS generating the semilinear
language L =

⋃
1≤i≤n〈Ai,bi〉N.

Π6 starts by non-deterministically building one of the rules t→ ui (t, ini+1) in
the skin membrane. An application of this rule adds the multiset corresponding
to the offset bi to the skin membrane and puts t into inner membrane i + 1.
In the following steps only rules in membrane i + 1 may become applicable. In
this membrane, Π6 may build rules of the form t → t (vij , out), 1 ≤ j ≤ ki,
which will sustain t while also sending the multiset vij corresponding to the vector
aij ∈ Ai out into the skin. Alternatively, Π6 may choose to build the rule t → λ,
an application of which will erase t and halt the system. In such a computation, Π6

generates the multiset language corresponding to 〈Ai,bi〉N. Since Π6 can choose
to send t into any one of its inner membranes in the first step and since the
computations of said membranes cannot interfere, we conclude that Ps(Π6) = L.

To complete the proof, we evoke Theorem 1 to show that there exists a P system
with random RHS exchange (Variant 1) generating the same language L.

This theorem allows us to draw a definitive conclusion about the impossibility
of flattening for non-cooperative Variants 1 and 2, in contrast to Proposition 1
showing the opposite result for Variant 3.

Corollary 4. For ρ ∈ {rhsExchange, rhsPools′} and any k ≥ 2, the following
holds:

PsOP1(ρ, ncoo) ( PsOPk(ρ, ncoo).
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We conclude this section with two more observations regarding the computa-
tional power of the Variants 1 and 2. We have seen that, with a single membrane
and without cooperation, such P systems cannot generate all semilinear languages;
yet it turns out they can generate all uniform semilinear languages.

Theorem 6. For ρ ∈ {rhsExchange, rhsPools′}, the following is true:

N∗SLINU
N ⊆ PsOP1(ρ, ncoo).

Proof. Consider two finite sets of d-dimensional vectors A,B ⊂fin Nd, A =
{x1, . . . ,xn}, B = {y1 . . . ,ym}, and the uniform semilinear set 〈A,B〉N. We will
now construct the P system Π = (O, T, [ ]

1
, w0, H, 1) with pools of randomized

RHS in the following way:

• O = {a1, . . . , ad, t} contains a symbol per each dimension of the vectors, plus
the special symbol t,

• T = {a1, . . . , ad} contains exactly one symbol per dimension of vectors,
• w0 = t,
• H = (l, r), with l = (t) and r = (w′1t) . . . (w

′
nt) (v′1) . . . (v′m),

such that Ps(w′i) = xi, 1 ≤ i ≤ n, and Ps(v′j) = yj , 1 ≤ j ≤ m.

In every step, Π either chooses one of the RHS (w′it) which will enable it to reuse
the left-hand side symbol t in the following step, or it constructs a rule of the form
t→ v′j , which erases the only instance of t and halts the system. Thus, Π performs
arbitrary additions of vectors xi ∈ A and then, in the last step of the computation,
introduces one of the initial offsets yj ∈ B. Therefore, Ps(Π) = 〈A,B〉N. The fact
that we can construct such a P system Π for any uniform semilinear set proves
the statement of the theorem. �

Even though one-membranenon-cooperative P systems with random RHS ex-
change and with randomized pools of RHS cannot generate all unions of linear
languages (Theorem 4), they can still generate some limited unions of exponential
languages.

Theorem 7. For ρ ∈ {rhsExchange, rhsPools′}, the following is true:

L′ab =
{
a2

n

| n ∈ N
}
∪
{
b2

n

| n ∈ N
}
∈ PsOP1(ρ, ncoo).

Proof. A P system Π7 generating the language L′ab can be constructed as follows:
Π7 = ({a, b, t}, {a, b}, [ ]

1
, t,H, 1), where H = (l, r), l = (t) and r = (tt)(a)(b). A

graphical representation of Π7 is given in Figure 7.
Π7 works by sequentially multiplying the number of symbols t by 2, until it

decides to rewrite every instance of t to a or every instance of t to b. Therefore,
Ps(Π7) = L′ab. According to Proposition 1, there also exists a P system with
random RHS exchange generating L′ab, which completes the proof. �
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t tt
a
b

t
1

Fig. 7. The P system Π7 with randomized pools of RHS generating the union language

L′ab =
{
a2

n

| n ∈ N
}
∪
{
b2

n

| n ∈ N
}

The construction from the previous proof can be clearly extended to any num-
ber of distinct terminal symbols and to any function of the number of steps f(n)
given by a product of exponentials (like in Theorem 3). That is, one can con-
struct a P systems with random RHS exchange or with randomized pools of RHS

generating the union language
{
a
f(n)
i

∣∣∣ n ∈ N, 1 ≤ i ≤ m
}

, for some fixed number

m. Note, however, that we cannot use the same approach to generate unions of
two different exponential functions. We conjecture that generating such unions is
entirely impossible with Variants 1 and 2 of randomized RHS.

5 Variant 3: A Binary Normal Form

In this section we present a binary normal form for P systems with individual
randomized RHS: we prove that, for any such P system, there exists an equivalent
one in which every production has at most two right-hand sides.

We now introduce a (rather common) construction: symbols with finite timers
attached to them. Given an alphabet O, we define the following two functions:

timerso(t, O) =

t⋃
i=1

{〈a, i〉 | a ∈ O} ,

timersr(t) = {〈a, i〉 → 〈a, i− 1〉 | 2 ≤ i ≤ t}
∪ {〈a, 1〉 → a | a ∈ O}.

Informally, timerso(t, O) attaches a t-valued timer to every symbol in O, while
timersr(t) contains the rules making this timer work.

We also define the following function setting a timer to the value t > 0 for each
symbol in a given string a1 . . . an:

wait(t, a1 . . . an) = 〈a1, t〉 . . . 〈an, t〉.

For t = 0, wait is defined to be the identity function: wait(0, a1 . . . an) = a1 . . . an.
We can now show that, for any P system with individual randomized RHS

there exists an equivalent one having at most two RHS per production.

Theorem 8 (normal form). For any Π ∈ OPn(rndRhs, k), k ∈ {coo, ncoo},
there exists a Π ′ ∈ OPn(rndRhs2, k) such that Ps(Π ′) = Ps(Π).



P Systems with Randomized Rules 35

Proof. Consider the following P system with individual randomized RHS Π =
(O, T, µ, w1, . . . , wn, P1, . . . Pn, ho) that has at least one production with more than
two RHS. We will construct another P system with individual randomized RHS
Π ′ = (O′, T, µ, w1, . . . , wn, P

′
1, . . . P

′
n, ho) such that Ps(Π ′) = Ps(Π). The new

alphabet will be defined as

O′ = O ∪ timerso(t, O) ∪ {p1, . . . , pt | p ∈ Vp},

where t+ 2 is the number of right-hand sides in the productions of Π having the
most of them, and Vp is an alphabet containing a symbol for each of the individual
productions of Π. (If there are two identical productions in Π which belong to
two different membranes, Vp will contain one different symbol for each of these
two productions.)

For every membrane 1 ≤ i ≤ n, the new set of productions P ′i is constructed
by applying the following procedure to every production p ∈ Pi:

• If p has the form u→ {v}, we add the production u→ {wait(t, v)} to P ′i .
• If p has the form u→ {v1, v2}, we add u→ {wait(t, v1), wait(t, v2)} to P ′i .
• If p has the form u→ {v1, . . . , vk}, with k ≥ 3, we add the following productions

to Pi: {
u→ {wait(t, v1), p1}

}
∪
{
pj → {wait(t− j, vj+1), pj+1} | 1 ≤ j < k − 2

}
∪
{
pk−2 → {wait(t− k + 2, vk−1), wait(t− k + 2, vk)}

}
.

These productions are graphically represented in Figure 8, in which arrows go
from LHS to the associated RHS.

u p1

wait(t, v1)

. . . pj pj+1

wait(t− j, vj+1)

. . . pk−2 wait(t− k + 2, vk)

wait(t− k + 2, vk−1)

Fig. 8. Timers allow sequential choice between any number of right-hand sides.

Finally we add the rules from timersr(t), treated as one-RHS production, to every
P ′i .

Instead of directly choosing between the right hand-sides of a production p :
u→ {v1, . . . , vk} in one step, Π ′ chooses between v1 and delaying the choice to the
next step, by producing p1. This choice between settling on an RHS or continuing
the enumeration in the next step may be kept on until k − 2 RHS have been
discarded. If pk−2 is reached, Π ′ must choose one of the two remaining RHS.

Thus, Π ′ evolves in “macro-steps”, each consisting of exactly t steps. In the
first step of a “macro-step”, Π ′ acts on the symbols from O, producing some
symbols with timers and delaying some of the choices by producing symbols pj .
All symbols with timers wait exactly until the t-th step of the “macro-step” to
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turn into the corresponding clean versions from O. Since t + 2 is the number of
RHS in the biggest production of Π, Π ′ has the time to enumerate all of the RHS
of this production.

Since every delayed choice of Π ′ is uniquely identified by a production-specific
symbol pj , and since only the productions from timersr(t) can act upon the sym-
bols with timers in Π ′, the simulations of two different productions of Π cannot
interfere. This concludes the proof of the normal form. �

6 Tissue P Systems with Randomized Right-hand Sides of
Rules

We now extend the idea of randomized right-hand sides of rules to tissue P systems,
where the underlying graph structure is an arbitrary graph structure and not a
rooted tree as in the case of hierarchical P systems. Moreover, we also might allow
every cell to interact with the environment in case the underlying variant of tissue
P system allows/requires that, yet in the following we will assume one of the n cells
to figure as the environment, thus being the only cell in which some elementary
objects may appear infinitely often

Following the general notation as described for networks of cells in [11], we
define a tissue P system as follows:

A tissue P system is a construct

Π = (n,O, T, w1, . . . , wn, R, hi, ho),

where n is the number of cell, labeled by 1 to n, O is the alphabet of objects,
T ⊆ O is the alphabet of terminal objects, wi are the multisets giving the initial
contents of each cell i (1 ≤ i ≤ n), R is the finite set of rules, and hi and ho are the
labels of the input and the output cells, respectively (1 ≤ hi ≤ n, 1 ≤ ho ≤ n). If
e is the label of the environment, then we may contain an infinite part. The rules
in R are of the form

(u1, . . . , un)→ (v1, . . . , vn)

interpreted as follows: the multisets ui are replaced by the multisets vi, 1 ≤ i ≤ n.
Such a rule can also be written as follows:

n∏
i=1

(i, ui)→
n∏
i=1

(i, vi)

Special ingredients can be added to the rules, for example promoters Pi (which
have to be present in cell i) and/or inhibitors Qi (which must not be present in
cell i), with Pi and Qi being finite sets of multisets from O; then a rule

((u1, . . . , un)→ (v1, . . . , vn); (P1, . . . , Pn), (Q1, . . . , Qn))

is applicable to a configuration if and only if cell i contains all elements of Pi and
no element from Qi, 1 ≤ i ≤ n.
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Now let m rules be given as

n∏
i=1

(i, u
(k)
i )→

n∏
i=1

(i, v
(k)
i ), 1 ≤ k ≤ m.

According to the general definition of tissue P systems as given above, the rules are
not assigned to specific cells but to the whole tissue P system (although assigning
rules to cells is another interesting variant to be investigated in the future). For
the rules we now have several possibilities to interpret the randomization of the
right-hand sides of rules:

Variant A This variant in the strictest way resembles the way randomization
was defined for hierarchical P systems:

For a rule
∏n
i=1(i, u

(k)
i ) →

∏n
i=1(i, v

(k)
i ), we simply take

∏n
i=1(i, v

(k)
i ) as the

right-hand side of the rule and then define Variants 1, 2, and 3 as for hierar-
chical P systems.

Variant B For the Variants 1 and 2, the right-hand sides
∏n
i=1(i, v

(k)
i ) of the m

rules are separated into the elements v
(k)
1 to v

(k)
n and the elements v

(k)
i for each

cell i, 1 ≤ i ≤ n, are randomized independently, i.e., we take the multisets

Mi = 〈v(k)i | 1 ≤ k ≤ m〉

as starting points for randomization and for constructing the rules by taking
out one element from Mi for each i, 1 ≤ i ≤ n, to construct the right-hand
side of a rule.

Variant C As a special variant of Variant B, for randomization in Variants 1

and 2 we only take those v
(k)
i for which v

(k)
i 6= λ, i.e., we now instead take the

multisets

M ′i = 〈v(k)i | v(k)i 6= λ, 1 ≤ k ≤ m〉 = 〈x ∈Mi | x 6= λ〉.

Moreover, we may consider two subvariants how to construct the new right-
hand sides of rules:
Variant C.1 If M ′i is empty, then we cannot construct any randomized rule.
Variant C.2 If M ′i is empty, then we take (i, λ) for every constructed ran-

domized rule.

We observe that for Variant 3, i.e., for individual randomized RHS, we only
consider Variant A. Therefore, for all three Variants 1 to 3 we will use the notation

OtPn(α,X)

to denote the family of tissue P systems with at most n cells using rules of type X
with α denoting the type of randomization according to Variants 1 to 3. To denote
the family of languages of multisets generated by these P systems, we prepend Ps
to the notation, and to denote the family of the generated number languages, we
prepend N . For the Variants 1 and 2, we may also add an additional parameter

β ∈ {B,C.1, C.2} (to indicate how to deal with empty v
(k)
i ) thus obtaining the

notations OtPn(α, β,X) etc.



38 A. Alhazov, R. Freund, S. Ivanov

6.1 Equivalence Between Variants 1 and 2 for Variant A

For randomized pools of RHS, again we consider the restriction that there are at
least as many right-hand sides as it has left-hand sides for the rules to be con-
structed, i.e., the type rhsPools′. Then again we obtain the equivalence between
tissue P systems with random RHS exchange and tissue P systems with random-
ized pools of RHS of type rhsPools′. The proof follows the same lines as the proof
of Theorem 1, now taking into account that we only have to consider the whole
system (or, if rules are assigned to cells, we simply replace membrane by cell).

Proposition 5. For any n ∈ N+ and X ∈ {coo, ncoo}, the following holds:

PsOtPn(rhsExchange, X) = PsOtPn(rhsPools′, X).

7 Conclusions and Open Problems

In this article, we introduced and partially studied P systems with randomized rule
right-hand sides. This is a model of P systems with dynamic rules, in which the
matching between left-hand and right-hand sides is non-deterministically changed
during the evolution. In each step, such P systems first construct the rules from
the available rule sides and then apply them, in a maximally parallel way.

We defined three different randomization semantics: random RHS exchange
(Variant 1), randomized pools of RHS (Variant 2), and individual randomized
RHS (Variant 3). We studied the computational power of the three variants and
showed that Variant 3 is quite different in power from Variants 1 and 2. Indeed,
P systems with individual randomized RHS (Variant 3) appear as a strict extension
of conventional P systems, while random RHS exchange (Variant 1) and random-
ized pools of RHS (Variant 2) seem to increase the power when only one LHS is
used, but to decrease the power when more LHS are present. Finally, we gave a
binary normal form for P systems with individual randomized RHS (Variant 3).

7.1 Open Questions

The present work leaves open quite a number of open questions. We list the ones
appearing important to us, in no particular order.

Full power of Variants 1 and 2:

Are cooperative, multi-membrane P systems with random RHS exchange (Vari-
ant 1) or with randomized pools of RHS (Variant 2) computationally complete?
If not, what would be the upper bound on their power? In this article, we showed
that applying these two randomization semantics to the non-cooperative, one-
membrane case, yields a family of multiset languages incomparable with the fam-
ily of semi-linear vector sets. How much more can be achieved with cooperativity?
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We conjecture that, even with LHS containing more than one symbol, Variants 1
and 2 will not be computationally complete. However, we expect that considering
systems with multiple membranes may actually bring a substantial boost in com-
putational power, because, in both Variants 1 and 2, randomization happens over
each single membrane, meaning that one might use a rich membrane structure to
finely control its effects.

Compare the variants:

How do the three variants of RHS randomization compare among one another
when applied to non-cooperative rules? We saw that, in all three cases, exponential
number languages can be generated. We also saw that individual randomized RHS
(Variant 3) produce a strict superset of the semi-linear languages (Proposition 4).
Does it imply that Variant 3 is strictly more powerful than Variants 1 and 2? We
conjecture a positive answer to this question.

Excess of LHS:

In the case of P systems with randomized pools of RHS (Variant 2), what is the
consequence of having more LHS available in a membrane than there are RHS?
The results in this paper concern a “restricted” version of Variant 2, in which we
require that LHS are never in excess. How strong is this restriction? Our conjecture
is that allowing an excess of LHS does not increase the computational power.

Applications to vulnerable systems:

As noted in the introduction to the present work, randomized RHS can be seen as
a representation of systems mutating in a toxic environment. However, we did not
give any concrete examples. It would be interesting to look up any such concrete
cases and to evaluate the relevance of this unconventional modeling approach.

7.2 Further Variants

Forbidding identical rules:

In any of the three variants, it may happen that identical rules are constructed, in
any membrane. In the previous chapters, in this case this rule was simply taken
into the set of rules. Yet we could also forbid such a situation to happen and in
such a case completely abandon the whole rule set. Another solution can be to
take out all rules having been constructed more than once from the constructed
rule set.

The situation of getting identical rules can easily be avoided by avoiding iden-
tical RHS: the right-hand sides of rules can be made different by adding suitable
powers of a dummy symbol d, which does not count for the final result (i.e., d is
no terminal symbol). As d also does not appear on the left-hand side of a rule, the
computational power of any of the P systems variant considered in this paper will
not be changed by this changing of the set of RHS available for constructing the
set of rules.
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Identical RHS in Variant 3:

In P systems with individual randomized RHS the computational power mainly
arises from the possibility to specify different sets of RHS for the left-hand sides of
rules. What happens if the set R of RHS must be the same for all left-hand sides?
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mage to Gheorghe Păun on His 65th Birthday. Spandugino, 2015.

3. Artiom Alhazov, Sergiu Ivanov, and Yurii Rogozhin. Polymorphic P systems. In
Marian Gheorghe, Thomas Hinze, Gheorghe Păun, Grzegorz Rozenberg, and Arto
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thus, different applications of the same rule may last for a different amount of time. In
this paper, we formalise timed, time-free, and clock-free P system within a framework
for generalised parallel rewriting. We then explore the relationship between these vari-
ants of semantics. We show that clock-free P systems cannot efficiently solve intractable
problems. Moreover, we consider un-timed systems where we collect the results using
arbitrary timing functions as well as un-clocked P systems where we take the union over
all possible per-instance rule durations. Finally, we also introduce and study mode-free
P systems, whose results do not depend on the choice of a mode within a fixed family of
modes, and compare mode-freeness with clock-freeness.

1 Introduction

Membrane systems with symbol-objects are formal computational models of dis-
tributed multiset rewriting. While standard models often assume maximal paral-
lelism and a global-clock synchronization of rules (overview in [12]), there have
been a number of attempts in the literature to relax this condition. The extreme
variant are so-called asynchronous systems, where the parallelism is arbitrary in-
stead of maximal [1, 7]. Not surprisingly, in many cases such systems are much
weaker (e.g., defining PsMAT instead of PsRE) or need much stronger ingredi-
ents to be able to perform the same goal.

A different way to relax the global synchronisation condition is lifting the
assumption that all rule executions take one step. For example, in timed P sys-
tems [5], a numerical function is defined, associating to each rule the positive
integer number of steps its application takes. In this context, time-freeness is an
(undecidable) property that the result of all computations of a P system does not
depend on the timing function.

The motivation for studying time-freeness is investigating the power and the
efficiency of P systems that are robust with respect to rule execution times. Yet, the
definition of the time-freeness property is not restrictive enough for some goals—
the time a rule application lasts cannot be different in different situations. Indeed,
since the timing function is defined on the set of rules, the following facts are
immediate:

1. If a rule is simultaneously applied multiple times, then all instances finish
simultaneously.

2. If a rule is simultaneously applied in different membranes with the same label,
then all rules finish simultaneously.

3. If a rule is applied at different steps of a computation, then all instances last
for the same amount of time.

4. If a rule is applied in different non-deterministic branches of a computation,
then all instances last for the same amount of time.

A number of publications investigate the efficiency of time-free P systems in solving
intractable problems, e.g. [15, 16, 17, 18]. We believe that the constructions in these
publications rely on the residual synchronisation facts listed above.
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In this paper we focus on a variant of timing which allows individual rule
executions to last differently. This variant was introduced under the name “clock-
freeness” in [14]. In clock-free P systems, rule applications may last for “arbitrary”
real periods and even applications of the same rule may have different durations.
We prove that clock-freeness deprives any variant of P systems operating under
this semantics of the capability of solving intractable (NP-complete) problems in
polynomial time.

Clock-freeness changes the way in which a P system operates quite a bit. In-
deed, since durations of rule applications are real numbers, such a P system does
not follow the ticks of a global clock any more, but instead “listens” to events—
situations in which rule applications finish and release new potential reactants
(compare this to the preliminary observations in [11]). Such a P system therefore
becomes event-driven and operates in continuous time, similarly to the Gillespie
algorithm [10] or to data stream-driven reactive programs, e.g. [6]. In the present
work, we formally define event-driven P systems and show their relationship to
clock-free and time-free P systems. Moreover, we also introduce un-timed and un-
clocked P systems, where as a result we take the union of all results obtained by
any timing and per-instance timing function, respectively.

We also consider yet another freeness property: mode-freeness. A P system
which is mode-free with respect to a family of modes has the same behaviour under
all modes from this family. We show a large family of modes under which generating
P systems yield trivial languages, but accepting P systems are computationally
complete. Finally, we explore the form of some clock-free and mode-free P systems
and show some relatively strong connections between the two freeness properties.

This article is organised as follows. Section 2 recalls some basic notions of formal
language theory and then introduces a general definition of P systems rewriting
objects from a computable set O. Section 3 recalls and formally defines timing
functions, time- and clock-free P systems, as well as introduces event-driven P
systems. Subsection 3.4 investigates the connections between these objects. Sec-
tion 4 shows one of the main results of this paper: clock-free P systems cannot
solve intractable problems in polynomial time. Section 5 introduces un-timed and
un-clocked P systems. Section 6 recalls the notion of an evolution mode, introduces
mode-freeness with respect to a family of modes, and then shows some properties
of mode-free P systems. Section 7 compares clock-freeness with mode-freeness and
points out some connections between these two properties. Section 8 discusses
further possibilities for defining per-instance timing and clock-freeness. Section 9
concludes the paper and also lists several open problems.

2 Preliminaries

We assume the reader to be familiar with the basics of formal language theory
and P systems, but we recall some of the notions for convenience. For further



46 A. Alhazov et al.

introduction to the theory of formal languages and P systems, we refer the reader
to [12, 13].

After recalling these basic notions, we will give a formal explanation of general
rewriting in order to be able to introduce a general definition of P systems as
hierarchical rewriting systems, somewhat in the spirit of [2] and [8].

2.1 Multisets

A multiset over V is any function w : V → N; w(a) is the multiplicity of a in w.
A multiset w is often represented by one of the strings containing exactly w(a)
copies of each symbol a ∈ V . The set of all multisets over the alphabet V is denoted
by V ◦. By abusing string notation, the empty multiset is denoted by λ. We will
also (ab)use the symbol ∈ to denote the relation “is a member of” for multisets.
Therefore, for a multiset w, a ∈ w will stand for w(a) > 0.

Given two multisets w, v ∈ V ◦, w is a submultiset of v if w(a) ≤ v(a), for all
a ∈ V . In this case, removing w from v means constructing the multiset v − w
with the property (v − w)(a) = v(a)− w(a).

For a multiset of tuples w ∈ (A1 × . . . × An)◦ we will use the notation w|Ai

to refer to the multiset of projections of the elements of w on the dimension Ai,
1 ≤ i ≤ n. Formally, w|Ai

∈ A◦i and w(ai) for a fixed ai ∈ Ai is equal to the
number of tuples of the form (a1, . . . , ai, . . . , an) in w.

2.2 General Sequential and Parallel Rewriting

Consider an (infinite, computable) alphabet of objects O. An O-rewriting rule is
a partial function r : O → O. For an object o ∈ O for which r(o) is undefined,
we say that r is not applicable to o. Often, the semantics of computing r(o) is
given by “removing the left-hand side” or r from the object o and then “adding
back the right-hand side”. Accordingly, we define the pair of partial functions
r−, r+ : O → O such that their total effect is the same as that of r, i.e., r = r+◦r−.

Example 1. Consider the alphabet V = {a, b} and the set O = V ◦ of all finite
multisets over V . The partial function r : V ◦ → V ◦ replacing an instance of a
with two instances of b is an O-rewriting rule and is often written as r : a→ bb or
r : a→ b2 (note that, in this notation, the symbol → is used to specify rule sides
and not the domain or the codomain of a function); r is defined for all multisets
containing at least an instance of a and is undefined for all other multisets.

For the multiset rewriting rule r, the value r−(w) can be defined by removing
the left-hand side a from the multiset w (if possible) and r+(w) by adding the
right-hand side bb to w. Thus, r = r+ ◦ r−.

Example 2. Consider, again, the alphabet V = {a, b} and the set O = V ∗ of
all finite strings over V . In this case, an O-rewriting rule is a partial function
r : O → O replacing a substring at a particular position. To express the effect of
rewriting any substring of a string s ∈ O satisfying some particular criteria, we
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need to consider a family of functions (ri : O → O)i∈I replacing the substring at
its i-th occurrence. To express the effect of rewriting any substring in any finite
string in O, we need to consider the family of functions (ri : O → O)i∈N.

Fix a set of O-rewriting rules R. To capture the possibility of applying multiple
rules R in parallel, we define the (computable) partial function apply : R◦×O → O
which applies a multiset of rules fromR to an object fromO and yields a new object
in O, if possible. As for the case of individual rules, to represent the idea of “re-
moving the left-hand sides” and “adding the right hand sides”, we define two other
mappings apply− and apply+ such that apply(ρ, o) = apply+(ρ, apply−(ρ, o)), with
ρ ∈ R◦ and o ∈ O.

Example 3. Consider the alphabet V = {a, b} and O = V ◦, as in Example 1, and
two rewriting rules r1 : ab → bb as well as r2 : bb → a. Take the multiset of
rules ρ = r1r2; classically, the function apply(ρ, w) is defined for such multisets
w ∈ O which contain the submultiset ab3 = ab bb, necessary to satisfy both the
applicability requirements of rules r1 and r2. In this case, apply−(ρ, w) is the
function removing the multiset ab3 from w, apply+(ρ, w) is the function adding
bb a to w, and apply(ρ, w) is the function first removing ab3 from w and then
adding bb a.

A sequential O-rewriting framework is the pair (O,R), where O is a set of
objects and R is a set of R-rewriting rules. A parallel O-rewriting framework is the
pair (O,R, apply−, apply+), where (O,R) is a sequential O-rewriting framework
and apply−, apply+ : R◦ ×O → O are the (computable) partial functions defining
the semantics of parallel application of rules from R to objects in O.

Our definition of rewriting frameworks are strongly inspired by the work [8].

2.3 P Systems

The definition of P systems we give in this paper directly generalises various mod-
els of cell-like (hierarchical) P systems in which rules are “located within” the
membranes and whose membrane structure may evolve: transition P systems with
membrane dissolution rules, P systems with active membranes, etc.

A comprehensive overview of different flavors of membrane systems and their
expressive power is given in the handbook which appeared in 2010, see [12]. For
a state of the art snapshot of the domain, we refer the reader to the P systems
website [20], as well as to the bulletin of the International Membrane Computing
Society [19].

Given a parallel O-rewriting framework (O,R, apply−, apply+), a P system is
the following tuple:

Π = (O,OT , µ, w1, . . . , wn, I, R1, . . . , Rn, hi, ho),

where O is a (computable, infinite) set of objects, OT ⊆ O is a (computable)
set of terminal objects, µ is the initial membrane structure injectively labelled by
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the numbers from {1, . . . , n} and usually given by a sequence of correctly nested
brackets, I is the set of allowed ingredients (explained below), wi ∈ O is the initial
object in membrane i, Ri ⊆ R × I is the set of O-rewriting rules associated with
membrane i and enriched with some ingredients, 1 ≤ hi ≤ n is the label of the
input membrane and 1 ≤ ho ≤ n is the label of the output membrane.

The set of ingredients I in the above definition captures the variety of additional
actions which may be associated with O-rewriting rules. We give some examples:

• Target indications: If O = V ◦, target indications can be represented by defining
I = {none}∪(V ×Tar)◦, thus allowing rules to specify multisets of pairs (a, tar)
of symbols a ∈ V and target indications tar ∈ Tar.

• Membrane dissolution: Membrane dissolution can be represented by defining
I = {none, δ} and by writing non-dissolving rules as (u → v, none) and dis-
solving rules as (u→ v, δ), with the usual dissolution semantics.

• Membrane division, creation, etc.: Similarly to dissolution, any modification of
the membrane structure may expressed by adding the corresponding symbols
to the set I.

Finally, note that membrane polarisations can be represented without ingredi-
ents by extending the set of objects to O × π, where π is the set of polarisations
(e.g., π = {−, 0,+}), and by having the rules read and modify the polarisations if
necessary.

A configuration of the P system Π is the tuple C = (µ′, w′1, . . . , w
′
n), where µ′ is

the current membrane structure and w′i ∈ O is the object contained in membrane
i. For P systems which do not dynamically modify their membrane structure, the
first component (µ′) of the tuple may be omitted.

A k-step computation of Π is a sequence of configurations (Cj)0≤j≤k with the
following properties:

• C0 = (µ,w1, . . . , w
′
hi
, . . . , wn), where µ is the initial membrane structure of Π,

wi, 1 ≤ i ≤ n, is the initial object in membrane i, and w′hi
= whi

]win, where
whi ∈ O is the initial object in the input membrane hi, win ∈ O is the input
object, and ] is the operation of combining two objects (e.g., multiset union if
O = V ◦);

• for any configuration Cj , 0 ≤ j < k, the configuration Cj+1 can be obtained
from Cj by applying the rules to the objects of Cj according to a fixed evolution
mode (e.g., the maximally parallel mode), and by then executing the actions
required by the ingredients associated with the applied rules;

• Ck is a halting configuration, i.e., a configuration satisfying the halting condi-
tion of Π. One of the best known halting condition is requiring that no rule be
applicable any more according to the fixed derivation mode (total halting by
inapplicability).

The result of the computation (Cj)1≤j≤k is derived from the object who
found

in membrane ho in the halting configuration Ch. A typical way of deriving the
result is applying the terminal projection pT : O → OT which allows for retrieving
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the “terminal part” pT (wh0
). Another way may be declaring that the derivation

(Cj)1≤j≤k only produces a result if who
∈ OT (otherwise Π produces no result).

P systems as we defined them are general device computing functions, yet
particular cases are often considered. Π is said to work in the generating mode if it
takes no input (the starting configuration C0 is the same for all computations). Π
is said to work in the accepting mode if it takes an input and accepts by a halting
computation, whereas non-accepted inputs only yield non-halting computations.

A special case of accepting P systems are deciding P systems: for any input,
all its computations must halt and are grouped into two classes—accepting and
rejecting; for each input, all computations must belong to one of these groups. One
usual way of discriminating between the two types of computation is by looking at
the form of the object who

in the output membrane in the halting configuration:
e.g., if O = V ◦, an accepting halting configuration of Π must contain the symbol
yes in who

and a rejecting halting configuration must contain the symbol no.
We will denote the language of objects generated (respectively, accepted) by

the P system Π by Lgen(Π) (respectively, Lacc(Π)). Sometimes we will use the
notation L(Π) when the context makes it clear whether Π is an acceptor or a
generator.

3 Time- and Clock-freeness

In this section, we briefly recall (and generalise) the definition of timed and time-
free P systems originally introduced in [5]. We then recall the original definition of
clock-free P systems as introduced in [14] and give a formalisation. Finally, we show
how clock-freeness can easily be captured via a simpler event-driven semantics (a
natural continuation of [11]).

We start by defining the notion of a rule queue. Given a set of rules R, and
the set of ingredients I, we will call any finite multiset of rules ρ ∈ (R × I)◦ a
rule queue. For a number set X, we will call any finite multiset ρ ∈ (R× I ×X)◦

an X-timed rule queue. Intuitively, a rule queue is just an unordered collection
of rules and ingredients, while an X-timed rule queue is a collection of rules and
ingredients which have timestamps.

Given a P system Π, an extended configuration (with rule queues) is a tuple
C = (µ,w1, . . . , wn, ρ1, . . . , ρn), where C = (µ,w1, . . . , wn) is a configuration of Π
and ρi is a rule queue (with or without timestamps).

3.1 Time-free P Systems

We will now recall the definitions of timed and time-free P systems from [5] and
generalise them to our definition of P systems.

Given a P system Π as defined in Subsection 2.3, a timing function is a com-
putable mapping e : RΠ → N+, with N+ = N \ {0} and RΠ =

⋃
1≤i≤nRi, which

assigns durations to the rules of Π. The timed P system Π(e) is a P system with
semantics modified in the following way.
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Computations of Π are sequences of extended configurations with N+-timed
rule queues (i.e., the rules in rule queues have natural timestamps). To compute the
configuration Cj+1 from a configuration Cj , consider the membrane i containing
the object wi and the rule queue ρi. Π(e) shall perform the following actions:

1. Constitute the submultiset of rules ρnow of the queue ρi which have the time-
stamp j+ 1; in other words, any tuple in ρnow must have the form (r, i, j+ 1).
Build the new multiset ρ′i by removing ρnow from ρi. Take the multiset ρnow|R
of all O-rewriting rules in ρnow and compute the object w′i in the following way:
w′i = apply+(ρnow|R, wi). Finally, implement the effects of all the ingredients
listed in ρnow.

2. Pick a multiset of rules ρapp applicable to w′i according to a fixed evolution
mode and set the timestamp for every rule r added to ρapp to j + 1 + e(r).
Take the multiset ρapp|R of all O-rewriting rules in ρapp and compute the new
object w′′i in the following way: w′′i = apply−(ρapp|R,w′i). Add ρapp to ρ′i thus
constituting the new rule queue ρ′′i .

3. In configuration Cj+1, set the contents of membrane i to w′′i and its rule queue
to ρ′′i .

Thus, the queues in an extended configuration Cj contain the rules whose applica-
tion started in the previous steps (excluding step j), including the rules which are
scheduled to finish at step j. All queues are empty in the starting configuration
and the first evolution step consists in launching some rules (in a sense, it is a
“dummy” step or a “half step”).

To halt, Π(e) needs to exhaust all of the rule queues: that is, the evolution
continues until there are still rules scheduled to finish in some future steps, and
all queues must be empty in the halting configuration.

The result of a computation of the timed P system Π(e) is derived from the
contents of its output membrane in its halting configuration in the same way as
described for non-timed P systems in Subsection 2.3.

A P system Π is called time-free if there exists a language of objects L ⊆ O such
that L(Π(e′)) = L(Π(e)), for any (computable) timing functions e : RΠ → N+

and e′ : RΠ → N+, and L = L(Π(e)) for some timing function e : RΠ → N+.
Therefore, time-freeness is the property of P systems to yield the same results
independently of durations statically assigned to the rules.

3.2 Clock-free P Systems

In this subsection, we will formally define clock-free P systems following the origi-
nal work [14]. The motivating intuition is as follows: real-world processes are rarely
synchronised via a shared global clock. Timed and time-free P systems capture the
fact that processes may have different durations and that some systems are robust
to arbitrary variations in such durations; however the durations are integer num-
bers, which still implies the presence of a discrete global clock. Furthermore, in
timed P systems, all applications of the same rule last for the same amount of
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time, which does not take into account the variations in the execution time of
different instances of the same process. Clock-free P systems as introduced in [14]
lift both of these restrictions: different applications of the same rule are allowed
to last for different, real, amounts of time.

Following the same scheme as for timed and time-free P systems, we can intro-
duce per-instance real rule timing in the following way. Consider a P system Π as
defined in Subsection 2.3 with O-rewriting rules enriched with ingredients RΠ × I
and the set C of all sequences of extended configurations of Π. A per-instance
(real) timing function is a mapping τ : C × (RΠ × I)◦ → (RΠ × I × R+)◦, with
R+ = {x ∈ R | x > 0}, assigning positive real durations to the rules in a multiset
of rules based on the given history of configurations.

Even before we define the effect of per-instance timing function, we give an
informal example to give an intuitive impression.

Example 4. Consider the following one-membrane multiset rewriting P system:

Π1 = ({a, b}◦, {a, b}◦, [ ]
1
, a, {none}, {r1 : a→ bb, r2 : b→ aa}, 1, 1)

and suppose it works in the maximally parallel mode. Take the initial configu-
ration C0 = ([ ]

1
, aa, λ). Suppose we want to apply the rule r1 : a → bb twice

in this configuration. We will define the per-instance timing function τ to have
the value (r1, none, 0.5)(r1, none,

√
2) for the singleton sequence (C0) and the

multiset of rules (r1, none)
2. This will move the system into the configuration

C1 = ([ ]1, λ, (r1, none, 0.5) (r1, none,
√

2)).
Among the two applications of r1, one is scheduled to finish earlier, at time

0.5. At this moment, it releases the multiset bb into the skin, which renders the
rule r2 applicable. We define the per-instance timing function τ to have the value
(r2, none, sin 1)(r2, none, cos 1) for the sequence (C0C1) and the multiset of rules
(r2, none)

2. This moves the system into the configuration C2 = ([ ]
1
, λ, ρ2) with

ρ2 = (r1, none,
√

2)(r2, none, 0.5 + sin 1)(r2, none, 0.5 + cos 1).

We will now define the semantics of per-instance real timing functions. Take a P
systemΠ and fix a per-instance real timing function τ for it. Computations ofΠ(τ)
are sequences of extended configurations with R+-timed rule queues (compare
this with N+-timed rule queues for timed P systems recalled in Subsection 3.1).
The queues in an extended configuration Cj contain the rules whose applications
started in configurations previous to Cj (according to a fixed derivation mode),
including rules scheduled to finish in this configuration. Consider a sequence γ =
(Cm)0≤m≤j of extended configurations with R+-timed rule queues. To compute
the next configuration Cj+1 from this sequence, Π(τ) proceeds in the following
way:

1. Find the smallest timestamp tj ∈ R across all rule queues in configuration Cj .
2. In every membrane i, take the submultiset ρnow of the queue ρi in which the

rules have the timestamp tj and compute the object w′i in the following way:
w′i = apply+(ρnow|R, wi); also implement the effects of the ingredients listed in
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ρnow. Build ρ′i by removing ρnow from ρi. (This procedure is identical to that
described in the semantics of timed P systems in Subsection 3.1, point 1.)

3. In every membrane i, pick a multiset of rules ρapp applicable to w′i according
to a fixed evolution mode, compute ρ′app = τ(γ, ρapp), add tj to all timestamps
in ρ′app, and add the result to the new rule queue ρ′i. Take the multiset ρapp|R
of all O-rewriting rules in ρapp and compute the new object w′′i in the following
way: w′′i = apply−(ρapp|R,w′i). Add ρapp to ρ′i, thereby forming the new queue
ρ′′i . (This procedure is very similar to that described in the semantics of timed
P systems in Subsection 3.1, point 2.)

4. In configuration Cj+1, set the contents of membrane i to w′′i and its rule queue
to ρ′′i .

Like for timed P systems, the starting configuration of any computation of
Π(τ) has all rule queues empty, and, to halt, Π(τ) needs to exhaust all queues.

The result of a computation of the P system Π(τ) equipped with the per-
instance real timing function τ is derived from the contents of the output mem-
brane in the halting configuration in the same way as described for non-timed P
systems in Subsection 2.3.

A P system Π is called clock-free if there exists a language of objects L ⊆ O
such that L(Π(τ ′)) = L(Π(τ)), for any (computable) per-instance real timing
functions τ and τ ’, and L = L(Π(τ)) for some per-instance real timing function τ .
Therefore, clock-freeness is the property of P systems to yield the same results
independently of positive real durations dynamically assigned to rule applications.

We will explicitly explain why our definition corresponds exactly to the slightly
informal presentation given in [14]. In the cited paper, the author states that every
rule application may have a different real duration. His proofs suppose durations
may be arbitrary, but show computational completeness nevertheless. The fact
that rule applications may have different real durations is captured by our per-
instance real timing functions. Robustness with respect to arbitrary durations is
captured by our definition of the clock-freeness property.

Example 5. Consider again the P system Π from Example 4 and the sequence
of extended configurations (C0, C1, C2). The corresponding evolution of the rule
queue associated with the only membrane of Π is illustrated in Figure 1.

The hollow bullets on the time axis (denoted by the letter t on the figure) mark
the “steps”, i.e., the moments at which there is at least a rule which finishes its
execution and when Π has to check whether any new rules have to be started.
Clearly, the illustration does not show a halting computation of Π: new rules are
started at moments t = 0 and t = 0.5, but, of course, other rules are applicable
at the other moments highlighted in the figure. We do not show or treat them to
avoid clutter.

Finally, we define an important class of per-instance real timing functions. We
will call such a function τ a Markovian real timing function if its value does not
depend on the first argument. Formally, τ is Markovian if, for a fixed multiset of
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t

(r1, none, 0.5)

(r2, none, cos 1)

(r2, none, sin 1)

(r1, none,
√

2)

Fig. 1. A graphical illustration of the two-step computation of Π1 described in Exam-
ple 4. The hollow bullets mark the “steps”.

rules ρ and for any two sequences of configurations γ1 and γ2, the following holds
τ(γ1, ρ) = τ(γ2, ρ). We will call P systems which are clock-free with respect to the
class of Markovian timing functions Markovian clock-free.

3.3 Event-driven P Systems

Consider again the semantics of P systems with per-instance real timing func-
tions, and especially the illustration in Figure 1. The evolution of such P systems
is quite clearly centred around the concept of an event: the moment at which some
rule executions finish and release the results into the membrane. The computa-
tions driven by per-instance real timing functions are essentially sequences of such
events. This intuitively implies that what only matters is the order in which rules
finish, and not so much the actual individual timings. This observation was stated
in a preliminary form in [11].

In this section we first introduce event-driven P systems and then show the
equivalence between this variant and clock-free P systems.

Following the same scheme as for per-instance real timing functions, we can
define finishing functions in the following way. Consider a P system as defined in
Subsection 2.3 with O-rewriting rules enriched with ingredients RΠ × I and the
set C of all sequences of extended configurations of Π with simple rule queues (no
timestamps). A finishing function is a mapping φ : C × (RΠ × I)◦ → (RΠ × I)◦

indicating, based on the history of configurations, which rules from a given rule
queue must finish their execution. Note that φ may also return an empty multiset.

Take a P system Π and fix a finishing function φ for it. We define the semantics
ofΠ(φ) in the following way. Computations ofΠ(φ) are sequences of configurations
with simple rule queues (no timestamps). Again, the rule queues of an extended
configuration Cj contain the rules whose applications started before Cj according
to the corresponding fixed derivation mode and Π(φ). Given a sequence γ =
(Cm)0≤m≤j of extended configurations with simple queues, Π(φ) proceeds in the
following way to obtain the configuration Cj+1. In membrane i containing the
object wi and the rule queue ρi, Π does the following:
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1. Apply the finishing function to find the submultiset of rules ρnow which must
finish: ρnow = φ(γ, ρi). Take the multiset ρnow|R of all rewriting rules in ρnow
and compute the new object w′i = apply+(ρnow|R, wi); also implement the
effect of the ingredients listed in ρnow. Build ρ′i by removing ρnow from ρi.

2. Pick a multiset of rules ρapp applicable to w′i according to a fixed evolution
mode and add ρapp to ρ′i, thereby constituting the new rule queue ρ′′i . Compute
the new object w′′i in the following way: w′′i = apply−(ρapp, w

′
i).

3. In configuration Cj+1, set the contents of membrane i to w′′i and its rule queue
to ρ′′i .

As before (Subsections 3.1 and 3.2), all computations start with empty rule
queues and the system needs to exhaust all rule queues in order to halt. The
result is retrieved as for P systems operating under conventional semantics (Sub-
section 2.3).

Recall that the finishing function φ is allowed to return an empty multiset. In
this paper, we choose to only consider functions which, for a given sequence of
configurations γ of a fixed P system Π, return a non-empty multiset for at least
one rule queue (non-denying functions). This ensures that every configuration in
a computation of Π corresponds to a rule finishing event.

Example 6. Consider again the P system from Example 4:

Π1 = ({a, b}◦, {a, b}◦, [ ]
1
, a, {none}, {r1 : a→ bb, r2 : b→ aa}, 1, 1)

and the first three configurations of its computation (C0, C1, C2) illustrated in Fig-
ure 1. We can reproduce the effects of these three steps using a finishing function.
The initial configuration will be, as before, K0 = ([ ]

1
, aa, λ). In this configuration

the maximally parallel mode forces Π to apply r1 twice and to move into the fol-
lowing configuration K1 = ([ ]1, λ, (r1, none)

2). We define the finishing function
φ to return (r1, none) for history (K0,K1) and the queue (r1, none). This will
release the products of r1 into the skin membrane and render r2 applicable. The
maximally parallel derivation mode enforces the two applications of r2, moving
Π1 into the configuration K2 = ([ ]

1
, λ, (r1, none) (r2, none)

2).

We now show side by side the configurations C0, C1, and C2 of Π(τ) working
under the per-instance real timing function τ from Example 4 and the configura-
tions K0, K1, and K2 from the previous example (we denote t1 = 0.5 + sin 1 and
t2 = 0.5 + cos 1):

Note that, with the finishing function from Example 6, we are able to repro-
duce the contents of rule queues in (C0, C1, C2), without using time stamps. We
will later formally show that per-instance real timing functions are equivalent to
finishing functions, which makes them into a useful instrument for reasoning about
computations with per-instance real timing.

For a P system Π to be independent of the finishing strategy φ means that there
exists a language L ⊆ O of objects of Π such that L = Π(φ) for any computable
finishing function φ.
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Ci Ki

0 ([ ]
1
, aa, λ) ([ ]

1
, aa, λ)

1 ([ ]
1
, λ, (r1, none, 0.5) (r1, none,

√
2)) ([ ]

1
, λ, (r1, none)

2)

2 ([ ]
1
, λ, (r1, none,

√
2) (r2, none, t1) (r2, none, t2)) ([ ]

1
, λ, (r1, none) (r2, none)

2)

Table 1. A comparison between the forms of configurations in Examples 4 and 6. We
denote t1 = 0.5 + sin 1 and t2 = 0.5 + cos 1.

Since a finishing function essentially defines the sequencing of the releases of
“processed” rule products, P systems which are independent of this sequencing
can be seen as “waiting” for events to happen and “handling” them. Thus, we will
refer to such systems using the term event-driven P systems.

Finally, in analogy with Markovian per-instance timing functions, we define
Markovian finishing strategies. We will call a strategy φ a Markovian finishing
strategy if its value does not depend on the first argument. Formally, φ is Markovian
if, for a fixed multiset of rules ρ and for any two sequences of configurations γ1
and γ2, the following holds: τ(γ1, ρ) = τ(γ2, ρ). We will call P systems which are
event-driven with respect the class of Markovian finishing functions Markovian
event-driven.

3.4 Timing Types and Finishing Strategies

Because timed P systems, P systems with per-instance real timing, and P systems
with finishing strategies stem from the same idea—introduce rule durations to
P systems—it is not surprising that these models have a lot in common. In this
subsection, we outline the main connections.

First of all, we would like to bring the reader’s attention upon the form of the
configurations shown in Table 1: in many of them, the multisets contained in the
membranes are empty, the “semantic focus” being on rule queues. This is an ef-
fect which may be surprising at first, but which actually underlines the important
difference of P systems with rule queues as compared to usual P systems: in the
former case, configurations mark the intervals the start of some rule applications
and the end of some other rule applications (also seen in Figure 1), while config-
urations for P systems operating under conventional semantics (Subsection 2.3)
capture the moments between the end of some rule applications and the start of
some other rule applications.

We will now show a series of intuitively clear inclusions of families of P systems
with rule queues. We start with a general statement about timing functions and
per-instance real timing functions.

Proposition 1. Given a P system Π and any timing function e (Subsection 3.1)
there exists a per-instance real timing function τe (Subsection 3.2) such that
L(Π(e)) = L(Π(τe)).
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Proof. Consider the timing function τe always assigning the duration e(r) to any
application of the rule r in any evolution of Π. It follows from the definitions
of semantics in Subsections 3.1 and 3.2 that, for any computation γe of Π(e)
there exists a computation γτ of Π(τe) producing the same output object, and
conversely. Moreover, for a given step j, the configurations Cj ∈ γe and Kj ∈ γτ
are identical (modulo the inclusion of N into R).

The converse proposition is not true: there exist per-instance timing functions
which do not have a corresponding timing function.

Proposition 2. There exists a multiset-rewriting P system Π and a per-instance
timing function τ such that L(Π(τ)) 6= L(Π(e)) for any timing function e.

Proof (Sketch). Consider the one-membrane multiset rewriting P system Π with
the following rules:

r1 : a→ c r3 : cb→ d

r2 : c→ f r4 : cd→ ♥

Fix the starting multiset in the only membrane of Π to aab. We can construct
a per-instance real timing function for Π which will yield the evolution shown in
Figure 2. Note that the two applications of r1 take a different amount of time,

a a b

c

cr1

r1

d

r3

♥

r4

Fig. 2. A computation impossible without per-instance timing (because two applications
of r1 : a→ c take different time).

which lets the first c arrive (on the right) to produce a d together with b so that,
when the second c arrives (on the left), it can produce ♥ together with d. On the
other hand, if all applications of r1 lasted for the same amount of time, both c’s
would appear at the same time, and one of them would have to evolve by rule r3
turning into f and guaranteeing that rule r4 cannot be applied.

The fact that in timed P systems in the sense of Subsection 3.1 different ap-
plications of the same rule last for the same amount of time implies the statement
of the proposition.

According to the previous two propositions, per-instance timing allows richer
behaviour than simple timing (in the sense of Subsection 3.1). This immediately
implies the following statement.
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Theorem 1. A P system Π which is clock-free is also time-free.

The relationship between per-instance timing functions and finishing strategies
is even stronger. In the following, we say that two rule queues are equivalent modulo
timestamps removing all timestamps from both yields two equal rule queues. We
also consider the natural extension of this equivalence to configurations with rule
queues.

Proposition 3. Given an O-rewriting P system Π and any per-instance real tim-
ing function τ such that its value τ(α, o) for the object o ∈ O does not depend on
the timestamps in the sequence of configurations α, there exists a finishing strategy
φ such that L(Π(τ)) = L(Π(φ)).

Proof. Take a computation γ of Π(τ) and suppose that we have already defined
φ sufficiently to build a prefix γ̄′j of length j of a computation γ′ of Π(φ) in
which all configurations are equivalent modulo timestamps to the corresponding
configurations in the prefix γ̄j of γ. Extend the definition of φ to require the
same rules to finish in configuration Kj of γ′ as those which are scheduled to
finish in Cj in γ. Since we require τ to be independent of the timestamps in γ̄j ,
extending φ in this way is always possible. This observation, together with the
fact that the starting configurations of γ and γ′ are vacuously equivalent modulo
timestamps (since their rule queues are empty), implies that we can define φ such
that all configurations in γ′ are equivalent modulo timestamps to the corresponding
configurations in γ. This means that the results in the halting configurations of γ
and γ′ are equal, which proves the proposition.

Corollary 1. Given a P system Π and any Markovian per-instance real timing
function τ , there exists a finishing strategy φ such that L(Π(τ)) = L(Π(φ)).

This corollary directly implies the following statement about event-driven P
systems and Markovian clock-free P systems.

Theorem 2. Any P system Π which is event-driven is Markovian clock-free.

The converse of Proposition 3 also holds.

Proposition 4. Given a P system Π and any finishing strategy φ, there exists a
per-instance real timing function τ such that L(Π(φ)) = L(Π(τ)).

Proof. Take a computation γ of Π(φ); γ is a sequence of configurations with simple
rule queues (without timestamps). Construct a new sequence of configurations γ′

with R+-timed rule queues in which all rules in all rule queues of configuration Cj
get the timestamp j. Now consider the per-instance real timing function τ which
assigns exactly these timestamps to rule applications in γ′. The fact that we can
always carry out this transformation implies the statement of the proposition.
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According to the previous proposition, per-instance timing strategies may en-
sure richer behaviour than finishing strategies, which implies the following state-
ment.

Theorem 3. A P system Π which is clock-free is event-driven (in the sense of
Subsection 3.3).

Figure 3 summarises the relations between the various kinds of freeness prop-
erties of P systems with rule queues we have considered in this paper. This figure

Clock-free
P systems

Time-free
P systems

Event-driven
P systems

Markovian clock-free
P systems

Theorem 1

Theorem 2

Theorem 3

Fig. 3. Inclusions between the different kinds of freeness properties considered in this
section.

also takes into consideration that any clock-free P system is trivially Markovian
clock-free (because Markovian per-instance timing functions form a proper sub-
class of per-instance timing functions). This relation is represented as a dashed
arrow.

4 Clock-freeness and Efficiency: P versus NP

One of the famous features of some variants of P systems is the capability of solving
intractable (NP-complete) problems in polynomial time. The classical approach is
generating an exponential number of computing units in polynomial time, which
allows fast exploration of the space of candidate solutions (see [12] for some classic
examples). Recently, efficient time-free solutions to intractable problems have been
provided, e.g. in [15, 16, 17, 18]. Since there is no upper bound on the values the
timing function may assign, the authors of the cited papers measure the time
complexity of their constructions in terms of rule starting steps—the number of
moments in the evolution of the P system at which rule executions start—rather
than in terms of the total running time.

On the other hand, we tend to see the number of rule finishing steps as a better
measure for time complexity of time- and clock-free P systems. We take as a mo-
tivating example a computation in which rules only start in the first configuration
and then finish at different times. This computation has only one starting step, but
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it may have multiple finishing steps, the number of which is more closely related
to the number of events that occurred.

We now show that, assuming that in order to solve an NP-complete problem
an exponential number of computing units is necessary, efficient (in terms of the
number of finishing steps) clock-free solutions are impossible to construct (we as-
sume P 6= NP). The intuition is as follows: in time-free P systems, we may not
assume any particular duration for a given rule application, but we are sure that
all applications of the same rule take the same amount of time. The fact that this
property is no longer guaranteed under clock-freeness turns out to be essential for
(in)efficiency.

Theorem 4. Consider an NP-complete problem P and take a P system Π solving
it. Then there exists a per-instance (real) timing function under which all com-
putations of Π contain an exponential (in the size of the input) number of rule
finishing steps (assuming that in order to solve an NP-complete problem an expo-
nential number of computing units is needed).

Proof. In P systems as defined in Subsection 2.3, the atomic “computing units”
are single rule applications. Therefore, according to our assumption, Π must run
an exponential number of rule applications. Since Π operates under per-instance
timing, we can ensure that no two rule applications end at the same time, which
implies that Π has exponentially many rule finishing steps.

5 Un-timed and Un-clocked P Systems

In contrast to time-free P systems, where all timing functions have to generate the
same results, in an un-timed P systems we collect all the results obtained by using
any timing function, i.e., for a given P system Π we define

Lun−timed(Π) =
⋃

t timing function

L(Π, t).

Moreover, in the same way, in an un-timed P system we collect all the results
obtained by using any per-instance timing function, i.e., for a given P system Π
we define

Lun−clocked(Π) =
⋃

τ per−instance timing function

L(Π, τ).

In an un-clocked P system, we simply may assume each rule application to last
an arbitrary amount of time. In the following we give a small example which yields
different results when considered as an un-clocked or as an un-timed system and
is neither time- nor clock-free:

Example 7. We consider the one-membrane multiset rewriting P system Π with
the following non-cooperative rules with inhibitors:
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r1 : a→ aa|¬c and r2 : b→ c

Starting from the axiom ab, in parallel we have to apply both r1 : a→ aa|¬c and
b → c in parallel. Considering Π as an un-timed system, r1 can be applied again
and again in parallel to all symbols a being generated until the application of the
rule r2 has finished which immediately stops the derivation by the appearance of
the inhibitor c. In sum, we obtain

Lun−timed(Π) =
⋃

t timing function

L(Π, t) =
⋃
n∈N
{a2

n

c}.

Of course, this system is neither time- nor clock-free. The infinite set is gen-
erated not due to the choice between applicable rule multisets, but due to the
non-deterministic choice of the timing function.

Considering Π as an un-clocked system, again r1 : a→ aa|¬c and b→ c have to
be applied in parallel in the first step, and r1 can be applied until the application of
the rule r2 has finished which immediately stops the derivation by the appearance
of the inhibitor c. Yet in contrast to the un-timed version, the applications of the
rule r1 to the symbols a appearing in the meantime may end at arbitrary moments
of time. To the two symbols a appearing when the first application of rule r1 has
finished, r1 has to be applied simultaneously to both symbols a, yet from that
moment on the different instances of rule r1 may finish in an unsynchronized way.
Hence, as we sum up all possible results, we may restrict ourselves to consider
only the events when just one rule application ends. The only symbols to which a
rule, i.e., r1, now can be applied are the two symbols a having evolved as a result
of this one rule application, and to these two symbols two copies of r1 have to be
applied simultaneously. In fact, this only means that the number of symbols a has
increased by one with each finishing of a rule r1. Therefore, in sum we obtain

Lun−clocked(Π) =
⋃

τ per−instance timing function

L(Π, τ) = {anc | n ∈ N+ \ {1, 3}}.

A similar result can be obtained by the one-membrane multiset rewriting P
system Π ′ with the following non-cooperative rules with promoters:

r1 : a→ aa|b, r2 : b→ b, and r3 : b→ c

Starting from the axiom ab, we now may assume that the execution of the rules
r1 and r2 takes exactly the same time, because the promoter b is needed to allow
the copies of rules r1 to be applied. Again, the derivation halts as soon as the
promoter b is eliminated by applying r3. For the un-timed mode, the application
of rules r1 still is synchronized, too, and we therefore obtain

Lun−timed(Π
′) =

⋃
t timing function

L(Π ′, t) =
⋃
n∈N
{a2

n

c}.
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In the un-clocked mode, the finishing of rules may be arbitrary, yet still the
promoter b is needed to continue with applying rule r1, i.e., only when the appli-
cation of the rule r2 : b→ b has finished, rule r1 can be applied. In sum, we again
obtain

Lun−clocked(Π
′) =

⋃
τ per−instance timing function

L(Π ′, τ) = {anc | n ∈ N+ \ {1, 3}}.

6 Mode-freeness

Considering time-free, clock-free, and event-driven P systems motivates further
discussion about robustness with respect to variations of other parameters. In this
section we will consider mode-freeness: robustness with respect to the choice of the
evolution mode.

6.1 Evolution Modes

Take a (computable) set of objectsO and consider a parallelO-rewriting framework
(O,R, apply−, apply+). Following [9], we denote by Appl(R, o) the set of multisets
of rules applicable to the object o ∈ O in parallel. Given an n-membrane O-
rewriting P system Π and a configuration C of it, we denote by Appl(Π,C) the
set of tuples of the form (ρ1, . . . , ρn), in which ρi is a multiset of rules applicable
to the object wi in membrane i in configuration C.

Example 8. Consider the multiset ab and the set of multiset rewriting rules
R = {r1 : a → b, r2 : b → c}. Then Appl(R, ab) = {r1, r2, r1r2}. Take a
multiset-rewriting P system Π with the set of ingredients I = {none} and two
membranes with equal sets of rules R1 = R2 = {(r1, none), (r2, none)}. Con-
sider the configuration C = (µ, ab, ab) of Π, then Appl(Π,C) = A × A, where
A = {(r1, none), (r2, none), (r1, none)(r2, none)}.

Given a P system Π and a configuration C, an evolution mode (derivation
mode) is a strategy ϑ for filtering the set Appl(Π,C). According to [9], we denote
by Appl(Π,C, ϑ) ⊆ Appl(Π,C) the set of tuples of multisets of rules of Π appli-
cable in configuration C according to the derivation mode ϑ. When Appl(Π,C, ϑ)
contains more than one element, Π chooses between the allowed tuples non-
deterministically in order to continue the computation. We will denote the lan-
guage generated (respectively, accepted) byΠ operating under the derivation mode
ϑ by Lgen(Π,ϑ) (respectively, Lacc(Π,ϑ)).

We will now recall some typical examples of derivation modes considered in [9].
All of these examples are formulated for a P system Π and a configuration C of
it.

Example 9. The asynchronous derivation mode asyn is the mode allowing any
combination of rules to be applied: Appl(Π,C, asyn) = Appl(Π,C).
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Example 10. The sequential derivation mode sequ is the mode only allowing one
rule to be applied at any time. Appl(Π,C, sequ) therefore contains tuples of sin-
gleton multisets of rules.

Example 11. The maximally parallel derivation mode max only includes tuples of
non-extendable multisets of rules.

Formally, for a tuple (ρ1, . . . , ρn) ∈ Appl(Π,C,max), the set Appl(Π,C) con-
tains no tuple (ρ′1, . . . , ρ

′
n) such that at least one ρi is a submultiset of ρ′i, for

1 ≤ i ≤ n.

A very interesting derivation mode (considered in a detailed way in [3]) is the
following one.

Example 12. The set-maximally parallel mode smax only allows tuples of multisets
containing at most one instance of any rule. Formally, for any tuple (ρ1, . . . , ρn) ∈
Appl(Π,C, smax), it is true that ρi(r) ≤ 1 for any rule r in membrane i, 1 ≤ i ≤ n.

Finally, we show several more derivation modes which we use later.

Example 13. The max≥k mode only allows tuples of multisets which contain at
least k rules. That is, for any tuple (ρ1, . . . , ρn) ∈ Appl(Π,C,max≥k), it must
hold that |ρi| ≥ k, for all 1 ≤ i ≤ k.

Example 14. Suppose that the sets of rules Ri associated with membranes i of Π,
1 ≤ i ≤ n, are equipped with total orders ≤i and consider the mode det (“the
determinator”) which only allows tuples of singleton multisets of rules, which are
also minimal with respect to the corresponding order. Formally, for any tuple
(ρ1, . . . , ρn) ∈ Appl(Π,C, det), it is true that |ρi| ≤ 1 and, for any other tuple of
singleton multisets (ρ′1, . . . , ρ

′
n) ∈ Appl(Π,C), it holds that ri ≤i r′i, where ρi = ri,

ρ′i = r′i, and 1 ≤ i ≤ n.

Note that, according to this definition, Appl(Π,C, det) is either empty (if
Appl(Π,C) is empty) or a singleton set, which justifies the informal name “the
determinator”.

Finally, an extreme example of an evolution mode.

Example 15. The empty evolution mode ∅ is the evolution mode disallowing any
rule applications: Appl(Π,C,∅) = ∅.

6.2 Freeness with Respect to a Family of Modes

Consider an O-rewriting P system Π and the family of evolution modes Θ. We say
that Π is Θ-mode-free if there exists a language L ⊆ O such that L = L(Π,ϑ), for
all ϑ ∈ Θ. We use the notation pLgen(O,Θ) to refer to the family of languages over
O generated by Θ-mode-free O-rewriting P systems. We replace the subscript gen
by acc to refer to the family of languages accepted by Θ-mode-free O-rewriting P
systems.
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It turns out that the idea mode-freeness has already been indirectly invoked in
the literature. Indeed, the constructions from the paper [3] that literally hold for
the modes max and smax are {max, smax}-mode free.

We start our discussion of more general kinds of mode-freeness by remarking
that mode-freeness with respect to the family of all modes (denoted by ΘU ) is a
very restrictive condition filtering out non-trivial behaviour.

Proposition 5. Consider the family of all derivation modes ΘU . Then the follow-
ing statements hold:

• pLgen(O,ΘU ) only contains ∅ and singleton languages,
• pLacc(O,ΘU ) = 2O, where 2O is the set of all subsets of O, but all computation

is done by the procedure extracting the result from the output object.

Proof. Consider the ΘU -mode free O-rewriting P system Π. Since Π should yield
the same language under any mode, it is sufficient to investigate its behaviour
under the empty mode ∅. Under this mode, Π never evolves.

For generation, this means that the result is computed from the initial object
placed in the output membrane, which, depending on the procedure for extracting
the result, may yield a singleton language or the empty language (e.g., in the case
in which the initial object in the output membrane has no corresponding terminal
projection).

Suppose now that Π is an acceptor. We will consider the following cases.

• If Π accepts by halting, it accepts any object because it halts immediately:
Lacc(Π) = O.

• Suppose Π accepts by placing an object of a specific form into the output
membrane.
– If the output membrane of Π is different from its input membrane and

the initial object placed into the output membrane does not satisfy the
acceptance criterion, then Π rejects all inputs: Lacc(Π) = ∅.

– If the output membrane of Π is the same as its input membrane, then Π
will accept those inputs objects which satisfy the acceptance criterion for
output objects. Therefore Π can be made to accept any subset of O by
varying its acceptance criterion.

These observations conclude the proof.

To avoid trivial results, we assume in what follows that the procedure for
extracting the result out of the output object is reasonably simple.

As we have just seen, ΘU -mode-freeness is a very strong restriction. We will now
consider an important subfamily of ΘU : non-denying modes. Given a P system Π,
a mode ϑ is non-denying if, for any configuration C of Π, Appl(Π,C) 6= ∅ implies
that Appl(Π,C, ϑ) 6= ∅. The mode is called denying otherwise. We will use the
notation Θ¬deny to refer to the subfamily of non-denying modes.
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Example 16. The derivation modes asyn, sequ, max, smax, and det are non-
denying. The derivations modes max≤k and ∅ are denying modes.

Mode-freeness with respect to non-denying modes turns out to be a much more
interesting property than ΘU -mode-freeness. In the generative case, Θ¬deny -mode-
freeness yields P systems generating singleton languages and the empty language.
(Note that ΘU -mode-free P systems can achieve the same behaviour only by play-
ing on the procedure for extracting the result out of the output object.)

Proposition 6. pLgen(O,Θ¬deny) only contains ∅ and singleton languages.

Proof. Consider a Θ¬deny -mode-free P system Π. Since Π should generate the
same language under any non-denying mode, we can investigate its behaviour
under “the determinator” mode det. Under this mode, Π evolves sequentially and
deterministically. This means that it can either generate a singleton language, or
the empty language in case it never halts or generates an output object without a
terminal projection.

The situation changes drastically in the accepting case: indeed, determinis-
tic acceptor P systems simulating deterministic register machines exist (e.g., [4,
Theorem 2]). We nevertheless sketch a simple construction here.

Theorem 5. Given an alphabet V and the set of recursively enumerable multiset
languages RE ⊂ V ◦, the following holds: pLacc(V

◦, Θ¬deny) = RE.

Proof (Sketch). Consider the one-membrane multiset-rewriting P system Π sim-
ulating a deterministic register machine M . Π uses cooperation and inhibitors.
For every instruction p : (A(r), q) incrementing register r and going from state
p to state q, Π has a rule p → qr. For every instruction p : (S(r), q, z) checking
register r for zero in state p, decrementing r and moving into state q, or moving
into state z if the decrement is not possible, Π includes the rule pr → q to ensure
the decrement and the rule p→ z|¬r for the zero check.

Two properties follow from this construction sketch:

• Π correctly simulates the computations of M ,
• exactly one rule is applicable in any evolution step of Π, which means that Π

is sequential and deterministic.

The second property implies that, if we take L = Lacc(Π, det), then L = Lacc(Π,ϑ)
for any non-denying derivation mode ϑ ∈ Θ¬deny , i.e., Π is Θ¬deny -mode-free. The
fact that we can perform this construction for any register machine M implies the
statement of the theorem.

The two previous statements highlight a huge gap between the generating and
the accepting cases under mode-freeness with respect to non-denying modes: mode-
free generation only produces trivial languages, while mode-free acceptance is com-
putationally complete.

The construction in Theorem 5 allows us to derive a sufficient criterion for
mode-freeness with respect to non-denying modes.



Time-freeness and Clock-freeness in P Systems 65

Theorem 6. If a P system Π is deterministic under the evolution mode asyn in
any reachable configuration, then it is Θ¬deny -mode-free.

Proof. For Π to be deterministic under asyn means that, for any reachable config-
uration C, the set Appl(Π,C, asyn) is a singleton set. This only happens when at
most one rule is applicable to C in the whole system. The effect of all non-denying
modes on Π will therefore be the same: apply the only applicable rule (if there
exists one), or halt if no more rules are applicable anywhere. This observation
implies that Π is Θ¬deny -mode-free.

The converse statement is not necessarily true in general: for example, a
multiset-rewriting P system whose only behaviour consists in erasing all the sym-
bols in the input one by one will be able to behave similarly under any non-denying
mode. We do expect the converse statement to be true for “reasonable” P systems,
however.

Conjecture 1. Any computationally universal Θ¬deny -mode-free P system is deter-
ministic under asyn in any of its reachable configurations.

We recall that being computationally universal means being capable to “run
any program”. More concretely, a P system is computationally universal if it can
simulate a universal register machine. We refer the reader to [12] for comprehensive
explanations.

7 Clock-freeness versus Mode-freeness

In this section we start a discussion about the relationship between clock- and
mode-freeness. Despite their different origins, the two freeness properties exhibit
a number of similarities. Consider, for example, the sketch of the Θ¬deny -mode-
free P system simulating an arbitrary register machine from Theorem 5. This
system is trivially clock-free because at most one rule can be applied at any time.
Furthermore, we can reformulate the criterion from Theorem 6 for the clock-free
case in the following way.

Theorem 7. If a P system Π is deterministic under the evolution mode asyn in
any reachable configuration, then it is clock-free.

Proof. By the same arguments as in the proof of Theorem 6, we conclude that a
P system Π with the required properties may only apply at most one rule at any
step, which trivially implies clock-freeness.

In case Conjecture 1 is true, being Θ¬deny -mode-free is equivalent to being
deterministic under the mode asyn for computationally universal P systems. This
allows us to formulate the following derived hypothesis.

Conjecture 2 (assuming Conjecture 1). Any computationally universal Θ¬deny -
mode-free P system is also clock-free.
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The two statements we have formulated in this section reveal parts of a strong
relationship between clock- and mode-freeness. In particular, the previous conjec-
ture warrants wondering whether any clock-free P system is also Θ¬deny -mode-
free. The following example and the associated propositions allow us to answer
this question in the negative.

Example 17. Consider a register machine M and construct a one-membrane mul-
tiset rewriting P system ΠM in the following way.

• For every instruction p : (A(r), q, q′) which increments register r and non-
deterministically moves from state p to either state q or q′, add the rules p→ qr
and p→ q′r to ΠM .

• For every instruction p : (S(r), q, z) decrementing r and moving into state q,
or moving into state z if the decrement is not possible, add the following rules
to ΠM :

p→ p′pr

p′ → p′′ prr → dr
p′′pr → z p′′dr → q

ΠM operates under the maximally parallel mode, under normal semantics (no
timing, finishing strategies, etc.), and simulates the register machineM . Simulation
of the increment instruction is straightforward. To simulate the decrement, ΠM

splits the state symbol p into p′ and pr. pr tries to decrement the register r by
the rule prr → dr while p′ waits for one step turning into p′′. Then, if p′′ finds a
dr (meaning that the register was successfully decremented), the rule p′′dr → q is
applied; otherwise the rule p′′pr → z is applied ensuring the correct choice between
states q and z.

Proposition 7. ΠM operating under the [set-]maximally parallel mode is clock-
free (and event-driven).

Proof. The only moment at which ΠM applies more than one rule is during the
simulation of the decrement, when the symbols p′ and pr are produced and the
configuration contains an instance of r. In this case, p′ and pr are immediately
consumed by the applications of the corresponding rules (because ΠM operates in
the [set-]maximally parallel mode). Note that no rule in ΠM is applicable before
both p′′ and dr are produced, which makes the behaviour of ΠM independent of
the timings on the individual applications of rules in this branch of the simulation.
These observations imply that ΠM is clock-free.

Proposition 8. ΠM is not Θ¬deny -mode-free.

Proof. As seen in the proof of the previous proposition, ΠM operating under the
modes max and smax simulates the register machine M . However, if we fix a total
order on the rules of ΠM such that p′ → p′′ is less than prr → dr, and have ΠM

operate under “the determinator” mode det, then ΠM will never have the chance
to apply the rule prr → dr, meaning that ΠM will not simulate M any more.
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This shows that the language accepted/generated by ΠM is different under two
different non-denying modes (max and det) which implies the statement of the
theorem.

Corollary 2. There exists a clock-free P system which is not Θ¬deny -mode-free.

8 A Note on the Semantics of Clock-freeness

We would now like to use the instruments we have constituted throughout the
paper to point out some issues with the informal introduction of clock-freeness
in the original work [14]. These issues appear under derivation modes different
from the maximally parallel one—extendable modes—or with rules which have
non-monotonous rule applicability semantics. We now define these terms formally.

Given a P system Π and a configuration C of Π, we will call a mode ϑ non-
extendable if all multisets in Appl(Π,C, ϑ) are non-extendable, i.e., for any ρ ∈
Appl(Π,C, ϑ), there exists no ρ′ ∈ Appl(Π,C) such that ρ is a submultiset of ρ′.
If ϑ is not non-extendable, it is called extendable.

Example 18. The maximally parallel mode is by definition a non-extendable mode,
but any other mode ϑ such that Appl(Π,C, ϑ) ⊆ Appl(Π,C,max) is non-
extendable as well.

Given a parallel rewriting framework F = (O,R, apply−, apply+) and a par-
tial order relation ⊆ on O, we say that the rule applicability semantics of F is
monotonous if, for two objects o1, o2 ∈ O, o1 ⊆ o2 implies that Appl(R, o1) ⊆
Appl(R, o2), where Appl(R1, o) denotes the set of multisets of rules from R appli-
cable to o1.

Example 19. The semantics of cooperative multiset rewriting is monotonous: for a
fixed set of multiset rewriting rules R and two multisets w1 and w2 such that w1

is a submultiset of w2, at least as many rules are applicable to w2 as to w1.
The semantics of cooperative multiset rewriting rules with inhibitors is non-

monotonous: consider the singleton set of rules R = {r : a→ b|c} and the multisets
w1 = a and w2 = ac; w1 is a submultiset of w2, but r is only applicable to w1 and
not to w2.

Now consider again the informal definition of clock-free semantics from [14] and
take a P system Π with non-monotonous rule applicability semantics. Whenever
some rules can be applied, Π has to start their application by “removing their
left-hand sides” using apply−. However, since the applicability semantics in Π is
non-monotonous, this may immediately render more rules applicable. Letting Π
continue “removing the left-hand sides” would mean that Π may run parts of the
computation which should follow each other at the same moment.

Suppose now that Π works under a mode ϑ which is extendable. This means
that Π does not have to start all of the rules which are potentially applicable
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immediately. Since Π does not have a global clock, we do not know when Π should
consider applying these left-over rules, and if it starts applying them immediately,
it would violate the derivation mode ϑ.

The definitions in Subsection 3.2 address both of these issues by declaring that
the only time Π should start new rule applications is when some (other) rule
applications release new products. Another way of handling these problems would
be restricting per-instance real timing functions to only take values in a closed
interval [c0; +∞) ⊆ R+, for some fixed positive constant c0 ∈ R+. Under this
restriction, we know that any rule takes at least c0 units of time to finish, which
means that Π could reconsider applying new rules either when some rule products
become available, or c0 units of time after the last pack of rule applications started.

Changing the way in which per-instance timing is defined should give rise
to formulations of different event-driven semantics. Indeed, with the restriction
described in the previous paragraph, the types of events to which Π may react
would be extended with the ticks of a “local timer” going off in c0 units of time
after each start of some rule applications.

9 Conclusion and Discussion

In this paper we recalled timed, time-free, and clock-free P systems and provided
a common framework for the three notions. This framework allows discussing dif-
ferent kinds of timing functions and freeness properties for P systems operating
on arbitrary object types allowing for parallel rule application. We also discussed
mode-freeness and showed that, even though mode-freeness and clock-freeness ex-
press robustness with respect to variations in quite different parameters, mode-free
and clock-free P systems exhibit a number of similarities.

Both mode-freeness and clock-freeness as well as the other concepts like in
un-timed and un-clocked P systems seem to offer plenty of possibilities for future
research, among which we would like to state the following ones, in no particular
order.

1. Complete Figure 3: Further investigate the relationship between the freeness
properties shown in Figure 3. Find new inclusions, show the (non-)strictness of
the known inclusions, consider yet different variations of the timing functions
and finishing strategies.

2. Prove or disprove Conjecture 1: This conjecture states that that any Θ¬deny -
mode-free P system is asyn-deterministic in any reachable configuration C. As
shown in Conjecture 2, this could reveal a strong connection between mode-free
P systems and clock-free ones.

3. Other families of modes: We have only considered two infinite families of evolu-
tion modes in detail—the family of all modes ΘU and the family of non-denying
modes Θ¬deny . We showed that the properties of P systems being mode-free
with respect to these families are rather unusual (huge gap between the power
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of generators and acceptors). Are there other families of modes exhibiting sim-
ilar properties?

4. Halting conditions: In this paper we essentially glossed over halting conditions.
Investigating mode-freeness and clock-freeness with respect to different halting
conditions may prove interesting. What would freeness with respect to some
families of halting conditions mean?

5. Mode-freeness without inhibitors: Theorem 5 shows a computationally com-
plete family of Θ¬deny -mode-free P systems. These P systems rely on cooper-
ativity and on inhibitors (as usual, priorities would work just as well). What
are the languages accepted by multiset-rewriting Θ¬deny -mode-free P systems
without inhibitors?

6. Different clock-freeness: As pointed out in Section 8, the intuitive idea of allow-
ing individual rule applications to last for a different amount of time gives rise
to multiple possible semantics. Subsection 3.2 describes one of them; exploring
other possibilities may prove interesting for applications in modelling.

7. Un-timed and un-clocked P systems: Which variants of P systems still remain
computationally complete when being considered as un-timed or un-clocked
systems?
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4. Cristian S. Calude and Gheorghe Păun. Bio-steps beyond Turing. BioSystems,
77(1-3):175–194, November 2004.
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berg, and Arto Salomaa, editors, Membrane Computing, 5th International Workshop,
WMC 2004, Milan, Italy, June 14-16, 2004, Revised Selected and Invited Papers, vol-
ume 3365 of Lecture Notes in Computer Science, pages 36–62. Springer, 2004.

8. Rudolf Freund, Marian Kogler, and Marion Oswald. A general framework for reg-
ulated rewriting based on the applicability of rules. In Jozef Kelemen and Alica
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Summary. We investigate the relationship of time Petri nets and different variants of
membrane systems. First we show that the added feature of “time” in time Petri nets
makes it possible to simulate the maximal parallel rule application of membrane systems
without introducing maximal parallelism to the Petri net semantics, then we define local
time P systems and explore how time Petri nets and the computations of local time P
systems can be related.

1 Introduction

There has been several models applied for describing concurrency, communication
and synchronization. Two of them are the graph-based model, known later as Petri
nets, developed by C. A. Petri [11] and the tree-like model of embedded membranes
called membrane or P systems invented by Gh. Păun [9].

Petri nets are state/transition systems: places are often used to contain infor-
mation representing conditions in the system being modeled while transitions are
used to represent events that can occur to modify the conditions. Some of the
information, the input of the transition, is required for an event to happen, while
some other information, the output of the transition, provides the result of the ex-
ecuted transition: they are the output of the transition. A Petri net is a bipartite
graph: arcs point from input places to transitions and from transitions to places
storing their outputs.

There may be some situations where the modelling of a system by conditions
and events is not completely satisfactory, for example, when the assumption that
all the transitions can take place in an arbitrary order does not describe the system
correctly. To model the situation when time delay must be taken into account
time Petri nets (TPN) were developed. Concerning time Peri nets, several models
were elaborated: time was associated with transitions, places or arcs, etc. We
consider the approach adopted by Merlin [8] rendering time to transitions. By this
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model, to every transition t we associate a closed interval [at, bt] such that at,
bt ∈ Q≥0. The transition can fire, if it is enabled and its local time h(t) is such
that at ≤ h(t) ≤ bt. We adopt the strong semantics, which means that a transition
which is enabled either must be fired at some point of the associated interval or it
becomes non enabled by firing of another transition. In general, time Petri nets are
more powerful than ordinary Petri nets, since time Petri nets are able to simulate
Turing machines while, for ordinary Petri nets, this is not possible.

Membrane systems are parallel, distributed, synchronized models of computa-
tion where embedded membranes are organized in a tree like structure and com-
putation takes place simultaneously in the different membranes in the forms of
applications of rewriting rules. The rules evolve in a distributed manner: the ap-
plication of a rule yields elements with labels, so called messages, which prescribe
the exact place where the result of the rule application should move to. An element
obtained by a rule application can either remain in the actual membrane, perme-
ate to the parent membrane, or enter into one of its child membranes indicated by
the rule. We consider here the basic model, that is, a membrane structure without
dissolution rules. In addition we associate to each rule a time interval which gives a
lower and an upper values for the time instance when the rule can be executed. We
found technically simpler to consider every compartment as if a local stopwatch
would operate in that compartment, though the same results could be obtained
when we defined a global clock for synchronizing computational steps in the whole
membrane system. We call our membrane systems local time membrane systems.

In this paper we relate local time membrane systems to time Petri nets such
that the image Petri net of a membrane system by this mapping is suitable for
answering questions in connection with the membrane system. For example, we
can heavily lean on results in the area of time Petri nets concerning questions of
reachability, which asks whether a certain configuration of the membrane system
can be achieved, or threshold problems, where the question is whether a state
can be reached from another in a certain time, or simply finding the paths re-
quiring minimum/ maximum time between any two reachable states (see Popova-
Zeugmann [14]).

There are several timed models for P systems in the literature (see [3], [4], [1]).
The attempts for the simulation, up to the present, seem to take the approach
similar to timed Petri nets ([6], [1], [2]), where certain values, the delay values,
are assigned to rules. This means that the result of a rule application can appear
only after that delay assuming a global clock synchronizes the computation of
the system. Our model resembles much to that of time Petri nets: an interval is
assigned to every rule and a clock local to each compartment synchronizes when
the rule can be executed. A computational step is governed by a global clock: only
when all membranes finish their action can a new step take place.
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2 Membrane systems

First of all, we discuss some terminology used in the sequel. A finite multiset over
an alphabet V is a mapping M : V → N where N is the set of non-negative integers,
and M(a) for a ∈ V is said to be the multiplicity of a in V . We say that M1 ⊆M2

if for all a ∈ V , M1(a) ≤ M2(a). The union or sum of two multisets over V is
defined as (M1 +M2)(a) = M1(a) +M2(a), the difference is defined for M2 ⊆M1

as (M1 −M2)(a) = M1(a) −M2(a) for all a ∈ V . The multiset M can also be

represented by any permutation of a string w = a
M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗,

where if M(x) 6= 0, then there exists j, 1 ≤ j ≤ n, such that x = aj . The set of
all finite multisets over an alphabet V is denoted byM(V ), the empty multiset is
denoted by ∅ as in the case of the empty set.

A membrane system, or P system, is a tree-like structure of hierarchically
arranged membranes embedded in the skin membrane as the outermost part of
the system. Each region is delimited by a surrounding membrane, they can be
arranged in a tree (cell-like [9]) structure or in a graph form (tissue-like [7] or
neural-like [5]). In this paper we use the so-called symbol-object P systems [9]
without dissolution, that is, each membrane has a label and enclosing a region
containing a multiset of objects and rules and possibly some other membranes.
The unique outer-most membrane is called the skin membrane. We assume the
membranes are labelled by natural numbers {1, . . . , n}, and we use the notation mi

for the membrane with label i. Each membrane mi, except for the skin membrane,
has its parent membrane, which we denote by µ(mi). As an abuse of notation
we use µ both for the parent function and both for denoting the structure of the
membrane system itself.

The contents of the regions of a P system evolve through rules associated with
the regions. The computation of a P system is a locally asynchronous globally
synchronous process: each multiset of objects in a region is formed locally by the
rules attached to the regions, while a computational step of the whole system is
a macro step: it finishes when all of the regions have finished their actions. In the
variant we consider in this paper, the rules are multiset rewriting rules given in
the form of u → v where u, v are multisets, and they are applied in a maximal
parallel manner, that is, a region finishes its computation when no more rules
can be applied in that computational step. In fact, the computational steps in
the regions consist of two parts: first the rule application part and then comes a
communication part where all the objects with labels find their correct places. The
end of the computation of the system is defined by the following halting condition:
a P system halts when no more rules can be applied in any of the regions; the
result is a number, or a tuple of natural numbers- the number of certain objects
in a membrane labelled as output.

Definition 1. A P system of degree n ≥ 1 is Π = (O,µ,w1, . . . , wn, R1, . . . , Rn)
where

- O is an alphabet of objects,
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- µ is a membrane structure of n membranes,
- wi ∈M(O), 1 ≤ i ≤ n, are the initial contents of the n regions,
- Ri, 1 ≤ i ≤ n, are the sets of evolution rules associated with the regions;

they are of the form u → v where u ∈ M(O) and v ∈ M(O × tar) where
tar = {here, out} ∪ {inj | 1 ≤ j ≤ n}.

Unless otherwise stated we consider the n-th membrane as the output mem-
brane. A configuration is the sequence W = (w1, . . . , wn) where wk are the multi-
set contents of membrane mk ( 1 ≤ k ≤ n). Let R = R1 ∪ R2 ∪ · · · ∪ Rn, where
Ri = {ri1, . . . , riki} is the set of rules corresponding to membrane mi. The ap-
plication of u → v ∈ Ri in the region i means to remove the objects of u from
wi and to add the new objects specified by v to the system. The rule application
in each region takes place in a non-deterministic and maximally parallel manner.
This means that the rule application phase finishes, if no rule can be applied any-
more in any region. As a result, each region where rule applications took place, is
possibly supplied with elements of the set O × tar. We call a configuration which
is a multiset over O ∪ O × tar an intermediate configuration. If we want to em-
phasize that W = (w1, . . . , wn) consists of multisets over O, we say that W is a
proper configuration. Rule applications can be preceded by priority check, if pri-
ority relations are present. Let ρi ⊆ Ri × Ri 1 ≤ i ≤ n be the (possibly empty)
priority relations. Then r ∈ Ri is applicable only if no r′ ∈ Ri can be applied
with (r′, r) ∈ ρi. We may also denote the relation (r′, r) ∈ ρi by r′ > r. Priority
relations will be mentioned only in Remark 2.

In the next phase the elements coming from the right hand sides of the rules
of region i should be added to the regions as specified by the target indicators
associated with them. If rhs(r) contains a pair (a, here) ∈ V × tar, then a remains
in region i, this is the region where the rule is applied. If rhs(r) contains (a, out) ∈
V × tar, then a is added to the parent region of region i. In our membrane systems
we assume that the results are formed in a designated membrane, the output
membrane, of the system. Unless otherwise stated, we consider mn as the output
membrane of the system. If rhs(r) contains (a, inj) ∈ V × tar for some region j,
then a is added to the contents of region j. In the latter case µ(mj) = mi holds.

3 The Petri net model

By defining a time dependent Petri net model we followed the definition proposed
by Popova-Zeugmann [12] and chose a model rendering time intervals to transitions
along the original concept of Merlin [8]. First of all, we define the notion of untimed
Petri net and then extend this concept to the timed version.

Definition 2. A Petri net is a tuple U = (P, T, F, V,m0) such that

1. P , T , F are finite, where P ∩ T = ∅, P ∪ T 6= ∅ and F ⊆ (P × T ) ∪ (T × P ),
2. V : F → N>0,
3. m0 : P → N.
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The elements of P are called places and the elements of T are called transitions.
The elements of F are the arcs and F is the flow relation of U . The function
V is the multiplicity (weight) of the arcs and m0 is the initial marking. We may
occasionally omit the initial marking and simply refer to a Petri net as the tuple
U = (P, T, F, V ). We stipulate that, for every transition t, there is a place p such
that V (p, t) 6= 0.

In general, a marking is a function m : P → N. Let x ∈ P or x ∈ T . The
pre- and postsets of x, denoted by •x and x•, respectively, are defined as •x =
{y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}. Each arc has an incoming and
outcoming multiplicity denoted as follows:

Definition 3. Let t be a transition. We define below two markings, t− and t+,
as multisets of places, which govern when a transition can be fired and how many
tokens are added to the place p upon firing the transition, respectively.

t−(p) =

{
V (p, t), if (p, t) ∈ F,
0 otherwise ,

t+(p) =

{
V (t, p), if (t, p) ∈ F,
0 otherwise .

A transition is said to be enabled, if t−(p) ≤ m(p) for all p ∈ P . Applying
the notation M t = t+ − t−, we are able to define a firing of the Petri net U =
(P, T, F, V ).

Definition 4. Let U = (P, T, F, V,m0) be a Petri net and let m be a marking in
U . A transition t ∈ T can fire in m (notation: m −→t ), if t is enabled in m. After
the firing of t, the Petri net will obtain the new marking m′, where

m′ = m+ M t.

Notation: m −→t m′.

We obtain time Petri nets, if we add to the Petri net model information about
time attached to transitions. Intuitively, the time associated to a transition will
denote the last time when the transition or a transition with common preplace
was fired. Though the definitions could be extended to unbounded time intervals
also, we are concerned with bounded time intervals this time.

Definition 5. A time Petri net (TPN) is a 6-tuple N = (P, T, F, V,m0, I) such
that

1. the 5-tuple S(N) = (P, T, F, V,m0) is a Petri net,
2. I : T → Q≥0 × Q≥0 and, for each t ∈ T , I(t)1 ≤ I(t)2 holds, where I(t) =

[I(t)1, I(t)2].

We call I(t)1 and I(t)2 earliest and latest firing times belonging to t, respectively.
Notation: eft(t), lft(t).

A function m : P → N is called a p-marking of N . Observe that talking about
a p-marking of N is the same as talking about a marking of S(N), where S(N) is
called the skeleton of N and, roughly speaking, it is the untimed Petri net obtained
from N by omitting every reference to time.
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Definition 6. 1. A transition marking (or t-marking) is a function h : T →
R≥0 ∪ {#}.

2. Let N = (P, T, F, V,mo, I) be a time Petri net, m a p-marking and h a t-
marking in N . A state in N is a pair u := (m,h) such that
a) (∀t ∈ T )(t− � m→ h(t) = #),
b) (∀t ∈ T )(t− ≤ m→ h(t) ∈ R≥0 ∧ h(t) ≤ lft(t)).

The initial state is the pair u0 = (m0, h0), where m0 is the initial marking and

h0(t) =

{
0, if t− ≤ m0,
# otherwise .

Definition 7. A transition t is ready to fire in state u = (m,h) (in notation:
u −→t), if t is enabled and eft(t) ≤ h(t).

We define the result of the firing of a transition that is ready to fire.

Definition 8. Let t be a transition and u = (m,h) be a state such that u −→t.
Then the result of the firing of t is a new state u′ = (m′, h′), such that m′ = m+4t
and

h′(t̂) =

h(t̂), if (t̂− ≤ m, t̂− ≤ m′ and •t̂ ∩ •t = ∅) or t = t̂,
# if t̂− � m′,
0 otherwise .

In words, the firing of a transition has multiple effects. First of all, it changes
the t-marking of the system as it is customary by simple Petri nets. Moreover, the
time values attached to the transitions may also change. If t̂ was enabled before
the firing of transition t and t̂ remains enabled after the firing, moreover t̂ has
no common preplace with the transition which has just been fired, then the value
h(t̂) for t̂ remains unchanged. The value h(t̂) remains the same even if t̂ = t. If t̂ is
newly enabled with the firing of transition t or t̂ has common preplace with t and
t̂ differs from t, then we have h(t̂) = 0. If t̂ is not enabled after firing of transition
t, then h(t̂) = #.
Observe that we adopt a stronger condition for h to preserve the value for a
transition t̂ upon firing with transition t. We are not content with the fact that t̂
should be newly enabled in order to have h(t̂) = 0 in the subsequent computational
step, but we also demand that t and t̂ should not have common preplaces. To ensure
multiple executions of the same transition, if t̂ = t, then h(t̂) retains its value after
the firing step.

Besides the firing of a transition there is another possibility for a state to alter,
and this is the time delay step.

Definition 9. Let t be a transition and u = (m,h) be a state and τ ∈ R+. Then
elapsing of time with τ is possible for the state u (in notation: u −→τ ), if for all
t ∈ T , h(t) 6= # implies h(t) + τ ≤ lft(t). Then the result of the elapsing of time
by τ is defined as follows: u −→τ u′ = (m′, h′), where m = m′ and

h′(t̂) =

{
h(t̂) + τ, if t̂− ≤ m′ for an arbitrary t̂ ∈ T,
# otherwise.
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Observe that the definition of the result of a time elapse ensures that we are
not able to skip a transition when it is enabled: a transition cannot be made not
enabled by a time jump. Finally, we define the notion of a feasible run in a time
Petri net.

Definition 10. Let N = (P, T, F, V,mo, I) be a time Petri net, assume σ =
t1 . . . tn is a sequence of transitions and τ = τ0τ1 . . . τn (τi ∈ R≥0) be a sequence
of times. Then σ(τ)τ0t1τ1 . . . tnτn is called a run. σ(τ) is a feasible run, if there
are states s = (m,h) and s′ = (m′, h′) such that s −→∗σ(τ) s

′. We may omit the

argument τ from σ(τ) if it is clear from the context.

Obviously, classic Petri nets can be obtained when h(t) = [0, 0] for every tran-
sition and no time delay step is ever made.

4 Relating the Petri net model to the membrane system

First, we show how to establish a correspondence between the P system model
without time and the model of time Petri nets. As the first step we give the
underlying structure of the Petri net associated to a membrane system. The cor-
respondence described below seems to have appeared first by Kleijn, Koutny and
Rozenberg [6]. They define the correspondence by limiting the results of the Petri
net computations only to those which can be obtained by a sequence of maximal
parallel or maximally enabled transition steps. A step is a multiset of transitions
and a transition is maximally enabled, if it is enabled and is not a proper subset
of an enabled step. They establish a close correspondence between Petri nets with
maximally enabled (max enabled) steps and membrane systems. Moreover, other
semantics like locally enabled steps or minimal enabled steps could be considered.

In this case we preserve the original semantics for Petri nets: the fireable tran-
sitions can be executed in any order. This involves that we have to make essential
use of the timed model, since ordinary Petri net model is not Turing complete in
contrast to the general membrane system.

Definition 11. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn) be a membrane system.
Then we define the following places and transitions for the Petri net.

1. P = P0 ∪ P ∗0 ∪ {sto, ste, sem}, where P0 = V × {1, . . . , k} and P ∗0 = V ∗ ×
{1, . . . , k}. We set m0(p) = wj(a) for every place p = (a, j). Intuitively, the
places V × {1, . . . , k} correspond to the objects of V labelled by the indexes
of the membranes and the places in V ∗ × {1, . . . , k} correspond to the objects
on the right hand sides of Ri (1 ≤ i ≤ n) labelled by messages. The places
ste, sto, sem are additional places which serve for the synchronization of the
Petri net model.

2. T = T0 ∪ T ∗0 ∪ {to, te, t1sem, t2sem}, where the sets of transitions T0 and T ∗0 are
detailed in the subsequent parts of the definition and {to, te, t1sem, t2sem} are
auxiliary transitions to be specified later. Let rl ∈ Ri, where l ∈ {1, . . . , nki}.
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Then let til denote the transition corresponding to rl and T0 = {til | 1 ≤ i ≤
n, 1 ≤ l ≤ ki}. A transition til connects elements of P0 to P ∗0 : if p = (a, j),
then V (p, til) = lhs(rl)(a), if i = j, and V (p, til) = 0 otherwise. Furthermore,
if p∗ = (a∗, j), V (til, p

∗) = rhs(rl)(a), if i = j, V (til, p
∗) = rhs(rl)(a, out), if

j = parent(i) and V (til, p
∗) = rhs(rl)(a, inj), if i = parent(j) and V (til, p

∗) =
0 otherwise. Likewise, T ∗0 = {sij | 1 ≤ i ≤ k, 1 ≤ j ≤ n} are such that

{•(sij) | 1 ≤ i ≤ k, 1 ≤ j ≤ n} = P ∗0 , {(sij)• | 1 ≤ i ≤ k, 1 ≤ j ≤ n} = P0 and,

if ai ∈ O and 1 ≤ j ≤ n, then p∗ = (ai, j)
∗ and V (p∗, sij) = V (sij , (ai, j)) = 1

and all the other values are 0. The transitions t1sem and t2sem, belonging to the
semaphore, will be treated in the section.

3. The intervals belonging to the elements of T = T0∪T ∗0 are [0, 0], the transitions
aiming for the synchronization have various time intervals to be specified later.

In words, we simulate the rule rl ∈ Ri with transition til such that the weights
of the arcs reflect the multiplicities of the elements in compartment i, and the
transitions skj ensure the correct reordering of the elements with messages when
the rewriting phase is finished. If we term the rule application phase as the odd and
the communication phase as the even part of the operation, we obtain two Petri
nets for the subsequent phases of the simulation, which are illustrated in Figures 1
and 2. A little more detailed, the complete Petri net acts as follows. The two main
sets for the places correspond to the objects of the membrane system. If ai ∈ V
has ki occurrences in mj , then, for p = (ai, j), m(p) = ki. Likewise, assume at the
end of a rule application phase we have k′i occurrences of (ai, here) in mj , and
k′′i occurrences of (ai, out) in ml, where j = parent(l) and k′′′i copies of (ai, inj)
for l = parent(j), then m(p∗) = k′i + k′′i + k′′′i , where p∗ = (ai, j)

∗. At the rule
application phase the element sto controls the process: if there are any transitions
that are enabled, then they are executed. Otherwise a time elapse is applied and
a token from sto is passed over to sem at time 1. The situation is similar with the
communication phase: if every element has found its correct place, then no more
transition sji is possible and ste gives control to sem by passing a token to sem at
time instance 1.

We ensure the globally asynchronous locally synchronous character of the mem-
brane system for the Petri net by defining a semaphore which governs the distinct
groups of membrane transitions, like rewriting phase, where objects are replaced in
accordance with rewriting rules, or communication phase, where objects labelled
with tags inj, here, out find their correct places.

In what follows we define the timed part of the Petri net that provides the
synchronization.

Assume the semaphore is denoted by the tuple Sem = ({sem}, R, Fsem, Vsem, I).
In some sense the semaphore divides the rule application and communication parts
of the operation of the P system. The place sem of the semaphore is the place
where this choice takes place. The place sem obtains either one or two tokens.
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sto p1 p2

to[1,1] t1[0,0]

sem p∗1 p∗2

2

Fig. 1. The Petri net simulating the rule application part of a membrane computational
step.

sem p1 p2

te[1,1]

1

t∗1[0,0] t∗2[0,0]

ste p∗1 p∗2

Fig. 2. The Petri net simulating the communication part of a membrane computational
step.
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If the odd phase is finished, then the semaphore obtains 2 tokens and otherwise,
from the even phase, it obtains 1. One of the transitions require 2 tokens with
time interval [0, 0]- this transitions leads to ste, and the other one requires 1 token
with time interval [0, 0]. The latter transition points to sto. This means that two
tokens enable the semaphore to activate the even phase, on the other hand, if at
the end of the even phase it receives back only one token, then, after a time jump
of 1, only the odd phase can be activated. We illustrate the semaphore in Figure
3.

sem

[1,1] t1sem [0,0] t2sem

sto ste

1
2

Fig. 3. The semaphore for the Petri nets.

By this, we have simulated a membrane system with a time Petri net such
that in the Petri net model no restriction on the transitions is made: every tran-
sition which is ready to fire can be fired in any order. We summarize the above
considerations in the following theorem.

Theorem 1. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn) be a membrane system. Then
there exists a time Petri net N = (P, T, F, V,m0, I) defined as in Definition 11 such
that, for any computational sequence W of Π yielding an output, there exists a
feasible run of N yielding the same output as W .

We remark that, by keeping the core construction, it is not difficult to adjust
the Petri net model so that it is able to simulate membrane systems defined with
semantics other than the maximal parallel semantics. As a short remark, we con-
sider lmax-parallelism (or locally max-enabledness) that was treated by Koutny
and Kleijn and Rozenberg [6]. A computational step is lmax-parallel in a mem-
brane system, if, for every membrane, the rules of the compartment are executed in
a maximally parallel manner, or no rule of that membrane is executed at all in that
computational step. To handle lmax-parallelism, Koutny and Kleijn and Rozen-
berg introduced localities for a Petri net. We define the notion of Petri nets with
localities in accordance with the definition of Koutny and Kleijn and Rozenberg
[6].
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Definition 12. A Petri net with localities (in short PNL) is a tuple
NL = (P, T, V,D,m0), where P , T , V and m0 are as defined by the base model
and D : T → N is a locality mapping. As in the original model, we assume that,
for every transition t there is a place p such that V (p, t) 6= 0.

The reason for introducing localities in [6] was the intention of simulating
computation distributed to compartments in a membrane system. In the language
of Petri nets with localities this is achieved when we define a computational step
U as a multiset of transitions so that l ∈ D(U) implies that U is maximal with
respect to the transitions with D(t) = l. In our timed model we achieve lmax
parallelism by inserting a nondeterministic choice at the beginning of every odd
round: either a maximal parallel computational step is simulated concerning region
l, or no computation takes place with respect to that region in the underlying
computational step. We omit the details.

As a final remark, we stress out that our simulating Petri net works in a one-
step manner in contrast to the model defined by Kleijn, Koutny and Rozenberg
[6]. This means that exploring the state space seems to be an easier task by this
model- there is no need to maintain a huge stack for keeping track of the possible
successors of the present state obtained by a maximal parallel step. Hence, from
the practical point of view using a time Petri net model for a membrane system
seems to be promising.

5 Local time membrane systems

In this section we associate time to the rules of P systems and present a translation
from local time P systems into time Petri nets such that the durations of the
membrane computational steps can be estimated with the elapsed time in the
computation of the time Petri net. This allows us to formulate several properties
of local time membrane systems based on the well developed theory of time Petri
nets. In the first part of the section we formulate the necessary definitions what we
mean by local time membrane systems and elapsed time in a local time membrane
system, then we present the simulation of membrane systems by Petri nets.

Definition 13. We define the notion of a local time P system as a P system
together with functions I : R → IntQ and T : {1, . . . , n} → R≥0 (1 ≤ i ≤ n),
where R is the set of all rules and IntQ is the set of all closed intervals with
nonnegative rational endpoints and there are n compartments of Π. The value
T (i) is called the local time for the i-th membrane. A configuration of a local time
P system is a pair (W, T ), where W is the configuration as a multiset of objects
and messages as before and T is stands for the local time function. We may write
Ti for T (i) in the sequel.

Observe that, since IntQ denotes the intervals with rational endpoints, we
may assume that the endpoints of the intervals belonging to the rules are integers.
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We have to multiply with the least common multiplier of the nominators of the
endpoints in any other case. Likewise for the case of the time Petri nets. Next we
define a computational step in a local time P system.

Definition 14. Let Π = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time P system.
A run is a tuple σ = (σ1, . . . , σn), where σi = τ i1r

i
1 . . . τ

i
ki
rikiτ

i
ki+1 such that τ ij ∈

R≥0 and rij ∈ Ri for 1 ≤ j ≤ ki and 1 ≤ i ≤ n. We call the element σi the
i-th selection. Moreover, we stipulate that the rules in σi form a maximal parallel
multiset of rules. The elapsed time for σi is the sum of the τ -s in the selection.

Remark 1. It seems to us that instead of defining local times for each compartment
separately we could have chosen to give a global clock for the whole membrane
system when talking about a computational step. The definition with a global
clock could be given in such a way that not only the evolving of the system
but every quantitative property, like elapsed time during a computational step,
minimal/maximal time between two configurations, would remain the same. Tech-
nically, it seems to be a clearer formulation to introduce a local clock in each
membrane, though.

Next we describe how the system can evolve during a selection belonging to
a membrane. To facilitate the treatment we shall talk about the configuration of
membrane i, as well, not only about a configuration of the whole system.

Definition 15. Let mi be a compartment with (possible) intermediate configura-
tion wi. Then (wi, Ti) is the (timed) configuration of mi.

In what follows, when we talk about a configuration of a local time membrane
system, we mean a timed configuration of the system, unless otherwise stated. If we
want to emphasize that we talk about configurations without the time component,
then we will use the term object configuration. The computation in a compartment
can evolve through two steps when we consider a selection.

Definition 16. 1. rule execution: Assume r ∈ Ri, for some 1 ≤ i ≤ n, is en-
abled, that is, lhs(r) ≤ wi, where (wi, Ti) is the configuration for mi. More-
over, assume r is ready to be executed, which means r is enabled and Ti ∈
[I(r)−, I(r)+]. Then (wi, Ti) −→r (w′i, Ti), where w′i = wi − lhs(r) + rsh(r).

2. time elapse: Let τ ∈ R≥0. Then we distinguish two types of semantics:
a) weak semantics: (wi, Ti) −→r (wi, T ′i ) and T ′i = Ti + τ ,
b) strong semantics: (wi, Ti) −→r (wi, T ′i ) and T ′i = Ti + τ only if, for every
r ∈ Ri, lhs(r) ≤ wi and Ti ≤ I(r)+ implies Ti + τ ≤ I(r)+.

A configuration (w, T ) can evolve in two ways. If a rule r ∈ Ri is enabled and,
furthermore, the local time for mi is such that Ti lies in the interval [I(r)−, I(r)+],
then r can be executed. Rule execution in a membrane does not change the time
part of a configuration, it changes only the multiset of objects in the underlying
membrane. The second possibility is time elapse. If we adopt the weak semantics,
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then the time elapse step can take place at any time instance. This may involve
that a rule which was ready to be executed before the time elapse step can be no
more executed after that step. When we adopt the strong semantics this situation
is impossible. In other words, the strong semantics does not allow us to skip rules
that are enabled and their time interval makes their application possible by a time
jump. The weak semantics permits us to apply an arbitrary choice of the rules.
As usual, computations in the membranes evolve by a maximal parallel manner.
When every membrane has finished its operation, the communication phase of
the computational step begins, as by the non-timed case. The new computational
step starts with a configuration (W, T0), where T0(i) = 0 (1 ≤ i ≤ n). By a
computation, we understand a sequence of subsequent proper configurations, that
is, configurations with no objects labelled by messages. When the computation
halts, the result is stored in the output membrane, as before.

6 Local time P systems and time Petri nets

Next we give simulations for local time membrane systems where the elapsed time
is the sum of the time jumps in a selection and the elapsed time for a run or a
computational step is the maximum of these sums when we consider the different
compartments. We perform the simulation for both the weak and strong semantics
of local time membrane systems.

First of all, we deal with the case of a membrane system with the weak seman-
tics. The underlying model is the same as in Definition 11, and we try to simulate
membrane systems of the weak semantics by time Peri nets equipped with the
strong semantics. We identify rule applications with transitions as before. In order
to keep the local nature of the Petri net, we split our model into subnets corre-
sponding to the execution in the various compartments. The main idea is that we
divide the possible time duration of the computation in a membrane membrane
into time intervals of length 1, and, concerning these time intervals, a nondetermin-
istic choice of the transitions which are ready to fire is considered. The transitions
in the same group are assumed to take place in the time interval [0, 0], [0, 1] or
[1, 1], a group of transitions is initiated by a place qij as illustrated in Figure 4.
When operating with a group of transitions, we may apply time elapse between
firing steps up to the point when we fall into the next group of transitions. The
passage is provided by transitions nij in Figure 4. Let us apply the following nota-
tion in the definition below. Assume B is the least integer greater than the right
hand sides of the intervals I(r). Let mi be a membrane. Let

Rij = {r ∈ Ri | j ∈ [eft(r), lft(r)]}

for 0 ≤ j ≤ B − 1, j ∈ N and 1 ≤ i ≤ n. Then ∪ni=1 ∪
B−1
j=0 Rij = R. Observe that

the distinct sets Rij may overlap for different j-s.
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Definition 17. Let Π = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time mem-
brane system with the weak semantics. Assume B is the least integer greater than
the right hand sides of the intervals I(r). We define the associated time Petri net
as follows.

1. The main constituents of P are the sets P0, P ∗0 , Qi (1 ≤ i ≤ n), where P0 =
V×{1, . . . , n}, P ∗0 = V ∗×{1, . . . , n} are as in Definition 11. The computational
step is governed by the set of places Qi = {qij | 0 ≤ j ≤ B, 1 ≤ i ≤ n}. There
are some additional places including the places for the semaphore, places to
mark the end of the computation in the simulated compartment, and places
which lead to nonterminating computations. The semaphore is the same as
in the previous models. Moreover, since the computational process in every
compartment evolves separately, this is modelled by the Petri net: there are sub
Petri nets the computations in which are triggered in a distributive manner.
The operation of the sub Petri net corresponding to membrane mi is initiated
by transferring a token to the places qi0. At the end of the operation of the sub
Petri net the place fini obtains a token and waits for the rest of the sub nets
simulating the other compartments to finish computing. As usual, P0 represents
the actual configuration of the membrane system. We set m0(p) = wj(a) for
every place p = (a, j). As before, the places in V × {1, . . . , n} correspond to
the objects on the left hand sides of Ri (1 ≤ i ≤ n) of the membrane rules,
while the elements of V ∗ × {1, . . . , n} correspond to the objects on the right
hand sides of the membrane rules labelled by messages.

2. As before, T0 correspond to the membrane rules, while the transitions of T ∗0
ensure the simulation of the communication phase of a membrane compu-
tational step. Let rl ∈ Ri, where l ∈ {1, . . . , nki}. Then T0 formed by til
(1 ≤ i ≤ n, 1 ≤ l ≤ ki) and T ∗0 = {sij | 1 ≤ i ≤ k, 1 ≤ j ≤ n} are defined as

in Definition 11 with the slight modification as follows. Let r ∈ Rij, assume t

is the transition associated with r in T0. Then (qij , t) ∈ F , V (qij , t) = 1 and

(t, qij) ∈ F , V (t, qij) = 1 (1 ≤ j ≤ B − 1, 1 ≤ i ≤ n). Moreover, for each each

qij (1 ≤ j ≤ B − 1) we have transitions nij and tiBj such that (qij , n
i
j) ∈ F ,

(nij , q
i
j+1) ∈ F and (qij , t

i
Bj) ∈ F , (tiBj , q

i
B) ∈ F with multiplicities 1. Further-

more, every transition in t ∈ T0 corresponding to some r ∈ Ri has a second
copy T̃0, which is connected to qiB by (qiB , t̃) ∈ F and, for every p ∈ P0, we have
an arrow pointing to t̃ if and only if (p, t) ∈ F with the same multiplicity as that
of (p, t). There is a state perpt̃ for every t̃ which induces an infinitely working
sub Petri-net. Finally, there is an arrow from qiB pointing to fini through tran-
sition tfini

. The places fini lead to sem through a transition fino. When we
consider the case of T ∗0 , it is enough to apply one auxiliary place, say fine, to
check whether every transition in T ∗0 has finished its operation: (fine, t̃) ∈ F ,
(t̃, f ine) ∈ F and (fine, tfine) ∈ F , (tfine , sem) ∈ F .

3. As to the timings, let r ∈ Rij, assume t corresponds to r in the Petri net.
If j = lft(r) then let I(t) = [0, 0], and if [j, j + 1] ⊆ [eft(r), lft(r)], then
I(t) = [0, 1], else, if j = eft(r), then I(t) = [1, 1]. Let the members of T ∗0
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have intervals [0, 0]. For the other transitions: I(nij) = [0, 1], I(t̃j) = [0, 0] and
I(tfini

) = [1, 1]. The semaphore is the same as in the core model.

Figure 4 presents a snapshot of the model: it illustrates the Petri net assigned
to membrane mi.

Fact 2 Let r ∈ Rijmin
, . . ., r ∈ Rijmax

, let jmin ≤ j ≤ jmax, assume [i−t , i
+
t ] is

the interval belonging to t in the sense of Definition 17 when considering r ∈ Rij,
where t is assigned to r. Then I(r)− ≤ i−t + j ≤ i+t + j ≤ I(r)+. Moreover,
i−t + jmin ≤ I(r)− and I(r)+ ≤ i+t + jmax.

qi0
[0,1]

ni
1

qi1
[0,1]

ni
2

qiB−1

tib1[0,1] tib2[0,1] tibB−1[0,1]

qiB

p1 p2

t̃1[0,0] t1[0,0]

perpt̃1

p∗1 p∗2

Fig. 4. The Petri net for a local time membrane system with the weak semantics

As a continuation of Figure 4 we show the role qiB plays in deciding whether
the simulation of the computational step can be continued or not. When the Petri
net finishes the simulation of a rule application phase it must check whether the
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rules corresponding to the chosen transitions form a maximal parallel set of rules.
If at the end of the rule application phase at least one rule remains that could be
applied, then our choice is obviously not a maximal parallel set of rules. In order to
ensure the correct simulation, in this case the Petri net enters into an infinite loop
of transitions when reaching state perpt̃ provided t̃ could be applied. Otherwise,
control is given back to the semaphore. Figure 5 details the Petri net which is in
fact a sub net of the one in Figure 4.

qiB p1 p2

tfini[1,1] t̄[0,0]

fini
perpt̄

2

[0,0]

Fig. 5. The Petri net deciding whether a maximal parallel set of rules is reached.

Finally, Figure 6 gives an overall picture of the odd part of the simulating
Petri net. The place sto stimulates the odd phase and tokens are immediately
distributed among the places qi0, which initiate the simulations of the computations
in membranes mi (1 ≤ i ≤ n). When the computation in mi is over, in the
simulating Petri net the place fini obtains a token. If all the places fini (1 ≤
i ≤ n) have collected their tokens, then a token is passed over to sem and a new
computational phase begins.

We remark that the construction above gives a general method for simulating
any time Petri net defined with the weak semantics by a time Petri net understood
with the strong semantics.

The case for the membrane system with the strong semantics is possibly a bit
simpler, since it is closer to the original semantics of the Petri net model. We define
in the next definition the simulating Petri net for a local time membrane system
with the strong semantics. The construction is very similar to the ones of the pre-
vious subsection, probably it is a little bit easier this time. The only difficulty is
to tell when a maximal parallel step is finished. For this purpose, before choosing
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st0

[0,0] [0,0]
. . .

[0,0]

q1
0 q2

0

. . .

qn0

. . .

fin1 fin2

. . .

finn

[0,0]

sem

Fig. 6. The overall structure of the Petri net for the weak semantics

the next transition, we implement a test whether there are transitions that could
be executed. This involves creating a new copy of the Petri net simulating the
left hand sides of the membrane system rules. Moreover, to keep ourselves to the
interpretation of the membrane computational step by distinguishing the compu-
tational sequences in the different compartments, we assume that there are n sub
Petri nets modelling the computations in the different membranes. We detach, as
usual, the odd and even phases of the computation. In the odd phase, the token in
sto is immediately distributed to the places stio hence initializing the computation
in the sub Petri nets corresponding to membranes mi.

Definition 18. Let Π = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time mem-
brane system with the strong semantics.
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1. P contains P0 and P ∗0 , where P0 = V × {1, . . . , n}, P ∗0 = V ∗ × {1, . . . , n},
where a ∈ V and (1 ≤ j ≤ n) are in Definition 11. As usual, P0 represents
the actual configuration of the membrane system. We set m0(p) = wj(a) for
every place p = (a, j). As before, the places in V ×{1, . . . , n} correspond to the
objects on the left hand sides of Ri (1 ≤ i ≤ n) of the membrane rules, while
the elements of V ∗ × {1, . . . , n} correspond to the objects on the right hand
sides of the membrane rules labelled by messages. There are auxiliary places,
namely those of the semaphore and ste, st

i
o, cati: they govern the simulation

of the rule application and communication phases.
2. T consists of T0, T ∗0 , T̃0 and some auxiliary transitions. As before, let rl ∈ Ri,

where l ∈ {1, . . . , nki}. Then let til denote the transition corresponding to rl
and T0 = {til | 1 ≤ i ≤ n, 1 ≤ l ≤ ki}. A transition til connects elements of
P0 to P ∗0 : if p = (a, j), then V (p, til) = lhs(rl)(a), if i = j, and V (p, til) = 0
otherwise. Furthermore, if p∗ = (ai, j)

∗, then V (til, p
∗) = rhs(rl)(a), if i = j,

V (til, p
∗) = rhs(rl)(a, out), if i = parent(j) and V (til, p

∗) = rhs(rl)(a, inj),
if j = parent(i) and V (til, p

∗) = 0 otherwise. Moreover, (cati, t
i
l), (til, st

i
o),

(stio, tcati), (tcati , cati) ∈ F .
T ∗0 = {sij | 1 ≤ i ≤ k, 1 ≤ j ≤ n} is defined as before: we let {•(sij)1 ≤
i ≤ k, 1 ≤ j ≤ n} | = P ∗0 , {(sij)• | 1 ≤ i ≤ k, 1 ≤ j ≤ n} = P0 and

V ((p∗i , j), s
i
j) = V (sij , (ai, j)) = 1, where p∗i = (ai, j)

∗, and all the other values
be 0.
As to the auxiliary places and transitions, stio and ste have to check whether
there are transitions left to fire. For ste this is easy: ste connects to each transi-
tion in T ∗0 , that is, (ste, s

i
l), (sil, ste) ∈ F and ste connects to sem by (ste, tre),

(tre, sem) ∈ F . The places stio need to make a similar check concerning max-
imal parallel execution: (stio, t̃

i
l) ∈ F , (t̃il, cati) ∈ F and t̃il are such that the

connections with the elements of P0 are the same as in the case of P0 and T0
with the same multiplicities, as well. However, t̃il do not point to P ∗0 , they give
back all the tokens to P0 after any of the transitions t̃il has been fired. When no
transition t̃il is able to fire, stio forwards a token to fini and, when each fini
(1 ≤ i ≤ n) possesses a token, they give control back to sem by (fini,mono),
(mono, sem) ∈ F . That is, mono fires only if every sub Petri net assigned to
membrane mi finishes its computation.

3. Concerning the intervals: the intervals belonging to the elements of T ∗0 are
[0, 0]. If til ∈ T0, then I(til) = I(ril). Furthermore, I(fini) = I(fine) = [1, 1].
All the remaining intervals are [0, 0]. The semaphore is the same as by the case
of the core model.

We illustrate the sub Petri net corresponding to mi in Figure 7.
Let Π = (V, µ, u1, . . . , un, R1, . . . , Rn, I) be a local time membrane system.

If Π is considered with the weak semantics, then let Nw(Π) denote the time
Petri net associated to Π according to Definition 17. If Π is understood with
the strong semantics, then let Ns(Π) denote the Petri net assigned to Π in
accordance with Definition 18. Furthermore, if (w, T ) is a proper configura-
tion of Π, let (ν(w), ν(T )) be the configuration of Nw(Π) or of Ns(Π), where
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stio cati p1 p2

fini[1,1] t]1[0,0] t1 [I(t1)−,I(t1)+]

sem

p∗1 p∗2

2

Fig. 7. The Petri net for a local time membrane system with the strong semantics

ν(w)(ai, j) = w(j)(i) and ν(T )(til) = T (rl), where rl ∈ Ri. In addition, if
p∗ = (a∗i , j), let ν(w)(p∗) = 0, as (w, T ) is a proper configuration. Moreover,
if W = (w0, T 0) ⇒ (w1, T 1) ⇒ . . . ⇒ (wk, T k) is a configuration sequence of Π,
then ν(W ) = (ν(w0), ν(T 0)) −→ (ν(w1), ν(T 1)) −→ . . . −→ (ν(wk), ν(T k)) is the
corresponding sequence of configurations of Nw(Π) or Ns(Π). If W is a sequence
of proper configurations, then we omit the values Ti and ν(Ti) from the configu-
rations (w, T ) and (ν(w), ν(T )i), respectively, since, in this case T j = T0, where
T0(r) = 0 for every r ∈ R.

Theorem 3. Let Π = (V, µ, u1, . . . , un, R1, . . . , Rn, I) be a local time membrane
system.

1. Let W = w0 ⇒ w1 ⇒ . . . ⇒ wk be a computational sequence with the weak
semantics. Then

w0 ⇒∗W wk ⇔ Nw(w0) −→∗ν(W ) Nw(wk).

Moreover, τ(ν(W )) = τ(W ) + 3k, where τ(W ) and τ(ν(W )) are the total time
for W and ν(W ), respectively.

2. Let W = w0 ⇒ w1 ⇒ . . . ⇒ wk be a computational sequence with the strong
semantics. Then

w0 ⇒∗W wk ⇔ Ns(w
0) −→∗ν(W ) Ns(w

k).

Moreover, τ(ν(W )) = τ(W ) + 3k, where τ(W ) and τ(ν(W )) are the total time
for W and ν(W ), respectively.
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Proof. We treat the case of the weak semantics: we give a sketch for the proof of
the correctness of our simulation. Assume Π = (V, µ, u1, . . . , un, R1, . . . , Rn, I) is
a local time membrane system, let W = w0 ⇒ w1 ⇒ . . .⇒ wk be a computational
sequence with the weak semantics. We prove the theorem by induction on k.

- k = 0: there is nothing to prove.
- k = l + 1: Assume we have the statement for l, that is, for the computa-

tional sequence Wl = w0 ⇒σ1 w1 ⇒σ2 . . . ⇒σl wl there exists ξl = m0 ⇒
m1 ⇒ . . . ⇒ ml such that µl = ν(wl) and τ(ν(ξl)) = τ(Wl) + 3 · l, where,
for any proper configuration w of Π, ν(w) is defined as above. If q is any
place not in P0, then ν(q) = 0, except for sem, where ν(w)(sem) = 1.
By the construction of the Petri net h(til) = I(ril) also holds. We extend
the correspondence ν to the intermediate configurations, as well. The val-
ues for the elements of P0 are defined as before. As to the values of P ∗0 :
ν(w)(a∗i , j) = w(j)(ai, here) + w(µ(j))(ai, inj) +

∑
j=µ(l)(ai, out). Let σ(i,s) =

τ0r1τ1r2 . . . rsτs+1, where r1, . . ., rs ∈ Ri, be a segment of the selection of mi

of length s with the corresponding configurations ((w1, T1), . . . , (ws, Ts)). Then
ξ(i,s) = ν(σ(i,s)) = τ01 . . . τ0k0t1τ11 . . . τ1k1t2 . . . tsτ(s+1)1 . . . τ(s+1)ks+1

, where tj
correspond to rj in Nw(Π) and τj = τj1+. . .+τjkj , is a computation in Nw(Π).
Assume ((m1, h1), . . . , (ms, hs)) is the sequence of states corresponding to ξi,s,
then we claim that ν(w1), . . . , ν(ws) define exactly the same t-markings. For
the correspondence of the configurations and t-markings it is enough to prove
that, if r can be executed, then t is ready to fire provided t is assigned to r.
By Fact 2, it is enough to observe that Ti(r) = j + a for some j ∈ N such
that r ∈ Rij and 0 ≤ a ≤ 1, and i−t ≤ a ≤ i+t , where [i−t , i

+
t ] is the interval

corresponding to t as the image of r ∈ Rij in accordance with Definition 17.
The statement can be proved by examining the various cases for the next step
in σi,s.

�

The converse of the theorem holds, too. We state it in a proposition.

Proposition 1. Let N = (P, T, F, V,m0, I) be a time Petri net. Then the following
statements are valid.

1. Let Π = (V, µ, u1, . . . , un, R1, . . . , Rn, I) be be a local time membrane system,
assume N = Nw(Π). Then, for any proper computational sequence ξ of N ,
there exists computational sequence W of Π with respect to the weak semantics
such that ξ provides exactly the same output as W . Moreover, τ(ξ) = τ(W ) +
3k, where τ(W ) and τ(ξ) are the total time for W and ξ, respectively.

2. Let Π = (V, µ, u1, . . . , un, R1, . . . , Rn, I) be be a local time membrane sys-
tem, assume N = Nw(Π). Then, for any proper computational sequence ξ of
N , there exists computational sequence W of Π with respect to the strong
semantics such that ξ provides exactly the same output as W . Moreover,
τ(ξ) = τ(W ) + 3k, where τ(W ) and τ(ξ) are the total time for W and ξ,
respectively.
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Remark 2. We remark that local time weak semantics does not appear to add
anything to the computational power of the membrane system, however local time
with the strong semantics seems to increase the computational strength of the P
system. We conjecture that, by a modification of a proof of Păun [10] showing that
membrane systems with catalytic rules together with priority define recursively
enumerable sets of numbers even with two membranes, it might not be difficult to
prove that local time membrane systems with catalytic rules and with the strong
semantics define recursively enumerable sets of numbers with two membranes. It is
not clear to us, however, how the exact strength of a local time membrane system
with the strong semantics could be depicted.

7 Applications

The constructions of the previous section makes us possible to apply the results
elaborated for time Petri nets for the case of local time membrane systems.

Notation 4 Let Π = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time membrane
system. We apply the notation Π = Π?, where ? ∈ {w, s} stands for either the
weak semantics or the strong semantics, respectively.

Definition 19. Let Π? = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time mem-
brane system.

1. A (possibly intermediate) configuration (w, T ) is integer valued, if T (r) ∈ N
for every r ∈ R.

2. Let mi be a membrane of Π? for some 1 ≤ i ≤ n. Let σi be a run for mi. Then
σi is integer valued if all of its intermediate configurations are integer valued.

3. Let W = w0 ⇒ . . . ⇒ wk be a computational sequence for Π?. Then W is
integer valued, if, for every wi, every run of wi is integer valued.

Observe that, given a membrane system Π? and a computational sequence W ,
the condition that W is integer valued is equivalent to the requirement that all
the time elapses in every run of W are integers.

Proposition 2. Let Π? = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time mem-
brane system and let w′ be a configuration reachable from w. Then w′ is integer
reachable from w.

Proof. Follows from the main theorem together with the corresponding theorem
for time Petri nets presented by Popova-Zeugmann ([13], [14]). �

Definition 20. Let Π? = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time mem-
brane system. Then Π? is bounded, if there exists K > 0 such that, for every
configuration w of Π?, |w(j)| < K (1 ≤ j ≤ n). In other words, K is an up-
per bound for the number of elements in every compartment with regard to any
configuration w.
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Proposition 3. Let Π? = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time mem-
brane system, assume Π? is bounded. Then the reachability problem for Π? is
decidable.

Proof. Follows from Proposition 2. �

Proposition 4. Let Π? = (V, µ, w1, . . . , wn, R1, . . . , Rn, I) be a local time mem-
brane system, assume w′ is reachable from w. Then the minimum and maximum
distances between w and w′ are integers.

8 Conclusions

In this paper we examined the connections between two models of computations,
namely, the membrane systems introduced by Păun [9] and time Petri nets de-
fined along the lines of the papers of Popova-Zeugmann ([12],[13]). First of all,
we presented a simulation of membrane systems without dissolution by time Petri
nets. The novelty in our result is the fact that the simulating Petri nets manage
to retain the locality of firing: transitions can be fired one after the other without
structural control, like maximal parallelism, imposed on the order of their execu-
tion. Next, we defined local time membrane systems on the analogy of time Petri
nets, equipping the computational model with two types of semantics. We showed
that both kinds of local time membrane systems can be simulated by time Petri
nets with the strong semantics. Finally, we mentioned some statements concerning
local time membrane systems that are straightforward consequences of the similar
results for time Petri nets by reason of the simulations.
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Summary. In this work, we continue our research in the field of string processing mem-
brane systems - APCol systems. We focus on a relation of APCol systems with PM
colonies - colonies whose agents can only perform point mutation transformations of the
common string, in a vicinity of the agent. The second part is devoted to a connection of
APCol systems and logic circuits using AND, OR and NOT gates.

1 Introduction

There are many different theoretical computational models, where are independent
agents engage in a shared environment or interact with it directly. In this paper,
we continue our research in the examination of connections between such models.
In [26] our research started with the comparison of eco-colonies – composed from
components (grammars) acting in a string, the string is also evolved by environ-
mental rules (0L scheme), P colonies and eco-P colonies – membrane systems with
one-membrane agents and a unordered environment. In this paper, we continue
our study with APCol systems – the model related closely to P colonies – PM
colonies and logic circuits.

APCol systems are formal models of a computing device combining proper-
ties of membrane systems and colonies - parallel distributed systems of formal
grammars. Membrane systems (called P systems, [24]) are biologically inspired
distributed multiset rewriting systems that are characterised by massive paral-
lelism and simple rules. APCol systems were introduced in [4] The reader can find
more information about membrane systems in [23] and in [17] can a reader find
details on grammar systems theory.

An APCol system is formed from agents - collections of objects embedded in a
membrane - and shared environment - string. Agents are equipped with programs
composed of rules that allow agents to interact with objects that are placed inside
them and they form a string. The number of objects inside each agent is set by
definition and it is usually very low up to 3. The string is processed by agents
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and it is used as a communication channel for agents too. Through the string the
agents are able to affect the behaviour of another agent. There is a special object
defined in the APCol system it is denoted by e. It has a special role: whenever it
is introduced in the string, the corresponding input symbol is erased.

The activity of agents is based on rules that can be rewriting, communication
or checking; these three types was introduced in [18]. Rewriting rule a → b allow
agent to rewrite (evolve) one object a to object b. Both objects are placed inside
the agent. Communication rule a↔ b gives to the agent the possibility to exchange
object c placed inside the agent for object d from the string. A checking rule is
formed from two rules r1, r2 of type rewriting or communication. It sets a kind of
priority between rules r1, r2. The agent tries to apply the first rule and if it cannot
be performed, the agent executes the second rule. The rules are combined into
programs in such a way that all object are affected by the execution of the rules.
Consequently, the number of rules in the program is the same as the number of
objects inside the agent.

The computation in APCol systems starts with an input string, representing
the environment, and with each agents having only symbols e in its state. Every
computational step means a maximally parallel action of the active agents: an
agent is active if it is able to perform at least one of its programs, and the joint
action of the agents is maximally parallel if no more active agent can be added
to the synchronously acting agents. The computation ends if the input string is
reduced to the empty word, there are no more applicable programs in the system,
and meantime at least one of the agents is in so-called final state.

We start the paper with the necessary definitions not only of APCol systems,
PM-colonies and logic circuits. We continue with the construction of an APCol
system simulating a PM-colony and with the construction of APCol system suit-
able for simulation of logic circuits. We conclude the paper with final remarks
about future work and open problems.

2 Definitions

Throughout the paper the reader is assumed to be familiar with the basics of
formal language theory and membrane computing. For further details we refer to
[16] and [23].

For an alphabet Σ, the set of all words over Σ (including the empty word, ε),
is denoted by Σ∗. We denote the length of a word w ∈ Σ∗ by |w| and the number
of occurrences of the symbol a ∈ Σ in w by |w|a. For a language L ⊆ Σ∗, the set
length(L) = {|w| | w ∈ L} is called the length set of L. For a family of languages
FL, the family of length sets of languages in FL is denoted by NFL.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets with the set of objects V
is denoted by V ◦. The set V ′ is called the support of M and denoted by supp(M).
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The cardinality of M , denoted by |M |, is defined by |M | =
∑

a∈V f(a). Any
multiset of objects M with the set of objects V ′ = {a1, . . . an} can be represented
as a string w over alphabet V ′ with |w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words
obtained from w by permuting the letters can also represent the same multiset M ,
and ε represents the empty multiset.

2.1 APCol Systems

In the following we recall the concept of an APCol system [4].
As in the case of standard P colonies, agents of APCol systems contain objects,

each being an element of a finite alphabet. With every agent, a set of programs
is associated. There are two types of rules in the programs. The first one, called
an evolution rule, is of the form a → b. It means that object a inside of the
agent is rewritten (evolved) to the object b. The second type of rules, called a
communication rule, is in the form c↔ d. When this rule is performed, the object
c inside the agent and a symbol d in the string are exchanged, so, we can say that
the agent rewrites symbol d to symbol c in the input string. If c = e, then the
agent erases d from the input string and if d = e, symbol c is inserted into the
string.

An APCol system works successfully, if it is able to reduce the given string to
ε, i.e., to enter a configuration where at least one agent is in accepting state and
the processed string is the empty word.

Definition 1. [4] An APCol system is a construct
Π = (O, e,A1, . . . , An), where

• O is an alphabet; its elements are called the objects,
• e ∈ O, called the basic object,
• Ai, 1 ≤ i ≤ n, are agents. Each agent is a triplet Ai = (ωi, Pi, Fi), where

– ωi is a multiset over O, describing the initial state (content) of the agent,
|ωi| = 2,

– Pi = {pi,1, . . . , pi,ki} is a finite set of programs associated with the agent,
where each program is a pair of rules. Each rule is in one of the following
forms:
· a→ b, where a, b ∈ O, called an evolution rule,
· c↔ d, where c, d ∈ O, called a communication rule,

– Fi ⊆ O∗ is a finite set of final states (contents) of agent Ai.

During the work of the APCol system, the agents perform programs. Since
both rules in a program can be communication rules, an agent can work with
two objects in the string in one step of the computation. In the case of program
〈a↔ b; c↔ d〉, a sub-string bd of the input string is replaced by string ac. If the
program is of the form 〈c↔ d; a↔ b〉, then a sub-string db of the input string is
replaced by string ca. That is, the agent can act only in one place in a computation
step and the change of the string depends both on the order of the rules in the
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program and on the interacting objects. In particular, we have the following types
of programs with two communication rules:

• 〈a↔ b; c↔ e〉 - b in the string is replaced by ac,
• 〈c↔ e; a↔ b〉 - b in the string is replaced by ca,
• 〈a↔ e; c↔ e〉 - ac is inserted in a non-deterministically chosen place in the

string,
• 〈e↔ b; e↔ d〉 - bd is erased from the string,
• 〈e↔ d; e↔ b〉 - db is erased from the string,
• 〈e↔ e; e↔ d〉; 〈e↔ e; c↔ d〉, . . . - these programs can be replaced by pro-

grams of type 〈e→ e; c↔ d〉.
The program is said to be restricted if it is formed from one rewriting and one

communication rule. The APCol system is restricted if all the programs the agents
have are restricted.

At the beginning of the work of the APCol system (at the beginning of the
computation), there is an input string placed in the environment, more precisely,
the environment is given by a string ω of objects which are different from e.
This string represents the initial state of the environment. Consequently, an initial
configuration of the automaton-like P colony is an (n+1)-tuple c = (ω;ω1, . . . , ωn)
where ω is the initial state of the environment and the other n components are
multisets of strings of objects, given in the form of strings, the initial states the of
agents.

A configuration of an APCoL system Π is given by (w;w1, . . . , wn), where
|wi| = 2, 1 ≤ i ≤ n, wi represents all the objects placed inside the i-th agent and
w ∈ (O − {e})∗ is the string to be processed.

At each step of the computation every agent attempts to find one of its pro-
grams to use. If the number of applicable programs is higher than one, the agent
non-deterministically chooses one of them. At every step of computation, the max-
imal possible number of agents have to perform a program.

By applying programs, the automaton-like P colony passes from one config-
uration to another configuration. A sequence of configurations starting from the
initial configuration is called a computation. A configuration is halting if the AP-
Col system has no applicable program.

The result of computation depends on the mode in which the APCol system
works. In the case of accepting mode, a computation is called accepting if and only
if at least one agent is in final state and the string obtained is ε. Hence, the string
ω is accepted by the automaton-like P colony Π if there exists a computation by Π
such that it starts in the initial configuration (ω;ω1, . . . , ωn) and the computation
ends by halting in the configuration (ε;w1, . . . , wn), where at least one of wi ∈ Fi

for 1 ≤ i ≤ n.
The situation is different when the APCol system works in the generating mode.

A computation is called successful if only if it is halting and at least one agent is in
final state. The string wF is generated by Π iff there exists computation starting
in an initial configuration (ε;ω1, . . . , ωn) and the computation ends by halting in
the configuration (wF ;w1, . . . , wn), where at least one of wi ∈ Fi for 1 ≤ i ≤ n.
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We denote by APColaccR(n) (or APColacc(n)) the family of languages ac-
cepted by APCol system having at most n agents with restricted programs only
(or without this restriction). Similarly we denote by APColgenR(n) the family of
languages generated by APCol systems having at most n agents with restricted
programs only.

APCol system Π can generate or accept set of numbers |L(Π)|.
By NAPColxR(n), x ∈ {acc, gen}, the family of sets of natural numbers ac-

cepted or generated by APCol systems with at most n agents is denoted.
In [4] the authors proved that the family of languages accepted by jumping

finite automata (introduced in [21]) is properly included in the family of languages
accepted by APCol systems with one agent, and it is proved that any recursively
enumerable language can be obtained as a projection of a language accepted by
an automaton-like P colony with two agents.

In [4] the reader can find following theorems about accepting power of APCol
systems:

• The family of languages accepted by APCol system with one agent properly
includes the family of languages accepted by jumping finite automata.

• Any recursively enumerable language can be obtained as a projection of a
language accepted by an APCol system with two agents.

The results about generative power of APCol systems are shown in [2]:

• Restricted APCol systems with only two agents working in generating mode
can accept any recursively set of natural numbers. NAPColgenR(2) = NRE

• A family of sets of natural numbers acceptable by partially blind register ma-
chine can be generated by an APCol system with one agent with restricted
programs. NRMPB ⊆ NAPColgenR(1)

2.2 PM-colonies

In this part we recall the definition of PM-colonies that was introduced in [20].

Definition 2. A PM-colony (of degree n;n ≥ 1) is a construct

π = (E; #;N ;>;R1; . . . ;Rn);

where E is an alphabet (of the environment), # is a special symbol not in E (the
boundary marker of the environment), N = {A1; . . . ;An} is the alphabet of agents
names, > is a partial order relation over N (the priority relation among agents),
and R1; . . . ;Rn are finite sets of action rules of the agents. The action rules can
be of the following forms:
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Deletion: (a;Ai; b)→ (ε;Ai; b), for a ∈ E ∪N ; b ∈ E ∪N ∪ {#},
(a;Ai; b)→ (a;Ai; ε), for a ∈ E ∪N ∪ {#}; b ∈ E ∪N,

Insertion: (a;Ai; b)→ (a; c;Ai; b), for a; b ∈ E ∪N ∪ {#}; c ∈ E ∪N,
(a;Ai; b)→ (a;Ai; c; b), for a; b ∈ E ∪N ∪ {#}; c ∈ E ∪N,

Substitution: (a;Ai; b)→ (c;Ai; b), for b ∈ E ∪N ∪ {#}; a; c ∈ E,
(a;Ai; b)→ (a;Ai; c), for a ∈ E ∪N ∪ {#}; b; c ∈ E,

Move: (a;Ai; b)→ (Ai; a; b), for a ∈ E ∪N ; b ∈ E ∪N ∪ {#},
(a;Ai; b)→ (a; b;Ai), for a ∈ E ∪N ∪ {#}; b ∈ E ∪N,

Death: (a;Ai; b)→ (a; ε; b), for a; b ∈ E ∪N ∪ {#}.

Each action has a premise of the form (a;Ai; b), it specifies the agent and its
neighbouring symbols, and has a consequence where the agent is still present, with
only one exception, when it disappears; the boundary marker cannot be changed
or overpassed.

The state of the environment is described by a string of the form #w#, where
w ∈ (E∪N)∗. The string prE(w) describes the environment without the agent pop-
ulation, prN (w) describes the agent population. One agent can appear in several
copies in the environment.

The agents act on the environment symbols as well as on other agents, in a local
manner, according to the action rules; the agents can also change their position
in the environment, according to the move rules, but they cannot step outside the
boundary markers.

Agents in PM-colony work in parallel manner. Similarly as in the other parallel
working systems, conflicts can occur between agents. If in a word w ∈ (E ∪ N)∗

context overlay of two agents Ai and Aj happens or if agent Aj takes part
in context of agent Ai, we call it direct conflict between agents. If in w the
pairs of agents (A1, A2), (A2, A3), . . . , (An, An+1) are in direct conflict then the
whole set of agents A1, A2, A3, . . . , An, An+1 are in conflict. The conflict of agents
A1, A2, A3, . . . , An, An+1 in PM-colony can be solved by the agent with the great-
est priority, which takes action. So, to solve the conflict, conflicting agents have to
be ordered in such a way, that there is an agent with priority higher then all other
agents in the conflict. Moreover the agent with the greatest priority occurs in the
conflict set only once.

Let A be agent of PM-colony and #w# = xaAby be a configuration of PM-
colony, where a, b ∈ (E ∪ N) ∪ {#}. This occurrence of agent A is active with
respect to configuration #w#, if (1) an action rule exists, whose left side is in the
form (a,A, b), and (2) A is not conflicting with any other agent occurrence, or A
has the highest priority from all agents from those in conflict. An agent occurrence
is inactive, if it is not active.

A derivation step in a PM-colony denoted as ⇒ is a binary relation on a set of
configurations. We write #w# ⇒ #z# if and only if each active agent A in the
string w replaces its context in w by corresponding rule and the resultant string
is #z#. Derivation ⇒∗ is the reflexive and transitive closure of relation ⇒. A
language associated with PM-colony π = (E; #;N ;>;R1; . . . ;Rn) and a starting
state w0 of its environment is defined as



L. Ciencialová, L. Cienciala 101

L(π;w0) = {x ∈ E∗ | w0 ⇒∗ w; x = prE(w)}

2.3 Logic gates and boolean circuits

Boolean circuits are a formal model of the combinational logic circuits. Circuits
consist of wires able to carry one bit, and logical gates connecting such wires and
computing the elementary logical functions, NOT, AND, OR. To simplify circuits
used in practice, more logical gates were introduced: NOR, XOR and NAND. Value
tables and graphical symbols are shown in Table 1.

Name of logic gate Graphical symbol Value table

NOT A F
A F

0 1
1 0

AND

A

B

F
A B F

0 0 0
0 1 0
1 0 0
1 1 1

OR

A

B

F
A B F

0 0 0
0 1 1
1 0 1
1 1 1

Table 1. Graphical symbols and value tables for logic gates

Definition 3. A Boolean circuit α = (V,E, λ) is a finite directed acyclic graph
(V,E), with set of vertices V , and set of directed edges E, and λ : V → {I} ∪
{AND,OR,NOT} a vertex labelling, where I is a special symbol. A vertex x ∈ V
with λ(x) = I has indegree 0 and is called an input. A vertex y ∈ V with outdegree 0
is called an output. Vertices with labels AND and OR have indegree 2 and outdegree
1, while vertices with the label NOT have indegree and outdegree 1.

3 APCol Systems Versus PM-colonies

In this section we construct APCol system simulating derivation steps in PM-
colony. The idea is to perform one derivation step of PM-colony in four phases of
computation in APCol system. In the first phase one agent rewrite all occurrences
of PM-colony agents into new symbols of a type aAb were a, b is a context of current
copy of agent A. In the second phase the agent check whether there is any conflict.
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If the answer is positive, it tries to solve collision. The third phase is performing
phase, when APCol system agent rewrite active and inactive agents into objects in
the way corresponding to executed rules. If there is more than one applicable rule
( PM-colony is non-deterministic) executed rule is chosen non-deterministically.
In the last phase the APCol system agent non-deterministically chooses whether
computation will end and erase all occurrences of PM-colony agents or the system
will continue with the next derivation step - to ensure that APCol system can halt
after every simulated derivation step of PM-colony.

Theorem 1. To every PM-colony π there exist APCol system that can generate
all states of PM-colony.

Proof. Let π = (E; #;N ;>;R1; . . . ;Rn) be a PM-colony operating on a string
w0 ∈ (E ∪ N)∗. We construct APCol system Π = (O, e,A1, . . . , Am), where m
equals to number of rules in π plus 6, as follows:

The agentA1 has initial configuration ee and the subset of programs to initialize
simulation.

A1

1. 〈e→ #′; e→ T 〉
2. 〈#′ ↔ #;T ↔ a〉 for all a ∈ E ∪N ∪ {#}
3. 〈#→ P ; a→ a〉
4. 〈P ↔ e; a↔ T 〉 for all a ∈ E ∪N ∪ {#}
5. 〈T →↑; e→ e〉
APCol system starts computation on the string #w0# = #aw1#. Agent A1

is in the initial configuration ee. In the first step it rewrites its contents to #′T
using the program 1. At the second step The agent replace the first two symbols
from the string by its contents. After second step the contents of the agent A1 #a
and the string in the environment is #′Tw1#. In the next step agent rewrites #
to P and exchange its contents by T from a string. The configuration of the agent
is eT and the string has a form #′Paw1#.

The agent A2 is supporting agent; It generates the auxiliary objects consumed
by agent A1. Set P2 contains following programs:

A2

A. 〈e→↓; e→ e〉
B. 〈↓↔ P ; e→ e〉

step string agent A1 agent A2

applicable
programs
of A1

applicable
programs
of A2

0. #aw1# ee ee 1. A.
1. #aw1# #′T ↓ e 2. −
2. #′Tw1# #a ↓ e 3. −
3. #′Tw1# Pa ↓ e 4. −
4. #′Paw1# eT ↓ e 5. B
5. #′ ↓ aw1# ↑ e Pe 6. C
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Phase 1. - Context detection

After symbol ↓ appears in the string #′ ↓ aw1#, agent A1 goes through the string
from the left to the right end and rewrites occurrences of PM-colony agents A by
symbols aAb where a, b are neighbouring symbols (aAB is substring of the input
string).
A1

6. 〈↑↔↓; e↔ a〉
for all a ∈ E ∪N

7. 〈a↔↑; ↓↔ e〉
for all a ∈ E

8.
〈
a→ A; ↓→ L

〉
for all a ∈ N

9.
〈
A→ A;L↔↑

〉

A2

C. 〈P → L′; e→ e〉
D. 〈L′ ↔ b; e↔ L〉

for all b ∈ E ∪ i N j

i, j ∈ E ∪N ∪ {#}
E. 〈b→ b;L→ Lb〉
F. 〈b↔ L′;Lb ↔ e〉
G. 〈L′′ → R′; e→ e〉

A1

10.
〈
A→ A; ↑↔ L′

〉
11.
〈
A→ A;L′ → L′′

〉
12.
〈
A→ A;L′′ ↔↑

〉
13.
〈
A→ A; ↑↔ Lb′

〉
14.
〈
A→ b′A;Lb′ → R

〉
15. 〈 b′A → b′A;R↔↑〉
16. 〈 b′A → b′A; ↑↔ R′〉
17. 〈 b′A → b′A;R′ → R′′〉
18. 〈 b′A → b′A;R′′ ↔↑〉
19. 〈 b′A → b′A; ↑↔ Rc′〉

where b, c ∈ E ∪N
20. 〈 b′A → b′Ac′ ;Rc′ →↓〉

where b, c ∈ E ∪N
21. 〈 b′Ac′ ↔ e; ↓↔↑〉

where b, c ∈ E ∪N
22. 〈↓→ Ex; #→ #〉
23. 〈Ex ↔↑; #↔ e〉

A2

H. 〈R′ ↔ R; e↔ c〉
c ∈ E ∪N

I. 〈R→ Rc; c→ c〉
J. 〈Rc ↔ R′′; c↔ e〉
K. 〈R′′ → L′; e→ e〉

Agents A1 and A2 helps each other to change all occurrences of PM-colony
agents to more complex symbols capturing agent neighbouring symbols. In follow-
ing table, a, b ∈ E and A ∈ N .
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step string agent A1 agent A2

applicable
programs
of A1

applicable
programs
of A2

5. #′ ↓ aAbw1# ↑ e Pe 6. C.
6. #′ ↑ Abw1# ↓ a L′e 7. −
7. #′a ↓ Abw1# ↑ e L′e 6. −
8. #′a ↑ bw1# ↓ A L′e 8. −
9. #′a ↑ bw1# AL L′e 9. −

10. #′aLbw1# A ↑ L′e − D.
11. #′L′bw1# A ↑ aL 10. E.
12. #′ ↑ bw1# AL′ aLa 11. −
13. #′ ↑ bw1# AL′′ aLa 12. −
14. #′L′′bw1# A ↑ aLa − F.
15. #′aLabw1# A ↑ L′′e 13. G.
16. #′a ↑ bw1# ALa R′e 14. −
17. #′a ↑ bw1# aAR R′e 15. −
18. #′aRbw1# aA ↑ R′e − H.
19. #′aR′w1# aA ↑ Rb 16. I.
20. #′a ↑ w1# aAR

′ Rbb 17. −
21. #′a ↑ w1# aAR

′′ Rbb 18. −

step string agent A1 agent A2

applicable
programs
of A1

applicable
programs
of A2

22. #′aR′′w1# aA ↑ Rbb − J.
23. #′aRbbw1# aA ↑ R′′e 19. K.
24. #′a ↑ bw1# aARb L′e 20. −
25. #′a ↑ bw1# aAb ↓ L′e 21. −
26. #′a aAb ↓ bw1# ↑ L′e 6. −

Phase 2. - Determining agents as active or inactive

In the second phase agents A1 and A3 read the string from right to the left and
they search for conflicts. Inactive agents are marked by yXz, active agents has
the label in a form yXz.
A1

24. 〈↑→⇑; e→l〉
25. 〈l→⇓;⇑↔ #〉
26. 〈⇓↔ e; #↔⇑〉

A3

i. 〈e→l; e→ e〉
ii. 〈l↔ Ex; e→ e〉
iii. 〈Ex →m; e→ e〉
iv. 〈m↔⇓; e→ e〉
v. 〈⇓→ e; e→ e〉

A1

To skip a ∈ E
27. 〈⇑↔ a; e↔m〉
28. 〈m↔ e; a↔⇑〉
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A1

If A1 consumes bAc, A ∈ N ; b, c ∈ E ∪N ∪ {#}
29. 〈⇑↔ bAc; e→m〉
30. 〈 bAc → bA

′
c;m→mA〉

bA
′
c =

〈
bAc for b, c ∈ E or b, c ∪N and b < A, c < A

bAc otherwise
31. 〈mA↔⇑; bA

′
c ↔ e〉

A1

If mA is sent to the string and next symbol is a ∈ E
32. 〈⇑↔ a; e↔mA〉
33. 〈mA→⇓A; a→ a〉
34. 〈⇓A↔ e; a↔⇑〉
A1

If mA is sent to the string and next symbol is bBc

35. 〈⇑↔ bBc; e↔mA〉
36. 〈 bBc → bB

′
c;mA→ Y 〉 ;

bB
′
c =

〈
bBc for B > A and {b, c ∈ E or b, c ∈ N and b < A, c < A}
bBc otherwise

Y =

〈mB for B > A
mA for A > B
m{A,B} otherwise

37. 〈X ↔⇑; bB
′
c ↔ e〉

A1

If mM (M is a subset of N) is sent to the string and next symbol is bBc

35′. 〈⇑↔ bBc; e↔mM 〉
36′. 〈 bBc → bB

′
c;mM→ Y 〉 ;

bB
′
c =

〈 bBc if B is greatest element of M ∪ {B} and
b, c ∈ E or b, c ∪N and
b, c is not greatest element of M ∪ {b, c}

bBc otherwise

Y =

〈mB for B > A
mA for A > B
m{A,B} otherwise

37′. 〈X ↔⇑; bB
′
c ↔ e〉

A1

If ⇓A is sent to the string and next symbol is a ∈ E
38. 〈⇑↔ a; e↔⇓A〉
39. 〈a→ a;⇓A→m〉 ;
40. 〈m↔⇑; a↔ e〉
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A1

If ⇓A is sent to the string and next symbol is bBc

41. 〈⇑↔ bBc; e↔⇓A〉
42. 〈 bBc → bB

′
c;⇓A→ X〉 ;

bB
′
c =

〈
bBc for B > A and {b, c ∈ E or b, c ∪N and b < A, c < A}
bBc otherwise

X =

〈mA for A > B
BA for B > A
eA otherwise

43. 〈X ↔⇑; bB
′
c ↔ e〉

If the next symbol to be checked is boundary object #′ the agent A4 finishes
the second phase.
A5

AA. 〈e→ D; e→ e〉
AB. 〈D ↔ #′; e↔ X〉 ;X ∈ {m;mA;⇓A}
AC. 〈X → C; #′ → #′〉
AD. 〈#′ ↔ D;C ↔ e〉

When symbol BA or symbol eA appears in the string agent A5 starts to work
by consuming the symbol and replacing it by two symbols: ⇑A for agent A6 that
moves right to set PM-colony agent A as inactive and the second symbol for agent
A1 to continue computation.
A5

a. 〈e→ Z; e→ e〉
b. 〈Z ↔ BA; e→ e〉
c. 〈Z ↔ eA; e→ e〉
d. 〈BA →mB ; e→⇑A〉
e. 〈eA →m; e→⇑A〉
f. 〈mB↔ Z;⇑A↔ e〉
g. 〈m↔ Z;⇑A↔ e〉
A6

I. 〈e→ B; e→ e〉
II. 〈B ↔⇑A; e↔ X〉 ;

X ∈ E ∪ { bBc | b, c ∈ E ∪N ∪ {#,#′}, B ∈ N − {A}}
III. 〈X ↔ B;⇑A↔ e〉
IV. 〈B ↔⇑A; e→ bAc〉
V.

〈
⇑A→ e; bAc → bAc

〉
V I.

〈
bAc ↔ B; e→ e

〉
Phase 3. - Simulation of execution of the rules

This phase starts with arrows change. Instead of ⇑ and m the agent A1 uses � and
�. The change is done by agent A1 and A5.
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A1

44. 〈⇑↔ C; e→ e〉
45. 〈C →�; e→ e〉
46. 〈�↔�; e→ e〉

A5

h. 〈Z ↔ #′; e↔⇑〉
i. 〈#′ → #′;⇑→�〉
j. 〈#′ ↔ Z;�↔ e〉

The agent A1 reads the string from the left to the right, it skips symbols from
E ∪N , changes bAc to A and sends messages to performing agent to add, move,
rewrite or delete symbols.
A1

47. 〈�↔�; e↔ a〉 a ∈ E ∪N
48.
〈
�↔�; e→ bAc

〉
49. 〈a↔�;�↔ e〉
50.
〈
�→�; bAc → A

〉
51. 〈A↔�;�↔ e〉
52. 〈�↔�; e→ bAc〉

Using the program 52 agent A1 consumes symbol corresponding to active agent.
For every rule of PM-colony there exists sets of programs of agent A1 and one agent
performing the action.

If the rule is deletion of the form
(a;Ai; b)→ (ε;Ai; b), for a ∈ E ∪N ; b ∈ E ∪N ∪ {#},
(a;Ai; b)→ (a;Ai; ε), for a ∈ E ∪N ∪ {#}; b ∈ E ∪N,

the programs are following:
A1

53. 〈 aAb → A;�→ Dxy〉
xy is La or Rb depending on which side the symbol have to be deleted

54. 〈A↔ e;Dxy ↔�〉
Adel

A1. 〈e→ J ; e→ e〉
A2. 〈J ↔ Dxy; e→ e〉 ;
A3. 〈DLa → dLa; e↔�〉
A4. 〈dLa ↔ A;�↔ J〉
A5. 〈A→ A; J → J0〉
A6. 〈J0 ↔ dLa;A↔ e〉
A7. 〈dLa ↔ a′; e↔ J0〉 a′ is a if a ∈ E or a′ is daA
A8. 〈J0 → J1; a′ → e〉
A9. 〈J1 → J2; e↔ dLa〉
A10. 〈J2 → J ; dLa → e〉
A11. 〈DRb → dRb; e↔�〉
A12. 〈�↔ J ; dRb ↔ b′〉 b′ is b if b ∈ E or b′ is Abd
A13. 〈b′ → e; J → J0〉
A14. 〈J0 → J1; e↔ dRb〉
A15. 〈J1 → J ; dRb → e〉

If the rule is insertion of the form
(a;Ai; b)→ (a; c;Ai; b), for a; b ∈ E ∪N ∪ {#}; c ∈ E ∪N,
(a;Ai; b)→ (a;Ai; c; b), for a; b ∈ E ∪N ∪ {#}; c ∈ E ∪N,

the programs are following:
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A1

55. 〈 aAb → A;�→ Ixy〉
xy is Lc or Rc depending on which side the symbol have to be inserted

56. 〈A↔ e; Ixy ↔�〉
Ains

A1. 〈e→ J ; e→ K〉
A2. 〈J ↔ A;K ↔ ILc〉 ; A13. 〈J ↔ IRc;K → c〉 ;
A3.

〈
ILc → I0Lc;A→ A

〉
A14.

〈
IRc → I0Rc; c→ c

〉
A4.

〈
I0Lc ↔ J ;A↔ K

〉
A15.

〈
c↔ J ; I0Rc ↔ e

〉
A5.

〈
J ↔ I0Lc;K → c

〉
A16.

〈
J ↔ I0Rc; e→�

〉
A6.

〈
I0Lc → I1Lc; c→ c

〉
A17.

〈
I0Rc → K;�↔ J

〉
A7.

〈
c↔ J ; I1Lc ↔ e

〉
A8.

〈
J ↔ I1Lc; e↔ A

〉
A9.

〈
I1Lc → I2Lc;A→ A

〉
A10.

〈
A↔ J ; I2Lc ↔ e

〉
A11.

〈
J ↔ I2Lc; e→�

〉
A12.

〈
I2Lc → K;�↔ J

〉
If the rule is substitution of the form
(a;Ai; b)→ (c;Ai; b), for b ∈ E ∪N ∪ {#}; a; c ∈ E,
(a;Ai; b)→ (a;Ai; c), for a ∈ E ∪N ∪ {#}; b; c ∈ E,

the programs are following:
A1

57. 〈 aAb → A;�→ Sxy〉
xy is Lc or Rc depending on which side the symbol have to be replaced

58. 〈A↔ e;Sxy ↔�〉
Asubs

A1. 〈e→ J ; e→ e〉
A2. 〈J ↔ SLc; e→ e〉 ; A11. 〈J ↔ SRc; e→ e〉 ;
A3. 〈SLc → sLc; e→�〉 A12. 〈SRc → sRc; e→ c〉
A4. 〈sLc ↔ A;�↔ J〉 A13. 〈c↔ J ; sRc ↔ b〉
A5. 〈A→ A; J → J0〉 A14.

〈
J → J0; b→�

〉
A6. 〈J0 ↔ a;A↔ sLc〉 A15.

〈
J0 → J1;�↔ sRc

〉
A7.

〈
sLc → s0Lc; a→ c

〉
A16.

〈
J1 → J ; sRc → e

〉
A8.

〈
s0Lc ↔ J0; c↔ e

〉
A9.

〈
J0 → J1; e↔ s0Lc

〉
A10.

〈
J1 → J ; s0Lc → e

〉
If the rule is move of the form
(a;Ai; b)→ (Ai; a; b), for a ∈ E ∪N ; b ∈ E ∪N ∪ {#},
(a;Ai; b)→ (a; b;Ai), for a ∈ E ∪N ∪ {#}; b ∈ E ∪N,

the programs are following:
A1

59. 〈 aAb → A;�→Mxy〉
xy is LA or RA depending on which side the symbol have to be moved

60. 〈A↔ e;Mxy ↔�〉
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Amov

A1. 〈e→ J ; e→ e〉
A2. 〈J ↔MLA; e→ e〉 ; A10. 〈J ↔MRA; e→ e〉 ;
A3. 〈MLA → mLA; e→�〉 A11. 〈MRA → mRA; e→ e〉
A4. 〈mLA ↔ A;�↔ J〉 A12. 〈e↔ J ;mRA ↔ b′〉 b′ is b if b ∈ E or b′ is Abd
A5. 〈A→ A; J → J0〉 A13.

〈
J → J0; b′ → O

〉
O is b if b ∈ E or O is B

A6. 〈A↔ a; J0 ↔ mLA〉 A14. 〈O ↔ A; J0 ↔ mRA〉
A7.

〈
mLA → m0

LA; a→ a
〉
A15. 〈A→ A;mRA →�〉

A8.
〈
a↔ J0;m0

LA → e
〉

A16. 〈A↔ e;�↔ J0〉
A9.

〈
J0 → J ; e→ e

〉
A17. 〈J0 → J ; e→ e〉

If the rule is death of the form (a;Ai; b)→ (a; ε; b), for a; b ∈ E ∪N ∪ {#}
the programs are following:
A1

61. 〈 aAb → e;�↔�〉
In the last phase agent A1 detects that the whole string is rewritten and it is

time to non-deterministically choose if computation will be halted or will continue
by simulating of following derivation step.
A1

62. 〈�↔�; e↔ #〉
63. 〈�→ U ; #↔�〉
64. 〈U → V ;�→↓〉
65. 〈U → F ;�→ F 〉
66. 〈V ↔ #′; ↓↔ e〉
67. 〈#′ ↔ V ; e→↑〉
68. 〈V → e; ↑→↑〉

The computation of the APCol system can halt only when in corresponding
state of the PM-colony there is no applicable rule or in the case that program 56.
is executed.

4 Boolean Circuits and APCol Systems

In this part, we show how APCol systems can simulate the functioning of logic
gates. The input is always inserted into the string. Because there is no inner
structure in the APCol systems, we use direct addressing. It means that every
input symbol obtains index determining which agent will consume it. The result
will be find on the string at the end of computation.

Theorem 2. The functioning of logic gates NOT, OR and AND can be simulated
by APCol systems with only one agent.

Proof. The first we show how APCol system for logic gate NOT is constructed.
Let NOT gate has an input with index i. We can simulate NOT gate with only
one agent with following restricted programs:
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1. 〈e↔ 0i; e→ 1out〉 3. 〈e↔ 1i; e→ 0out〉
2. 〈0i → e; 1out ↔ e〉 4. 〈1i → e; 0out ↔ e〉

Formally, we define APCol system ΠNOT = (O, e,ANOT ),
where O = {e, 1i, 0i, 1out, 0out}, ANOT = (ee, PAND), the set of programs is de-
scribed above and initial string is formed from only one symbol 1i or 0i. The result
is obtained after computation halts and it is placed in the string.

Simulation of the AND gate is done by APCol system with only one agent and
following programs:
5. 〈e↔ 0i; e↔ 0i〉 6. 〈e↔ 1i; e↔ 0i〉 7. 〈e↔ 1i; e↔ 0i〉
8. 〈e↔ 1i; e↔ 1i〉 9. 〈0i → 0out; 0i → e〉 10. 〈1i → 0out; 0i → e〉
11. 〈1i → 1out; 1i → e〉

These programs can work only for boolean circuit with only one gate, because
we expect that symbols of input are neighbouring. If we change the programs in
such a way that they contains at most one communication rule. In this case they
do not use context (one agent changes only one symbol on the string in one step).
12. 〈e↔ 0i; e→ e〉 13. 〈e↔ 1i; e→ e〉 14. 〈e↔ 0i; 0i → 0〉
15. 〈e↔ 1i; 1i → 1〉 16. 〈e↔ 1i; 0i → 0〉 17. 〈e↔ 0i; 1i → 1〉
18. 〈0i → 0out; 0→ e〉 19. 〈1i → 1out; 1→ e〉 20. 〈1i → 0out; 0→ e〉
21. 〈0i → 0out; 1→ e〉 22. 〈0out ↔ e; e→ e〉 23. 〈1out ↔ e; e→ e〉

Formally, we define APCol system ΠAND = (O, e,AAND),
where O = {e, 1i, 0i, 1out, 0out}, AAND = (ee, PAND), the set of programs is formed
from programs 12.-23. and initial string contains only one symbol 1i or 0i. The
result is obtained after computation halts and it is placed in the string.

Simulation of the OR gate is done with programs very similar to programs of
agent simulating AND gate. It is done by APCol system with only one agent and
following programs:
24. 〈e↔ 0i; e→ e〉 25. 〈e↔ 1i; e→ e〉 26. 〈e↔ 0i; 0i → 0〉
27. 〈e↔ 1i; 1i → 1〉 28. 〈e↔ 1i; 0i → 0〉 29. 〈e↔ 0i; 1i → 1〉
30. 〈0i → 0out; 0→ e〉 31. 〈1i → 1out; 1→ e〉 32. 〈1i → 1out; 0→ e〉
33. 〈0i → 1out; 1→ e〉 34. 〈0out ↔ e; e→ e〉 35. 〈1out ↔ e; e→ e〉

Formally, we define APCol system ΠOR = (O, e,AOR),
where O = {e, 1i, 0i, 1out, 0out}, AOR = (ee, PAND), the set of programs is formed
from programs 24.-35. and initial string contains only one symbol 1i or 0i. The
result is also obtained after computation halts and it is placed in the string.

We can proceed to formulate a Boolean circuit simulation theorem:

Theorem 3. For every Boolean circuit there exists an APCol system that can
simulate its functioning and for input string formed from input signals of Boolean
circuit APCol system generates correct output.

Let α = (V,E, λ) be a boolean circuit. We associate with each gate a label from
a set {1, . . . , |V |}. Let (x1, . . . , xp) be the vector of input signals for the boolean
circuit. The correspoding initial string of APCol system is formed from objects
x0j ; 1 ≤ j ≤ p. For simulation of the whole boolean circuit, we cannot only put
the corresponding agents together. The output of one agent can be the input for
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more agents. To obtain more input symbols we modify input objects consumed by
agents (we use X ′i instead of Xi), output objects are in a form Xi – output from
the agent i. We also add one more agent generating inputs for those agents which
are connected with output of i-th agent. We deal with three cases: i-th agent is
connected with one agent, with two agents or with m agents, m > 2. Let y be
the index of agent with output and zifor 1 ≤ i ≤ m are indices of agents with
input connected to agent y or corresponding to the initial input; X ∈ {0, 1}. We
construct programs for agent A|V |+1 = (ee, P|V |+1) generating inputs.

Programs for three variants of generated number of inputs
One input Two inputs

36. 〈e↔ Xy; e→ X ′z1〉 38. 〈e↔ Xy; e→ X ′z1〉
37. 〈X ′z1 ↔ e;Xy → e〉 39. 〈X ′z1 ↔ e;Xy → X ′z2〉

40. 〈X ′z2 ↔ e; e→ e〉

m inputs; m > 2
41. 〈e↔ Xy; e→ X ′z1〉
42. 〈X ′z1 ↔ e;Xy → X2y〉
43. 〈e→ X ′z2;X2y → X2y〉
44. 〈X ′z2 ↔ e;X2y → X3y〉
45. 〈e→ X ′zk;Xky → Xky〉 for 2 < k ≤ m
46.
〈
X ′zk ↔ e;Xky → X(k+1)y

〉
for 2 < k ≤ m− 1

47. 〈X ′zm ↔ e;Xmy → e〉
The agents associated to logic gates can consume only input symbols of a type

X ′i, where X is 0 or 1 and i is label of gate. At the beginning of computation
there are only symbols of type Xi present in the input string of APCol system.
The only agent with applicable program is agent A|V |+1 – program 36., 38. or
41. In the next step agent A|V |+1 put the first input symbol (X ′zk), where zk is
label of corresponding gate. From this step agents associated with gates started
to do their work – rewriting their own inputs into outputs – and agent A|V |+1 is
rewriting their output to inputs. If the boolean circuit is defined correctly, at the
end of computation there are only symbols X ′out in the string corresponding to the
output of boolean circuit.

5 Conclusion

In this paper we continue with our research devoted to relationship of APCol
systems which are devices derived from P colonies and P systems in general with
classical formal models used not only in theoretical computer science. For this
paper we have chosen PM-colonies and boolean circuits. We showed that APcol
systems with two agents can simulate PM-colonies with strict conflict solving. In
the second part we showed that even APCol systems are without inner structure
they can substitute boolean circuits.
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(eds.) Workshop on Membrane Computing. Lecture Notes in Computer Science, vol.
4361, pp. 352–366. Springer (2006)
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19. Kelemenová, A.: P colonies. In: Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) The
Oxford Handbook of Membrane Computing, pp. 584–593. Oxford University Press
(2010)
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Summary. The literature on membrane computing describes several variants of P sys-
tems whose complexity classes C are “closed under exponentiation”, that is, they satisfy
the inclusion PC ⊆ C, where PC is the class of problems solved by polynomial-time
Turing machines with oracles for problems in C. This closure automatically implies clo-
sure under many other operations, such as regular operations (union, concatenation,
Kleene star), intersection, complement, and polynomial-time mappings, which are inher-
ited from P. Such results are typically proved by showing how elements of a family of
P systems Π can be embedded into P systems simulating Turing machines, which exploit
the elements of Π as subroutines. Here we focus on the latter construction, abstracting
from the technical details which depend on the specific variant of P system, in order to
describe a general strategy for proving closure under exponentiation.

1 Introduction

Complexity classes of the form PC , characterised by polynomial-time Turing ma-
chines with oracles for languages in C [19], automatically inherit from P many
closure properties. For instance, the determinism of Turing machines characteris-
ing P implies closure under complement, simply by switching the accepting and
rejecting states of the machine. Under certain assumptions on C, further closure
properties are satisfied.

Let us say that a “reasonable” k-ary operation on languages is a func-

tion f :
(
2Σ

?)k → 2Σ
?

such that f(L1, . . . , Lk) ∈ PL1,...,Lk , that is, it can be
computed efficiently with oracles for the k languages. A class C is closed under
reasonable operations if f(L1, . . . , Lk) ∈ C for each reasonable operation f and
for each L1, . . . , Lk ∈ C. The reasonable operations include all usual set theoretic

? This work was partially supported by Fondo d’Ateneo 2016 of Universit degli Studi
di Milano-Bicocca, project 2016-ATE-0492 “Sistemi a membrane: classi di complessit
spaziale e temporale”.
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ones (complement, union, intersection and all derived operations) and common
language theoretic operations, such as the regular ones (concatenation, union, and
Kleene star) [9].

For instance, a class C of the form PD is closed under reasonable operations
wheneverD is an upward directed set, that is, for each L1, L2 ∈D there exists L ∈D
such that L1 ≤ L and L2 ≤ L, where ≤ denotes polynomial-time reducibility; an
oracle for L can thus answer queries for both L1 and L2 after a polynomial-
time reduction. Any class D with a complete problem L is directed, since all
languages in D can be reduced to L. This shows that classes such as PNP = PcoNP

and PPP (which coincides with P#P) are closed under reasonable operations.
Furthermore, it clearly suffices to find a subset E ⊆ D with PE = PD and prove
PE closed under reasonable operations to obtain the same result for PD. This is
the case for D = NP∪coNP (and E = NP), a class that frequently appears in the
membrane computing literature [8, 21, 23, 31, 30] and is not known to be itself
directed. In fact this would imply NP = coNP, since there would be a language
L ∈ NP∪coNP such that L1 ≤ L for an NP-complete language L1 and L2 ≤ L for
a coNP-complete language L2. Other classes C trivially closed under reasonable
operations are those satisfying PC = C, such as PH, the polynomial hierarchy [29],
and CH, the counting hierarchy [33].

Several variants of P systems have been proved able to simulate polynomial-
time Turing machines with oracles, exploiting a family Π of P systems deciding
a language L as “subroutines”, by embedding them into the membrane structure
of larger P systems providing the input and processing the output of the ele-
ments of Π [24, 12, 13, 16, 14]. This implies the closure under exponentiation
of the corresponding complexity classes, in symbols PPMCD ⊆ PMCD, for some
kind of P system D. In this paper we describe this subroutine construction in
a manner as independent from the specific variant of P systems as possible. In
particular, we consider the cases of cell-like P systems (Section 2), tissue P sys-
tems (Section 2.1), and introduce a new construction for monodirectional cell-like
P systems (Section 3).

Many computational complexity results in membrane computing have the
form NP ∪ coNP ⊆ PMCD, that is, some class D of P systems (e.g., active
membranes without charges and dissolution using minimal cooperative rules [30,
Corollary 6.6]) can solve in polynomial time all NP and coNP problems. We argue
that this is unlikely to ever be an exact characterisation, since the features that
allow us to solve NP-complete problems efficiently are the same that allow the
subroutine construction, and this would imply NP = coNP.

2 Subroutines in Cell-like P Systems

Several Turing machine simulations by means of polynomial-time uniform fam-
ilies of P systems have been proposed in the literature; some of these ap-
ply to unrestricted Turing machines [26, 2], while others are limited to ma-
chines working in logarithmic space [25], polynomial time [7, 6], polynomial
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space [32, 24, 17, 10, 12, 13, 15, 16, 14], or exponential space [1]. Most of these
solutions [32, 24, 1, 2, 7, 17, 10, 12, 13, 15, 6, 16, 14] are able to simulate Turing
machines working in polynomial time with a polynomial slowdown.

The current configuration of the simulated Turing machine can be encoded
in several equivalent ways by the simulating P system. A simple, common en-
coding [12, 13, 15, 16, 14] for a configuration of a polynomial-space Turing ma-
chine in state q, having the tape head in position i, and the tape containing the
string x = x1 · · ·xm is given by the multiset qix1,1 · · ·xm,m, where the object qi
encodes state and head position, and the symbol xj contained in tape cell j is
encoded by the object xj,j of the multiset (i.e., it is subscripted with its position
on the tape). The simplest mechanism to simulate a step of the Turing machine
is using cooperative rewriting rules; suppose that δ(q, a) = (r, b,+1) describes
the transition of the machine reading symbol a in state q to state r, symbol b and
movement to the right. This can be trivially simulated by the cooperative rewriting
rule [qi ai → ri+1 bi]M , which is repeated for each cell position i up to the maxi-
mum length of the tape. Notice that minimal cooperation, with only two objects
on the left-hand side of the rules, suffices for this purpose [31, 30]. All published
solutions known to the authors [12, 13, 15, 16, 14] use alternative mechanisms
(such as membrane charges, antimatter annihilation, antiport communication) to
perform essentially the same operation.

Irrespective of the actual encoding of the configuration of the Turing machine
and the mechanism employed to simulate a computation step, we will use the
following symbol

M

0 1 1 0

q

to denote a membrane structure with root M inside which the simulation is carried
over.

Let us now consider the case of a Turing machine M with an oracle for lan-
guage L ⊆ Σ?. Suppose that M writes on its tape the query string x ∈ Σ?

and enters its query state. Suppose that language L is decided by a family
Π = {Πx : x ∈ Σ?} of recogniser P systems [22, 18]. By embedding the (empty)
membrane structure of the P system Πx inside the membrane structure of the
P system simulating M (Fig. 1) and initialising the configuration of Πx when the
simulation reaches the query state, we can simulate the oracle and read the result
of the query as the output of Πx [24]. It is possible to send-in the initial multisets
contained in Πx, which typically requires some synchronisation using timers, so
that all initial objects appear simultaneously (Fig. 2).

Since the query string x is, in general, unknown before the beginning of the
simulation, several P systems must be embedded in order to be able to process
query strings of different length. Suppose that language L is decided by a uniform
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M

h0

h1

h2

h3

a b

a
c

0 1 1 0

q

0 1 1 0

q

h0

h1

h2

h3

M

Fig. 1. The (empty) membrane structure of a P system is embedded into another P sys-
tem simulating a Turing machine M .

family Π = {Πx : x ∈ Σ?} of P systems, where input strings of the same length n
are associated to P systems sharing the same membrane structure and rules Π(n),
which only differ with respect to the initial multisets they contain. Then, multiple
empty membrane structures Π(0), Π(1), . . . ,Π(m) can be embedded, up to the
maximum possible query string length (an upper bound is given, for instance, by
the length of the tape of M), and the correct one is selected at runtime by the
P system simulating M (Fig. 3).

When the simulated Turing machine performs multiple queries with query
strings of the same length during its computation, it is possible to embed mul-
tiple copies of each P system Π(n) [24]. Each of these copies can then be used
for a single query (Fig. 4). A possible alternative is to reset the configuration of
P system Π(n) after the query simulation has been performed [12].

2.1 Subroutines in Tissue P Systems

The oracle query construction for cell-like P systems embeds elements of a family
of P systems into a membrane where a Turing machine is simulated. This construc-



Subroutines in P Systems and Closure Properties 119

h0

h1

h2

h3

M
0 1 1 0

q

$ $

ah0 bh0

ah3

ch2

h0

h1

h2

h3

M
0 1 1 0

q

$ $

ah0
bh0

ah3

ch2

h0

h1

h2

h3

M
0 1 1 0

q

$ $

a b

a
c

h0

h1

h2

h3

M
0 1 1 0

q

$ $

h0

h1

h2

M0 1 1 0

q

$ $

h1

h2

a

b

b

c

yes

h0

h1

h2

M

h1

h2

a

b

b

0 1 1 0

qyes

$ $

Fig. 2. The query string x on the tape of the simulated Turing machine is encoded
as the initial configuration of the embedded P system Πx. Each object is subscripted
by the label of its target membrane, which it reaches by using send-in rules. When all
objects have reached their destination, they simultaneously lose the subscripts, and the
computation of Πx begins. The output of Πx is then read and incorporated into the state
of the simulated Turing machine, as in the configuration following the query.
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Fig. 3. Query strings of different lengths can be processed by distinct embedded P sys-
tems, selected when the oracle query is simulated.

M M0 1 $
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Π(1)1 Π(1)2 Π(1)3
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Π(2)2

Π(2)3

v w

Fig. 4. Multiple query strings of the same length can be processed by replicating the
P systems simulating the oracle and using each of them only once.

tion can be adapted to tissue P systems by having the Turing machine simulation
take place in a cell, and placing the elements of the family of tissue P systems de-
ciding the oracle language on the side [16]. The communication needed in order to
simulate the oracle queries in this variant is not hierarchical, but between adjacent
cells (Fig. 5).
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Fig. 5. Simulating oracle queries in tissue P systems.

3 Subroutines in Monodirectional Cell-like P Systems

In monodirectional cell-like P systems [13, 14], where send-in rules are disallowed,
the construction of Section 2 does not apply. However, we can turn the construction
of Fig. 1 inside out, by having the Turing machine simulation embedded into the
input membrane of the P system Π simulating the oracle (Fig. 6). Instead of
sending in the encoding of the query string, it is the encoding of the configuration
of the Turing machine that is sent out, through the whole membrane structure
of Π, where it waits for the oracle query result (Fig. 7) [13, 14]. This is needed
because the P system simulating the oracle can only send its result outwards and,
since the system is monodirectional, the only way to intercept it is to move out
the entire simulation of the Turing machine.

Unlike the bidirectional case, the objects of the initial configuration ofΠ cannot
be arranged during the query simulation, as that requires send-in if the membrane
structure of Π is not linear or if the input membrane is not elementary. A solution
is to have them already in their correct position in the initial configuration of the
combined P system but with a timer subscript, which is deleted at a predefined
time step t, when a query may take place. If the simulated Turing machine does
not perform a query at time t, it can be adapted so that it makes a “dummy”
query at that time, ignoring its result.

As in the bidirectional case, the oracle strings are usually only available at
runtime, and thus multiple P systems simulating oracles must be arranged in
advance, in order to accommodate any possible query string. Given the restriction
on the direction of communication, a natural solution is to nest these auxiliary
P systems, placing each one inside the input membrane of the next one. When
a query takes place, the Turing machine configuration is first moved to the first
P system suitable for the query string, where the multiset encoding it is left;
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Fig. 6. In the monodirectional case, the P system simulating the Turing machine is
embedded into the input membrane of the P system Π simulating the oracle; the other
objects in the initial configuration of Π have an associated timer for synchronisation
purposes.

then, the Turing machine configuration is moved outside the whole set of auxiliary
P systems, where it waits for the result of the query (Fig. 7).

If multiple queries are carried out, it suffices to repeatedly nest the array of
auxiliary P systems, always using the input membranes as junction points, and
repeating the query procedure as many times as necessary (Fig. 8) [13, 14].

4 Discussion and Open Problems

Many complexity theory results for P systems have the form NP ⊆ PMCD
for some class D of P systems, and by closure under complementation this im-
plies NP ∪ coNP ⊆ PMCD [22]. Solving NP-complete problems usually requires
some form of “context-sensitivity”, such as cooperative evolution rules (even min-
imal cooperation), membranes charges, membrane dissolution, or antimatter an-
nihilation [31, 30, 20, 4, 5]. However, these same features typically suffice to carry
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out the oracle simulation constructions described in Section 2 or 3, which imply
that PMCD has the form PC for some class C. This means that it is quite unlikely
that NP ∪ coNP is an exact characterisation of PMCD.

Indeed, if NP∪coNP were of the form PC , then PNP∪coNP = PPC

. But PPC

=

PC : if L1 ∈ PPC

, there exists a Turing machine M1 with oracle for L2 ∈ PC such
that L(M1) = L1, and a Turing machine M2 with an oracle for L3 ∈ C such
that L2 = L(M2). Let M be a Turing machine with oracle for L3. This machine
simulates M1 until it enters its query state, then it simulates M2 until it enters its
own query state; since M and M2 have the same oracle, the queries of M2 can be
answered directly. Then L(M) = L(M1) = L1, and we can conclude that PPC

=

PC . But then PNP∪coNP = PC = NP∪ coNP. Since PNP∪coNP = PNP, this class
has complete problems, for instance the standard complete problem H of deciding
if a Turing machine M with NP oracle accepts a string x within t steps (where t
is given in unary notation). Then either H ∈ NP or H ∈ coNP, and it is hard
for both NP and coNP; this means that either there exists a NP-hard problem
in coNP, or a coNP-hard problem in NP: in both cases, this implies NP = coNP.

Furthermore, it is often the case [24, 12, 14, 16] that the amount of context-
sensitivity that allows us to simulate Turing machines with oracles also suffices, at
least in the bidirectional case, to simulate not only oracles for decision problems,
but their counting version, which is usually more powerful. For instance, several
variants of P systems without non-elementary membrane division rules characterise
the complexity class PPP (which coincides with P#P) [19, 11, 14, 16].

Finally, notice that the above remarks apply even to variants of P systems
powerful enough to characterise PSPACE in polynomial time [27, 3, 28, 4], even
if the algorithms developed in order to prove these results do not usually em-
ploy an oracle simulation construction. Indeed, the class PSPACE is closed under
exponentiation: PPSPACE = PSPACE.

The property investigated in this paper, closure under exponentiation, that
is, satisfying PC = C, seems to apply to a wide range of variants of P systems.
A natural follow-up question is whether the more common closure under oracles
(or under subroutines), where C = CC , does also apply for some of these variants.
This also requires establishing a notion of “P system with oracle”; a first definition
has been already given in [12], albeit for purely technical reasons.

An interesting open problem, although a presumably challenging one from a
technical standpoint, is to formally characterise the membrane computing features
(such as combination of rules or properties of the membrane structures) that enable
the oracle simulation construction.
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20. Păun, Gh.: P systems with active membranes: Attacking NP-complete problems.

Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)
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27. Sośık, P.: The computational power of cell division in P systems: Beating down
parallel computers? Natural Computing 2(3), 287–298 (2003)
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Summary. Classical membrane systems with symport/antiport rules observe the con-
servation law, in the sense that they compute by changing the places of objects with
respect to the membranes, and not by changing the objects themselves. In these systems
the environment plays an active role because the systems not only send objects to the
environment, but also bring objects from the environment. In the initial configuration of
a system, there is a special alphabet whose elements appear in an arbitrary large number
of copies. The ability of these computing devices to have infinite copies of some objects
has been widely exploited in the design of efficient solutions to computationally hard
problems.

This paper deals with computational aspects of P systems with symport/antiport
and membrane division rules where there is not an environment having the property
mentioned above. Specifically, we establish the relationships between the polynomial
complexity class associated with P systems with symport/antiport, membrane division
rules, and with or without environment. As a consequence, we prove that the role of the
environment is irrelevant in order to solve NP–complete problems in an efficient way.

Key words: Membrane Computing, P System with Symport/Antiport, Mem-
brane Division, Computational Complexity.

1 Preliminaries

An alphabet Γ is a non–empty set whose elements are called symbols. An ordered
finite sequence of symbols is a string or word. If u and v are strings over Γ , then so
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is their concatenation uv, obtained by juxtaposition, that is, writing u and v one
after the other. The number of symbols in a string u is the length of the string and
it is denoted by |u|. As usual, the empty string (with length 0) will be denoted by
λ. The set of all strings over an alphabet Γ is denoted by Γ ∗. In algebraic terms, Γ ∗

is the free monoid generated by Γ under the operation of concatenation. Subsets
of Γ ∗ are referred to as languages over Γ . The set of symbols occurring in a string
u ∈ Γ ∗ is denoted by alph(u).

The Parikh vector associated with a string u ∈ Γ ∗ with respect to the alphabet
Σ = {a1, . . . , ar} ⊆ Γ is ΨΣ(u) = (|u|a1 , . . . , |u|ar ), where |u|ai denotes the number
of occurrences of symbol ai in string u. The application ΨΣ is called the Parikh
mapping associated with Σ. Notice that, in this definition, the ordering of the
symbols from Σ is relevant. If Σ1 = {ai1 , . . . , air} ⊆ Γ , then we define ΨΣ1(u) =
(|u|ai1

, . . . , |u|air
), for each u ∈ Γ ∗.

A multiset m over a set A is a pair (A, f) where f : A → N is a mapping. If
m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f(x) >
0}. A multiset is empty (resp. finite) if its support is the empty set (resp. a finite
set). If m = (A, f) is a finite multiset over A and supp(m) = {a1, . . . , ak}, then
it will be denoted as m = {af(a1)

1 , . . . , a
f(ak)
k }. That is, superscripts indicate the

multiplicity of each element, and if f(x) = 0 for x ∈ A, then element x is omitted.

A finite multiset m = {af(a1)
1 , . . . , a

f(ak)
k } can also be represented by the string

a
f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak}. Nevertheless, all permutations of

this string identify the same multiset m precisely. We denote by ∅ the empty
multiset and we denote byMf (Γ ) the set of all finite multisets over Γ . Throughout
this paper, we speak about “the finite multiset m” where m is a string, meaning
“the finite multiset represented by the string m”. If m1 = (A, f1), m2 = (A, f2)
are multisets over A, then we define the union of m1 and m2 as m1+m2 = (A, g),
where g = f1 + f2, that is, g(a) = f1(a) + f2(a), for each a ∈ A.

For any sets A and B the relative complement A \ B of B in A is defined as
follows: A \ B = {x ∈ A | x /∈ B}. For any set A we denote |A| the cardinal
(number of elements) of A, as usual.

In what follows, we assume the reader is already familiar with the basic notions
and terminology of P systems. For details, see [7].

2 P Systems with Symport/Antiport Rules and Membrane
Division

Cell division is an elegant process that enables organisms to grow and reproduce.
Mitosis is a process of cell division which results in the production of two daughter
cells from a single parent cell. Daughter cells are identical to one another and to the
original parent cell. Through a sequence of steps, the replicated genetic material
in a parent cell is equally distributed to two daughter cells. While there are some
subtle differences, mitosis is remarkably similar across organisms.
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Before a dividing cell enters mitosis, it undergoes a period of growth where the
cell replicates its genetic material and organelles. Replication is one of the most
important functions of a cell. DNA replication is a simple and precise process that
creates two complete strands of DNA (one for each daughter cell) where only one
existed before (from the parent cell).

Next, we introduce an abstraction of these operation in the framework of P
systems with symport/antiport rules. In these models, the membranes are not
polarized; the membranes obtained by division have the same labels as the original
membrane, and if a membrane is divided, its interaction with other membranes
or with the environment is locked during the division process. In some sense, this
means that while a membrane is dividing it closes its communication channels.

Definition 1. A P system with symport/antiport rules and membrane division of
degree q ≥ 1 is a tuple Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout), where:

1. Γ is a finite alphabet.
2. E ⊆ Γ .
3. µ is a membrane structure (a rooted tree) whose nodes are injectively labelled

with 1, 2 . . . , q.
4.M1, . . . ,Mq are multises over Γ .
5. R1, · · · ,Rq are finite set of rules of the following forms:

(a)Communication rules: (u, out), (u, in), (u, out; v, in), for u, v multisets over
Γ and |u|+ |v| > 0;

(b)Division rules: [a]i → [b]i[c]i, where i ̸= iout and a, b, c ∈ Γ ;
6. iout ∈ {0, 1, . . . , q}.

A P system with symport/antiport rules and membrane division

Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout)

of degree q can be viewed as a set of q membranes, labelled by 1, . . . , q, arranged in
a hierarchical structure, such that: (a)M1, . . . ,Mq represent the finite multisets
of objects initially placed in the q membranes of the system; (b) E is the set of
objects initially located in the environment of the system, all of them available in
an arbitrary number of copies; and (c) iout represents a distinguished region which
will encode the output of the system. We use the term region i (0 ≤ i ≤ q) to refer
to membrane i in the case 1 ≤ i ≤ q and to refer to the environment in the case
i = 0.

A rule of the type (u, out) or (u, in) is called a symport rule. A rule of the
type (u, out; v, in), where |u|+ |v| > 0, is called an antiport rule. A P system with
symport rules (resp. with antiport rules) is a P system with only symport rules
(resp. only antiport rules) as communication rules. The length of rule (u, out) or
(u, in) (resp. (u, out; v, in)) is defined as |u| (resp. |u|+ |v|).

An instantaneous description or a configuration at an instant t of a P system
with symport/antiport and membrane division is described by all multisets of
objects over Γ associated with all the membranes present in the system, and the
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multiset of objects over Γ − E associated with the environment at that moment.
Recall that there are infinitely many copies of objects from E in the environment,
and hence this set is not properly changed along the computation. The initial
configuration is (M1, · · · ,Mq; ∅).

A rule (u, out) ∈ Ri is applicable to a configuration C at an instant t if mem-
brane i is in C and multiset u is contained in such membrane. When applying a
rule (u, out) ∈ Ri, the objects specified by u are sent out of membrane i into the
region immediately outside (its father), this can be the environment in the case of
the skin membrane.

A rule (u, in) ∈ Ri is applicable to a configuration C at an instant t if membrane
i is in C and multiset u is contained in the immediately upper region (its father),
this is the environment in the case when the rule is associated with the skin
membrane (the root of the tree µ). When applying a rule (u, in) ∈ Ri, the multiset
of objects u enters the region defined by the membrane i from the immediately
upper region (its father), this is the environment in the case when the rule is
associated with the skin membrane (the root of the tree µ).

A rule (u, out; v, in) ∈ Ri is applicable to a configuration C at an instant t if
membrane i is in C and multiset u is contained in such membrane, and multiset
v is contained in the immediately upper region (its father). When applying a rule
(u, out; v, in) ∈ Ri, the objects specified by u are sent out of membrane i into
the region immediately outside (its father), at the same time bringing the objects
specified by v into membrane i.

A rule [a]i → [b]i[c]i ∈ Ri is applicable to a configuration C at an instant t if the
following holds: (a) membrane i is in C; (b) object a is contained in such membrane;
and (c) membrane i is neither the skin membrane nor the output membrane (if
iout ∈ {1, . . . , q}). When applying a division rule [a]i → [b]i[c]i, under the influence
of object a, the membrane with label i is divided into two membranes with the
same label; in the first copy, object a is replaced by object b, in the second one,
object a is replaced by object c; all the other objects residing in membrane i are
replicated and copies of them are placed in the two new membranes. The output
membrane iout cannot be divided.

The rules of a P system with symport/antiport rules and membrane division are
applied in a non-deterministic maximally parallel manner (at each step we apply a
multiset of rules which is maximal, no further applicable rule can be added), with
the following important remark: if a membrane divides, then the division rule is
the only one which is applied for that membrane at that step; the objects inside
that membrane do not evolve by means of communication rules. In other words,
before division a membrane interrupts all its communication channels with the
other membranes and with the environment. The new membranes resulting from
division will interact with other membranes or with the environment only at the
next step – providing that they do not divide once again. The label of a membrane
precisely identifies the rules which can be applied to it.

Let us fix a P system with symport/antiport rules and membrane division Π.
We say that configuration C1 yields configuration C2 in one transition step, denoted
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by C1 ⇒Π C2, if we can pass from C1 to C2 by applying the rules from R1∪· · ·∪Rq

following the previous remarks. A computation ofΠ is a (finite or infinite) sequence
of configurations such that:

1. the first term of the sequence is the initial configuration of the system;
2. each non-initial configuration of the sequence is obtained from the previous

configuration by applying rules of the system in a maximally parallel manner
with the restrictions previously mentioned; and

3. if the sequence is finite (called halting computation) then the last term of the
sequence is a halting configuration (a configuration where no rule of the system
is applicable to it).

All computations start from an initial configuration and proceed as stated above;
only halting computations give a result, which is encoded by the objects present
in the output region iout in the halting configuration.

If C = {Ct}t<r+1 of Π (r ∈ N) is a halting computation, then the length of C,
denoted by |C|, is r, that is, |C| is the number of non-initial configurations which
appear in the finite sequence C. We denote by Ct(i), 1 ≤ i ≤ q, the multiset of
objects over Γ contained in all membranes labelled by i (by applying division
rules different membranes with the same label can be created) at configuration Ct.
We denote by Ct(0) the multiset of objects over Γ \E contained in the environment
at configuration Ct. Finally, we denote by C∗t the multiset Ct(0)+Ct(1)+ · · ·+Ct(q).

Definition 2. A P system with symport/antiport rules and membrane division
Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout), where E = ∅, is called a P system
with symport/antiport rules, membrane division and without environment.

Usually, we omit the alphabet of the environment in the tuple describing such
P system.

3 Recognizer P systems with symport/antiport rules

Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX . Many abstract problems are not decision problems. For example,
in combinatorial optimization problems some value must be optimized (minimized
or maximized). In order to deal with such problems, they can be transformed into
roughly equivalent decision problems by supplying a target/threshold value for the
quantity to be optimized, and then asking whether this value can be attained.

There exists a correspondence between decision problems and formal languages.
So that, the solvability of decision problems is defined through the recognition of
the languages associated with them.

In order to study the computing efficiency of membrane systems, the notions
from classical computational complexity theory are adapted for membrane com-
puting, and a special class of cell-like P systems is introduced in [10]: recognizer P
systems (called accepting P systems in a previous paper [9]).
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Definition 3. A recognizer P system with symport/antiport rules and membrane
division of degree q ≥ 1 is a tuple

Π = (Γ, E , Σ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout)

where:

• (Γ, E ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is a P system with symport/antiport rules
and membrane division of degree q ≥ 1, as defined in the previous section;

• The working alphabet Γ has two distinguished objects yes and no, at least one
copy of them present in some initial multisetsM1, . . . ,Mq, but none of them
is present in E;

• Σ is an (input) alphabet strictly contained in Γ such that E ∩Σ = ∅;
• M1, . . . ,Mq are multisets over Γ \Σ;
• iin ∈ {1, . . . , q} is the input membrane;
• The output region iout is the environment;
• All computations halt;
• If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the output region (the environment), and only at
the last step of the computation.

Definition 4. A recognizer P system with symport/antiport rules, membrane di-
vision and without environment of degree q ≥ 1 is a tuple

Π = (Γ, E , Σ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout)

where:

• (Γ, E , Σ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is a P system with symport/antiport
rules and membrane division.

• The working alphabet Γ has two distinguished objects yes and no, at least one
copy of them present in some initial multisetsM1, . . . ,Mq, but none of them
is present in E.

• E = ∅.
• Σ is an (input) alphabet strictly contained in Γ such that E ∩Σ = ∅.
• M1, . . . ,Mq are multisets over Γ \Σ.
• iin ∈ {1, . . . , q} is the input membrane.
• iout ∈ {1, . . . , q} is the output membrane.
• All computations halt.
• If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the output region, and only at the last step of the
computation.

For each multiset m ∈ Mf (Σ), the computation of the system Π with input m ∈
Mf (Σ) starts from the configuration of the form (M1, . . . ,Miin +m, . . . ,Mq; ∅),
that is, the input multiset m has been added to the contents of the input mem-
brane iin, and we denote it by Π +m. Therefore, we have an initial configuration
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associated with each input multiset m (over the input alphabet Σ) in this kind of
systems.

Given a recognizer P system with symport/antiport rules (with or without
environment) and a halting computation C = {Ct}t<r+1 of Π (r ∈ N), we define
the result of C as follows:

Output(C) =


yes, if Ψ{yes,no}(Mr,iout) = (1, 0) ∧

Ψ{yes,no}(Mt,iout) = (0, 0) for t = 0, . . . , r − 1
no, if Ψ{yes,no}(Mr,iout) = (0, 1) ∧

Ψ{yes,no}(Mt,iout) = (0, 0) for t = 0, . . . , r − 1

where Ψ is the Parikh mapping, and Mt,iout is the multiset over Γ \ E associated
with the output region at the configuration Ct, in particular, Mr,iout is the multiset
over Γ \ E associated with the output region at the halting configuration Cr.

We say that a computation C is an accepting computation (respectively, reject-
ing computation) if Output(C) = yes (resp., Output(C) = no), that is, if object yes
(resp., object no) appears in the output region associated with the corresponding
halting configuration of C, and neither object yes nor no appears in the output
region associated with any non–halting configuration of C.

Let us notice that if a recognizer P system

Π = (Γ, E , Σ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout)

has a symport rule of the type (i, λ/u, 0) then alph(u) ∩ (Γ \ E) ̸= ∅, that is,
the multiset u must contains some object from Γ \ E because on the contrary, all
computations of Π would be not halting.

For each natural number k ≥ 1, we denote by CDC(k) (respectively, CDS(k)
or CDA(k)) the class of recognizer P systems with membrane division and with
symport/antiport rules (resp., allowing only symport or antiport rules) of length

at most k. In the case of P systems without environment, we denote by ĈDC(k)

(ĈDS(k) or ĈDA(k) respectively) the class of recognizer P systems with mem-
brane division without environment and with symport/antiport rules (allowing
only symport or only antiport rules respectively) of length at most k.

4 Polynomial Complexity Classes of P Systems with
Symport/Antiport

In this section, we define what solving a decision problem in the framework of
P systems with symport/antiport rules in a uniform and efficient way, means.
Bearing in mind that they provide devices with a finite description, a numerable
family of membrane systems will be necessary in order to solve a decision problem.

Definition 5. We say that a decision problem X = (IX , θX) is solvable in a uni-
form way and polynomial time by a family Π = {Π(n) | n ∈ N} of recognizer
P systems with symport/antiport rules and membrane division (with or without
environment) if the following holds:
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• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
− for each instance u ∈ IX , s(u) is a natural number, and cod(u) is an input

multiset of the system Π(s(u));
− for each n ∈ N, s−1(n) is a finite set;
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and it performs at most
p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

From the soundness and completeness conditions above we deduce that every
P system Π(n) is confluent, in the following sense: every computation of a system
with the same input multiset must always give the same answer.

Let R be a class of recognizer P systems with symport/antiport rules. We
denote by PMCR the set of all decision problems which can be solved in a uniform
way and polynomial time by means of families of systems from R. The class
PMCR is closed under complement and polynomial–time reductions [9].

In what follows, we prove two technical results concerning recognizer P systems.

Proposition 1. Let Π = (Γ, E , Σ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout) be a recog-
nizer P systems with symport/antiport rules with length at most k, k ≥ 2, and
without membrane division. Let M = |M1+ · · ·+Mq| and let C = (C0, C1, . . . , Cm)
be a computation of Π Then, |C∗0 | = M , and for each t, 0 ≤ t < m, we have

|C∗t+1| ≤ |C∗t | · k, and |C∗t+1| ≤M · kt

Proof: Obviously, |C∗0 | = |C0(0) + C0(1) + · · · + C0(q)| = |M1 + · · · +Mq| = M .
Suppose 0 ≤ t < m, and let us compute C∗t+1 = Ct+1(0) + Ct+1(1) + · · ·+ Ct+1(q).
Bearing in mind that only the skin membrane can send and receive objects from
the environment, we have

Ct+1(0) + Ct+1(2) + Ct+1(3) + · · ·+ Ct+1(q) ⊆ Ct(0) + Ct(1) + · · ·+ Ct(q)

Next, let us see what objects membrane 1 can receive at step t+ 1.

• On the one hand, membrane 1 can receive objects from Ct(0).
• On the other hand, membrane 1 can receive objects from E by means of rules

in the skin membrane of the types:
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– (a ei1 . . . eir , in) with a ∈ Ct(0) and ei1 , . . . , eir ∈ E , r ≤ k − 1.
– (a, out; ei1 . . . eir , in) with a ∈ Ct(1) and ei1 , . . . , eir ∈ E , r ≤ k − 1.

Then, |Ct+1(1)| ≤ |Ct(0) + Ct(1)| · (k − 1). So, we have

|C∗t+1| = |Ct+1(0) + Ct+1(2) + Ct+1(3) + · · ·+ Ct+1(q)|+ |Ct+1(1)|
≤ |Ct(0) + Ct(1) + · · ·+ Ct(q)|+ |Ct(0) + Ct(1)| · (k − 1)
≤ |C∗t |+ |C∗t | · (k − 1) ≤ |C∗t | · k

Finally, let us see that |C∗t+1| ≤ M · kt by induction on t. For t = 1 the result is
trivial because of |C∗1 | ≤ (|C∗0 |+M) · (k − 1) = 2M · (k − 1).

Let t be such that 1 < t < m and the result holds for t. Then,

|C∗t+1| ≤ |C∗t | · k
h.i
≤ M · kt−1 · k = M · kt

�

Proposition 2. Let Π = {Π(n) | n ∈ N} a family of recognizer P systems from
CDC(k), where k ≥ 2, solving a decision problem X = (IX , θX) in polynomial
time according to Definition 5. Let (cod, s) be a polynomial encoding associated with
that solution. There exists a polynomial function r(n) such that for each instance
u ∈ IX , 2r(|u|) is an upper bound of the number of objects in all membranes of the
system Π(s(u)) + cod(u) along any computation.

Proof: Let p(n) be a polynomial function such that for each u ∈ IX every com-
putation of Π(s(u)) + cod(u) is halting and it performs at most p(|u|) steps.

Let u ∈ IX be an instance of X and

Π(s(u)) + cod(u) = (Γ, E , Σ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout)

Let M = |M1 + · · · +Mq|. Let C = (C0, C1, . . . , Cm), 0 ≤ m ≤ p(|u|), be a
computation of Π.

First, let us suppose that we apply only communication rules at m consecutive
transition steps. From Proposition 1 we deduce that |C∗0 | = M and |C∗t+1| ≤M ·kt,
for each t, 0 ≤ t < m. Thus, if we apply in a consecutive way the maximum
possible number of communication rules (without applying any division rules) to
the system Π(s(u)) + cod(u), in any instant of any computation of the system,
M · kp(|u|) is an upper bound of the number of objects in the whole system.

Now, let us consider the effect of applying in a consecutive way the maximum
possible number of division rules (without applying any communication rules) to
the system Π(s(u))+ cod(u) when the initial configuration has M · kp(|u|) objects.
After that, an upper bound of the number of objects in the whole system by any
computation is M · kp(|u|) · 2p(|u|) · p(|u|). Then, we consider a polynomial function
r(n) such that r(|u|) ≥ log(M)+ p(|u|) · (1+ log k)+ log(p(|u|)), for each instance
u ∈ IX . The polynomial function r(n) fulfills the property required.

�
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Corollary 1. Let Π = {Π(n) | n ∈ N} a family of recognizer P systems with
symport/antiport rules and membrane division, solving a decision problem X =
(IX , θX) in polynomial time according to Definition 5. Let (cod, s) a polynomial
encoding associated with that solution. Then, there exists a polynomial function
r(n) such that for each instance u ∈ IX , 2r(|u|) is an upper bound of the number
of objects from E which are moved from the environment to all membranes of the
system Π(s(u)) + cod(u) along any computation.

Proof: It suffices to note that from Proposition 2 there exists a polynomial func-
tion r(n) such that for each instance u ∈ IX , 2r(|u|) is an upper bound of the
number of objects in all membranes of the system Π(s(u)) + cod(u). �

5 Simulating Systems from CDC(k) by Means of Systems

from ĈDC(k)

The goal of this section is to show that any P system with symport/antiport rules
and membrane division can be simulated by a P system symport/antiport rules,
membrane division and without environment, in an efficient way.

First of all, we define the meaning of efficient simulations in the framework of
recognizer P systems with symport/antiport rules.

Definition 6. Let Π and Π ′ be recognizer P systems with symport/antiport rules.
We say that Π ′ simulates Π in an efficient way if the following holds:

1. Π ′ can be constructed from Π by a deterministic Turing machine working in
polynomial time.

2. There exists an injective function, f , from the set Comp(Π) of computations
of Π onto the set Comp(Π ′) of computations of Π ′ such that:
⋆ There exists a deterministic Turing machine that constructs computation

f(C) from computation C in polynomial time.
⋆ A computation C ∈ Comp(Π) is an accepting computation if and only if

f(C) ∈ Comp(Π ′) is an accepting one.
⋆ There exists a polynomial function p(n) such that for each C ∈ Comp(Π)

we have |f(C)| ≤ p(|C|).

Now, for every family of recognizer P system with symport/antiport rules and
membrane division solving a decision problem, we design a family of recognizer P
systems with symport/antiport rules, membrane division and without environment
efficiently simulating it, according to Definition 6.

In what follows throughout this Section, let Π = {Π(n) | n ∈ N} a family of
recognizer P systems with symport/antiport rules and membrane division solving
a decision problem X = (IX , θX) in polynomial time according to Definition 5,
and let r(n) be a polynomial function such that for each instance u ∈ IX , 2r(|u|)

is an upper bound of the number of objects from E which are moved from the
environment to all membranes of the system by any computation of Π(s(u)) +
cod(u).
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Definition 7. For each n ∈ N, let

Π(n) = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout)

an element of the previous family Π, and for the sake of simplicity we denote
r instead of r(n) and 1 is the label of the skin membrane. Let us consider the
recognizer P system with symport/antiport rules of degree q1 = 1+ q · (r+2)+ |E|,
with membrane division and without environment

S(Π(n)) = (Γ ′, Σ′, µ′,M′
0,M′

1, . . . ,M′
q1 ,R

′
0,R′

1, . . . ,R′
q1 , i

′
in, i

′
out)

defined as follows:

• Γ ′ = Γ ∪ {αi : 0 ≤ i ≤ r − 1}.
• Σ′ = Σ.
• Each membrane i ∈ {1, . . . , q} of Π provides a membrane of S(Π(n)) with the

same label. In addition, S(Π(n)) has:
⋆ r+1 new membranes, labelled by (i, 0), (i, 1), . . . , (i, r), respectively, for each

i ∈ {1, . . . , q}.
⋆ A distinguished membrane labelled by 0.
⋆ A new membrane, labelled by lb, for each b ∈ E.

• µ′ is the rooted tree obtained from µ as follows:
⋆ Membrane 0 is the root of µ′ and it is the father of the root of µ.
⋆ For each b ∈ E, membrane 0 is the father of membrane lb.
⋆ We consider a linear structure whose nodes are (i, 0), (i, 1), . . . , (i, r) and

such that (i, j) is the father of (i, j − 1), for each 1 ≤ i ≤ q and 1 ≤ j ≤ r.
⋆ For each membrane i of µ we add the previous linear structure being mem-

brane i the father of membrane (i, r).
• Initial multisets:M′

0 = ∅,M′
lb
= {α0}, for each b ∈ E, and

(1 ≤ i ≤ q)


M′

(i,0) =Mi

M′
(i,1) = ∅

. . . . . .
M′

(i,r) = ∅
M′

i = ∅

• Set of rules:

R′
0 ∪R′

1 ∪ · · · ∪ R′
q ∪ {R′

(i,j) : 1 ≤ i ≤ q, 0 ≤ j ≤ r} ∪ {R′
lb
: b ∈ E}

where R′
0 = ∅, R′

i = Ri for 1 ≤ i ≤ q, and

R′
(i,j) = {

(
a, out;λ, in) : a ∈ Γ}, for 1 ≤ i ≤ q ∧ 0 ≤ j ≤ r}

R′
lb

= {[αj ]lb → [αj+1]lb [αj+1]lb : 0 ≤ j ≤ r − 2} ∪
{[αr−1]lb → [b]lb [b]lb , (lb, out;λ, in)}, for b ∈ E

• i′in = (iin, 0), and i′out = 0.
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Let us notice that S(Π(n)) can be considered as an extension of Π(n) without
environment, in the following sense:

⋆ Γ ⊆ Γ ′, Σ ⊆ Σ′ and E = ∅.
⋆ Each membrane in Π is also a membrane in S(Π(n)).
⋆ There is a distinguished membrane in S(Π(n)) labelled by 0 which plays the

role of environment of Π(n).
⋆ µ is a subtree of µ′.
⋆ R ⊆ R′, and now 0 is the label of a “ordinary membrane” in S(Π(n)).

Next, we analyze the structure of the computations of system S(Π(n)) and we
compare them with the computations of Π(n).

Lemma 1. Let C′ = (C′0, C′1, . . . ) be a computation of S(Π(n)). For each t (1 ≤
t ≤ r) the following holds:

• C′t(i) = ∅, for 0 ≤ i ≤ q.
• For each 1 ≤ i ≤ q, and 0 ≤ j ≤ r we have:

C′t(i, j) =
{
Mi, if j = t
∅, if j ̸= t

• For each b ∈ E, there exist 2t membranes labelled by lb whose father is mem-
brane 0 and their content is:

C′t(lb) =
{
{αt}, if 1 ≤ t ≤ r − 1
{b}, if t = r

Proof: By induction on t.
Let us start with the basic case t = 1. The initial configuration of system

S(Π(n)) is the following:

• C′0(i) = ∅, for 0 ≤ i ≤ q.
• For each 1 ≤ i ≤ q we have C′0(i, 0) =Mi, and C′0(i, j) = ∅, for 1 ≤ j ≤ r.
• For each b ∈ E , there exists only one membrane labelled by lb whose contents

is {α0}.

At configuration C′0, only the following rules are applicable:

• [α0]lb → [α1]lb [α1]lb , for each b ∈ E .
•

(
a, out;λ, in

)
∈ R(i,0), for each a ∈ supp(Mi).

Thus,

(a) For each i (1 ≤ i ≤ q) we have:
C′1(i) = ∅
C′1(0) = ∅
C′1(i, 0) = ∅
C′1(i, 1) =Mi

C′1(i, j) = ∅, for 2 ≤ j ≤ r
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(b) For each b ∈ E , there are 2 membranes labelled by lb whose father is membrane
0 and their content is {α1}.

Hence, the result holds for t = 1.
By induction hypothesis, let t be such that 1 ≤ t < r, and let us suppose the

result holds for t, that is,

• C′t(i) = ∅, for 0 ≤ i ≤ q.
• For each 1 ≤ i ≤ q, and 0 ≤ j ≤ r we have:

C′t(i, j) =
{
Mi, if j = t
∅, if j ̸= t

• For each b ∈ E , there exist 2t membranes labelled by lb whose father is mem-
brane 0 and their content is C′t(lb) = {αt} (because t ≤ r − 1).

Then, at configuration C′t only the following rules are applicable:

(1) If t ≤ r − 2, the rules [αt]lb → [αt+1]lb [αt+1]lb , for each b ∈ E .
(2) If t = r − 1, the rules [αt]lb → [b]lb [b]lb , for each b ∈ E .
(3)

(
a, out;λ, in

)
∈ R(i,t), for each a ∈ supp(Mi).

From the application of rules of types (1) or (2) at configuration C′t, we deduce
that there are 2t+1 membranes labelled by lb in C′t+1, for each b ∈ E , whose father
is membrane 0 and their content is {αt+1}, if t ≤ r − 2, or {b}, if t = r − 1.

From the application of rules of type (3) at configuration C′t, we deduce that

C′t+1(i, j) =

{
Mi, if j = t+ 1
∅, if 0 ≤ j ≤ r ∧ j ̸= t+ 1

Bearing in mind that no other rule of system S(Π(n)) is applicable, we deduce
that C′t+1(i) = ∅, for 0 ≤ i ≤ q.

This completes the proof of this Lemma.
�

Lemma 2. Let C′ = (C′0, C′1, . . . ) be a computation of the P system S(Π(n)). Con-
figuration C′r+1 is the following:

(1) C′r+1(0) = b2
r

1 . . . b2
r

α , where E = {b1, . . . , bα}.
(2) C′r+1(i) =Mi = C0(i), for 1 ≤ i ≤ q.
(3) C′r+1(i, j) = ∅, for 1 ≤ i ≤ q, 0 ≤ j ≤ r.
(4) For each b ∈ E, there exist 2r membranes labelled by lb whose father is mem-

brane 0 and their content is empty.

Proof: From Lemma 1, the configuration C′r is the following:

• C′r(i) = ∅, for 0 ≤ i ≤ q.
• For each i (1 ≤ i ≤ q) we have

C′r(i, j) =
{
Mi, if j = r
∅, if j ̸= r
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• For each b ∈ E , there exist 2r membranes labelled by lb whose father is mem-
brane 0 and their content is {b}.

At configuration C′r only the following rules are applicables:

•
(
a, out;λ, in

)
∈ R(i,r), for each a ∈ Γ ∩ supp(Mi).

•
(
b, out;λ, in

)
∈ Rlb , for each b ∈ E .

Thus,

• C′r+1(0) = b2
r

1 . . . b2
r

α , where E = {b1, . . . , bα}.
• C′r+1(i) =Mi = C0(i), for 1 ≤ i ≤ q.
• C′r+1(i, j) = ∅ , for 1 ≤ i ≤ q and 0 ≤ j ≤ r.
• For each b ∈ E , there exist 2r membranes labelled by lb whose father is mem-

brane 0 and their content is empty.

�

Definition 8. Let C = (C0, C1, . . . , Cm) be a halting computation of Π(n). Then
we define the computation S(C) = (C′0, C′1, . . . , C′r, C′r+1, . . . , C′r+1+m) of S(Π(n)) as
follows:

(1) The initial configuration is:
C′0(i) = ∅, for 0 ≤ i ≤ q
C′0(i, 0) = C0(i), for 1 ≤ i ≤ q
C′0(i, j) = ∅, for 1 ≤ i ≤ q and 1 ≤ j ≤ r
C′0(lb) = α0, for each b ∈ E

(2) The configuration C′t, for 1 ≤ t ≤ r, is described by Lemma 1.
(3) The configuration C′r+1 is described by Lemma 2.
(4) The configuration C′r+1+s, for 0 ≤ s ≤ m, coincides with the configuration Cs

of Π, that is, Cs(i) = C′r+1+s(i), for 1 ≤ i ≤ q. The content of the remaining
membranes (excluding membrane 0) at configuration C′r+1+s is equal to the
content of that membrane at configuration C′r+1, that is, these membranes do
not evolve after step r + 1.

That is, every computation C of Π(n) can be “reproduced” by a computation S(C)
of S(Π(n)) with a delay: from step r+1 to step r+1+m, the computation S(C)
restricted to membranes 1, . . . , q provides the computation C of Π(n).

From Lemma 1 and Lemma 2 we deduce the following:

(a) S(C) is a computation of S(Π(n)).
(b)S is an injective function from Comp(Π(n)) onto Comp(S(Π(n))).

Proposition 3. The P system S(Π(n)) defined in Definition 7 simulates Π(n) in
an efficient way.

Proof. In order to show that S(Π(n)) can be constructed from Π(n) by a deter-
ministic Turing machine working in polynomial time, it is enough to note that the
amount of resources needed to construct S(Π(n)) from Π(n) is polynomial in the
size of the initial resources of Π(n). Indeed,
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1. The size of the alphabet of S(Π(n)) is |Γ ′| = |Γ |+ r.
2. The initial number of membranes of S(Π(n)) is 1 + q · (r + 2) + |E|.
3. The initial number of objects of S(Π(n)) is the initial number of objects of

Π(n) plus |E|.
4. The number of rules of S(Π(n)) is |R′| = |R|+ (r + 1) · |E|+ |Γ | · q · (r + 1).
5. The maximal length of a communication rule of S(Π(n)) is equal to the max-

imal length of a communication rule of Π(n).

From Lemma 1 and Lemma 2 we deduce that:

(a) Every computation C′ of S(Π(n)) has associated a computation C of Π(n) such
that S(C) = C′ in a natural way.

(b)The function S is injective.
(c) A computation C of Π(n) is an accepting computation if and only if S(C) is an

accepting computation of S(Π(n)).

Finally, let us notice that if C is a computation of Π(n) with length m, then S(C)
is a computation of S(Π(n)) with length r + 1 +m. �

6 Computational Complexity Classes of P Systems with
Membrane Division and Without Environment

In this Section, we analyze the role of the environment in the efficiency of P
systems with membrane division. That is, we study the ability of these P systems
with respect to the computational efficiency when the alphabet of the environment
is an empty set.

Theorem 1. For each k ∈ N we have PMCCDC(k+1) = PMC
ĈDC(k+1)

.

Proof: Let us recall that PMCCDC(1) = P (see [4] for details). Then,

P ⊆ PMC
ĈDC(1)

⊆ PMCCDC(1) = P

Thus, the result holds for k = 0. Let us show the result holds for k ≥ 1.

Since ĈDC(k + 1) ⊆ CDC(k + 1) it suffices to prove that PMCCDC(k+1) ⊆
PMC

ĈDC(k+1)
. For that, let X ∈ PMCCDC(k+1).

Let {Π(n) | n ∈ N} be a family of P systems from CDC(k + 1) solving X
according to Definition 5. Let (cod, s) be a polinomial encoding associated with
that solution. Let u ∈ IX be an instance of the problemX that will be processed by
the system Π(s(u))+cod(u). According to Proposition 2, let r(n) be a polynomial
function that 2r(|u|) is an upper bound of the number of objects from E which are
moved from the environment to all membranes of the system by any computation
of

Π(s(u)) + cod(u) = (Γ, E , Σ,M1, . . . ,Miin + cod(u), . . . ,Mq,R, iin, iout)
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Then, we consider the P system without environment

S(Π(s(u)))+ cod(u) = (Γ ′, Σ′,M′
0,M′

1, . . . ,M′
iin + cod(u), . . . ,M′

q1 ,R
′, i′in, i

′
out)

according to Definition 7, where q1 = 1 + q · (r(|u|) + 2) + |E|.
Therefore, S(Π(s(u))) + cod(u) is a P system from ĈDC(k + 1) such that

verifies the following:

• A distinguished membrane labelled by 0 has been considered, which will play
the role of the environment at the system Π(s(u)) + cod(u).

• At the initial configuration, it has enough objects in membrane 0 in order to
simulate the behaviour of the environment of the system Π(s(u))) + cod(u).

• After r(n) + 1 step, computations of Π(s(u)) + cod(u) are reproduced by the
computations of S(Π(s(u))) + cod(u) exactly.

Let us suppose that E = {b1, . . . , bα}. In order to simulate Π(s(u)) + cod(u) by a
P system without environment in an efficient way, we need to have enough objects
in the membrane of S(Π(s(u)))+ cod(u) labelled by 0 available. Specifically, 2r(n)

objects in that membrane are enough.
In order to start the simulation of any computation C of Π(s(u)) + cod(u), it

would be enough to have 2r(n) copies of each object bj ∈ E in the membrane of
S(Π(s(u))) + cod(u) labelled by 0. For this purpose,

• For each b ∈ E we consider a membrane in S(Π(s(u))) + cod(u) labelled by lb
which only contains object α0 initially. We also consider the following rules:
– [αj ]lb → [αj+1]lb [αj+1]lb , for 0 ≤ j ≤ r(|u|)− 2,
– [αp(n)−1]lb → [b]lb [b]lb ,
– (lb, b/λ, 0).

• By applying the previous rules, after r(|u|) transition steps we get 2r(|u|) mem-
branes labelled by lb, for each b ∈ E in such a way that each of them contains
only object b. Finally, by applying the third rule we get 2r(|u|) copies of objects
b in membrane 0, for each b ∈ E .

Therefore, after the execution of r(|u|)+1 transition steps in each computation of
S(Π(s(u))) + cod(u) in membrane 0 of the corresponding configuration, we have
2r(|u|) copies of each object b ∈ E . This number of copies is enough to simulate
any computation C of Π(s(u)) + cod(u) through the system S(Π(s(u)) + cod(u)).

From Proposition 3 we deduce that the family {S(Π(n))| n ∈ N} solves X in
polynomial time according to Definition 5. Hence, X ∈ PMC

ĈDC(k+1)
. �

7 Conclusions and Further Works

Initial configurations of ordinary P systems with symport/antiport rules have an
arbitrarily large amount of copies of some kind of objects belonging to a distin-
guished alphabet which specifies the environment of the system.
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The previous condition is no too nice from the computational complexity point
of view. In this paper, we show that in P systems with with symport/antiport
rules and membrane division the environment can be “removed” without a loss of
efficiency.
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Summary. Classical membrane systems with symport/antiport rules observe the con-
servation law, in the sense that they compute by changing the places of objects with
respect to the membranes, and not by changing the objects themselves. In these systems
the environment plays an active role because the systems not only send objects to the
environment, but also bring objects from the environment. In the initial configuration of
a system, there is a special alphabet whose elements appear in an arbitrary large number
of copies. The ability of these computing devices with infinite copies of some objects has
been widely exploited in the design of efficient solutions to computationally hard prob-
lems. This paper deals with computational aspects of P systems with symport/antiport
rules and membrane division rules or membrane separation rules. Specifically, we study
the limitations of such P systems when the only communication rules allowed have length
1.

Key words: Membrane Computing, P System with Symport/Antiport rules,
Membrane Division, Membrane Separation, Computational Complexity.

1 Introduction

In Chapter 3, the computation efficiency of membrane systems has been studied
and new techniques and tools have been provided to tackle the P versus NP prob-
lem. For that, two framework has been considered: cell-like P systems with active
membranes (with or without using electrical charges) and tissue-like P systems
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with cell division or cell separation. In both cases, the communication rules are
different. In the case of cell-like P systems, evolution rules, send-in and send-out
rules and dissolution rules are considered. In the case of tissue-like P systems,
communication rules have been implemented by using symport/antiport rules.

Membrane computing is a flexible and versatile branch of natural computing,
which arises as an abstraction of the compartmentalized structure of living cells,
and the way biochemical substances are processed in (or moved between) mem-
brane bounded regions [10]. Inspired by the structure of living cells, two main
classes of membrane systems have been investigated: a hierarchical (cell-like) ar-
rangement of membranes, inspired from the structure of the cell [10] and a net
of membranes (placed in the nodes of a directed graph), inspired from the cell-
interconnection in tissues [5] or inspired from the the way that neurons commu-
nicate with each other by means of short electrical impulses (spikes), emitted at
precise moments of time [4]. All classes of computing systems considered in the
field of membrane computing are generally called P systems, which are parallel
and distributed computational models. A comprehensive information in membrane
computing can be found in [13] and [2], and for the most up-to-date source of this
area, please refer to the P systems website http://ppage.psystems.eu.

On the one hand, cell-like P systems with symport/antiport rules were in-
troduced in [9] aiming to abstract the biological phenomenon of trans-membrane
transport of couples of chemical substances, in the same or in opposite directions.
On the other hand, tissue P systems with symport/antiport rules were introduced
in [8] by abstracting networks of elementary membranes such that some of them
are linked by “communication channels”.

In eukaryotic cells there are two relevant processes: mitosis and membrane
fission. The first one is a process of nuclear division in eukaryotic cells during
which one cell gives place to two genetically identical children cells. Membrane
fission occurs when a membrane gives place to two separated membranes, that
is, whenever a vesicle is produced or a larger subcellular compartment is divided
into smaller discrete units. These processes have been a source of inspiration to
incorporate new ingredients in membrane computing in order to be able to produce
exponential workspace in polynomial time. With respect to the mitosis process, P
systems with membrane division were introduced in [11], and with respect to the
membrane fission process, P systems with membrane separation were introduced
in [6]. These concepts were also introduced in the framework of tissue P systems:
tissue P systems with cell division [12] and tissue P systems with cell separation
[7].

Taking inspiration from living cells, we add abstractions of the mitosis and
the membrane fission processes as ingredients in P systems with symport/antiport
rules. Specifically, we allow new types of rules (membrane division and membrane
separation) in that framework leading to P systems with symport/antiport rules
and membrane division or membrane separation. The limitations of these systems
from the efficiency point of view are studied.
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The paper is structured as follows. First, some basic concepts and notations
are introduced in order to provide a self-contained paper. Section 3 is devoted
to define the framework of cell-like P systems with symport/antiport rules and
membrane division or membrane separation. Next, recognizer tissue P systems
are briefly described and computational complexity classes in these system are
introduced. In Section 4, the limitations on the efficiency of cell-like P systems
with membrane division or membrane separation which use communication rules
of length one, that is, membrane systems without cooperation, are studied. Finally,
some conclusions and open problems are presented.

2 Preliminaries

An alphabet Σ is a finite non-empty set and their elements are called symbols.
An ordered finite sequence of symbols over Σ forms a string or word. The set of
symbols occurring in a string u over Σ is denoted by alph(u). The length of a
string u, denoted by |u|, is the number of occurrences of symbols it contains. For
an alphabet Σ, we denote by Σ∗ the set of all strings of symbols from Σ. The
empty string (with length 0) is denoted by λ. A language over Σ is a subset of Σ∗.

A multiset over an alphabet Σ, is an ordered pair (Σ, f) where f : Σ → N
is a mapping from Σ onto the set of non-negative numbers N. If m = (Σ, f) is a
multiset then its support is defined as supp(m) = {x ∈ Σ | f(x) > 0}. A multiset
is finite if its support is a finite set. We denote by ∅ the empty multiset and we
denote byMf (Σ) the set of all finite multisets over Σ.

Let m1 = (Σ, f1), m2 = (Σ, f2) are multisets over Σ, then the union of m1

and m2, denoted by m1 +m2, is the multiset (Σ, g), where g(x) = f1(x) + f2(x)
for each x ∈ Σ. The relative complement of m2 in m1, denoted by m1 \ m2, is
the multiset (Σ, g), where g(x) = f1(x) − f2(x) if f1(x) ≥ f2(x), and g(x) = 0
otherwise.

Let us recall that a free tree (tree, for short) is a connected, acyclic, undirected
graph. A rooted tree is a tree in which one of the vertices (called the root of the
tree) is distinguished from the others. In a rooted tree the concepts of ascendants
and descendants are defined in a usual way. Given a node x (different from the
root), if the last edge on the (unique) path from the root of the tree to the node
x is {x, y} (in this case, x ̸= y), then y is the parent of node x and x is a child of
node y. The root is the only node in the tree with no parent (see [1] for details).

Let us recall that the Reachability Problem is the following: given a (directed
or undirected) graph G and two nodes a, b, determine whether or not the node
b is reachable from a, that is, whether or not there exists a path in the graph
from a to b. We denote by Reachability(G, a, b) the answer (yes or no) to the
Reachability problem with instance (G, a, b). It is easy to design an algorithm
running in polynomial time solving this problem. For example, given a (directed
or undirected) graph G and two nodes a, b, we consider a depth–first–search with
source a, and we check if b is in the tree of the computation forest whose root is
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a. The total running time of this algorithm is O(|V | + |E|), that is, in the worst
case is quadratic in the number of nodes. Moreover, this algorithm needs to store
a linear number of items (it can be proved that there exists another polynomial
time algorithm which uses O(log2(|V |)) space).

3 P Systems with Symport/Antiport Rules

In this section we introduce a kind of cell-like P systems that use communication
rules capturing the biological phenomenon of trans-membrane transports of several
chemical substances. Specifically, two processes have been considered. The first
one allows a multiset of chemical substances to pass through a membrane in the
same direction. In the second one, two multisets of chemical substances (located in
different biological membranes) only pass with the help of each other (an exchange
of objects between both membranes).

Next, we introduce an abstraction of these operation in the framework of P
systems with symport/antiport rules following [9]. In these models, the membranes
are not polarized.

Definition 1. A P system with symport/antiport rules of degree q ≥ 1 is a tuple
Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout), where:

1. Γ is a finite alphabet;
2. E ( Γ ;
3. µ is a membrane structure (a rooted tree) whose nodes are injectively labelled

with 1, 2 . . . , q (the root of the tree is labelled by 1);
4.M1, . . . ,Mq are finite multises over Γ .
5. R1, · · · ,Rq are finite set of communication rules of the following forms:

⋆ Symport rules: (u, out) or (u, in), where u is a finite multiset over Γ such
that |u| > 0;

⋆ Antiport rules: (u, out; v, in), where u, v are finite multisets over Γ such
that |u| > 0 and |v| > 0;

6. iout ∈ {0, 1, . . . , q}.

A P system with symport/antiport rules of degree q

Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout)

can be viewed as a set of q membranes, labelled by 1, . . . , q, arranged in a hierar-
chical structure µ given by a rooted tree whose root is called the skin membrane,
such that: (a)M1, . . . ,Mq represent the finite multisets of objects initially placed
in the q membranes of the system; (b) E is the set of objects initially located in the
environment of the system, all of them available in an arbitrary number of copies;
(c) R1, · · · ,Rq are finite sets of communication rules over Γ (Ri is associated with
the membrane i of µ); and (d) iout represents a distinguished region which will
encode the output of the system. We use the term region i (0 ≤ i ≤ q) to refer
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to membrane i in the case 1 ≤ i ≤ q and to refer to the environment in the case
i = 0. The length of rule (u, out) or (u, in) (resp. (u, out; v, in)) is defined as |u|
(resp. |u|+ |v|).

For each membrane i ∈ {2, . . . , q} (different from the skin membrane) we denote
by p(i) the parent of membrane i in the rooted tree µ. We define p(1) = 0, that
is, by convention the “parent” of the skin membrane is the environment.

An instantaneous description or a configuration at an instant t of a P system
with symport/antiport rules is described by the membrane structure at instant t,
all multisets of objects over Γ associated with all the membranes present in the
system, and the multiset of objects over Γ − E associated with the environment
at that moment. Recall that there are infinite copies of objects from E in the
environment, and hence this set is not properly changed along the computation.
The initial configuration of the system is (µ,M1, · · · ,Mq; ∅).

A symport rule (u, out) ∈ Ri is applicable to a configuration Ct at an instant t if
membrane i is in Ct and multiset u is contained in such membrane. When applying
a rule (u, out) ∈ Ri, the objects specified by u are sent out of membrane i into the
region immediately outside (the parent p(i) of i), this can be the environment in
the case of the skin membrane.

A symport rule (u, in) ∈ Ri is applicable to a configuration Ct at an instant t if
membrane i is in Ct and multiset u is contained in the parent of i. When applying
a rule (u, in) ∈ Ri, the multiset of objects u goes out from the parent membrane
of i and enters into the region defined by the membrane i.

An antiport rule (u, out; v, in) ∈ Ri is applicable to a configuration Ct at an
instant t if membrane i is in Ct and multiset u is contained in such membrane, and
multiset v is contained in the parent of i. When applying a rule (u, out; v, in) ∈ Ri,
the objects specified by u are sent out of membrane i into the parent of i and, at
the same time, bringing the objects specified by v into membrane i.

The rules of a P system with symport/antiport rules are applied in a non-
deterministic maximally parallel manner: at each step we apply a multiset of rules
which is maximal, no further applicable rule can be added.

Let us fix a P system with symport/antiport rulesΠ. We say that configuration
C1 yields configuration C2 in one transition step, denoted by C1 ⇒Π C2, if we can
pass from C1 to C2 by applying the rules from R1∪ · · ·∪Rq following the previous
remarks. A computation ofΠ is a (finite or infinite) sequence of configurations such
that: (a) the first term of the sequence is the initial configuration of the system;
(b) each non-initial configuration of the sequence is obtained from the previous
configuration by applying rules of the system in a maximally parallel manner
with the restrictions previously mentioned; and (c) if the sequence is finite (called
halting computation) then the last term of the sequence is a halting configuration
(a configuration where no rule of the system is applicable to it).

All computations start from an initial configuration and proceed as stated
above; only halting computations give a result, which is encoded by the objects
present in the output region iout in the halting configuration. If C = {Ct}t≤r of Π
(r ∈ N) is a halting computation, then the length of C, denoted by |C|, is r, that is,
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|C| is the number of non-initial configurations which appear in the finite sequence
C. We denote by Ct(i), 1 ≤ i ≤ q, the multiset of objects over Γ contained in the
membrane labelled by i at configuration Ct. We also denote by Ct(0) the multiset
of objects over Γ \ E contained in the environment at configuration Ct.

3.1 Recognizer P systems with symport/antiport rules

Recognizer P systems were introduced in [16] and they provide a natural framework
to solve decision problems. Next, we introduce the concept of recognizer associated
with the systems defined in the previous section.

Definition 2. A recognizer P system with symport/antiport rules of degree q ≥ 1
is a tuple Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout), where:

• Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is a P system with symport/anti-
port rules of degree q ≥ 1;

• the working alphabet Γ has two distinguished objects yes and no, with at least
one copy of them presents in some initial multisets M1, . . . ,Mq, but none of
them present in E;

• Σ is an (input) alphabet strictly contained in Γ such that E ⊆ Γ \Σ;
• M1, . . . ,Mq are finite multisets over Γ \Σ;
• iin ∈ {1, . . . , q} is the input membrane;
• the output region iout is the environment;
• all computations halt;
• if C is a computation of Π, then either object yes or object no (but not both)

must have been released into the environment, and only at the last step of the
computation.

Let us notice that if a recognizer P system

Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout)

has a symport rule of the type (u, out) or (u, in) then alph(u) ∩ (Γ \ E) ̸= ∅, that
is, the multiset u must contains some object from Γ \ E because on the contrary,
all computations of Π would be non halting.

For each finite multiset w over the input alphabet Σ, a computation of Π =
(Γ, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout) with input multiset w starts from
the configuration of the form (µ,M1, . . . ,Miin + w, . . . ,Mq, ∅), where the input
multiset w is added to the content of the input membrane iin. That is, we have an
initial configuration associated with each input multiset w over Σ in recognizer P
systems with symport/antiport rules. We denote by Π + w the P system Π with
input multiset w.
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3.2 Polynomial complexity classes of recognizer P systems with
symport/antiport rules

Let us recall that a decision problem X is one whose solution is either “yes” or
“no”. This can be formally defined by an ordered pair (IX , θX), where IX is a
language over a finite alphabet and θX is a total boolean function over IX . The
elements of IX are called instances of the problem X. Next, according to [15], we
define what solving a decision problem by a family of recognizer P systems with
symport/antiport rules, in a uniform way, means.

Definition 3. A decision problem X = (IX , θX) is solvable in polynomial time by
a family Π = {Π(n) | n ∈ N} of recognizer P systems with symport/antiport rules
(in a uniform way) if the following conditions hold:

• the family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N;

• there exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
– for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
– for each n ∈ N, s−1(n) is a finite set;
– the family Π is polynomially bounded with regard to (X, cod, s), that is, there

exists a polynomial function p, such that for each u ∈ IX every computation
of Π(s(u)) + cod(u) is halting and it performs at most p(|u|) steps;

– the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX , if
there exists an accepting computation of Π(s(u))+ cod(u), then θX(u) = 1;

– the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) + cod(u) is an accepting
one.

According to Definition 3, we say that for each u ∈ IX , the P system Π(s(u)) +
cod(u) is confluent, in the sense that all possible computations of the system must
give the same answer.

If R is a class of recognizer P systems, then we denote by PMCR the set of
all decision problems which can be solved in polynomial time (and in a uniform
way) by means of recognizer P systems from R. The class PMCR is closed under
complement and polynomial–time reductions (see [15] for details).

3.3 P systems with symport/antiport rules and membrane division or
membrane separation

In this section, we introduce new types of rules (membrane division and mem-
brane separation) inspired by the mitosis and the membrane fission processes, in
the framework of P systems with symport/antiport rules. These rules provide a
mechanism to construct an exponential workspace in polynomial time.
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Definition 4. A P system with symport/antiport rules and membrane division of
degree q ≥ 1 is a tuple Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout), where:

1. Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is a P system with sym-
port/antiport rules.

2. R1, · · · ,Rq are finite set of symport/antiport rules which can also contain
rules of the following form: [a]i → [b]i[c]i, where i /∈ {1, iout} and a, b, c ∈ Γ
(division rules).

A division rule [a]i → [b]i[c]i ∈ Ri is applicable to a configuration Ct at an instant
t if the following holds: (a) membrane i is in Ct; (b) object a is contained in
such membrane; and (c) membrane i is neither the skin membrane nor the output
membrane (if iout ∈ {1, . . . , q}). When applying a division rule [a]i → [b]i[c]i, under
the influence of object a, the membrane with label i is divided into two membranes
with the same label; in the first copy, object a is replaced by object b, in the second
one, object a is replaced by object c; all the other objects residing in membrane i
are replicated and copies of them are placed in the two new membranes.

Definition 5. A P system with symport/antiport rules and membrane separation
of degree q ≥ 1 is a tuple

Π = (Γ, Γ0, Γ1, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout)

where:

1. Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is a P system with sym-
port/antiport rules.

2. {Γ0, Γ1} is a partition of Γ , that is, Γ = Γ0 ∪ Γ1, Γ0, Γ1 ̸= ∅, Γ0 ∩ Γ1 = ∅;
3. R1, · · · ,Rq are finite set of rules symport/antiport rules which can also contain

rules of the following form: [a]i → [Γ0]i[Γ1]i, where i /∈ {1, iout} and a ∈ Γ
(separation rules).

A separation rule [a]i → [Γ0]i[Γ1]i ∈ Ri is applicable to a configuration Ct at an
instant t if the following holds: (a) membrane i is in Ct; (b) object a is contained
in such membrane; and (c) membrane i is neither the skin membrane nor the
output membrane (if iout ∈ {1, . . . , q}). When applying a separation rule [a]i →
[Γ0]i[Γ1]i ∈ Ri, in reaction with an object a, the membrane i is separated into
two membranes with the same label; at the same time, object a is consumed; the
objects from Γ0 are placed in the first membrane, those from Γ1 are placed in the
second membrane.

With respect to the semantics of these variants, the rules of such P systems are
applied in a non-deterministic maximally parallel manner (at each step we apply a
multiset of rules which is maximal, no further applicable rule can be added), with
the following important remark: when a membrane i is divided (resp. separated),
the division rule (resp. separation rule) is the only one from Ri which is applied
for that membrane at that step (however, some rules can be applied in a daughter
membrane). The new membranes resulting from division (resp. separation) could
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participate in the interaction with other membranes or the environment by means
of communication rules at the next step – providing that they are not divided
(resp. separated) once again. The label of a membrane precisely identify the rules
which can be applied to it.

The concept of recognizer is extended to P systems with symport/antiport rules
and membrane division or membrane separation, in a natural way. We denote by
CDC(k) (resp. CSC(k)) the class of recognizer P systems with symport/antiport
rules and membrane division (resp. membrane separation) such that the commu-
nication rules of the system have length at most k.

4 Non Efficiency of P Systems from CDC(1)

In this section, we study the limitations of efficient computations in systems from
CDC(1). Specifically, we show that P = PMCCDC(1), that is, the polynomial
complexity class associated with the class of recognizer P systems CDC(1) is
equal to the class P.

Let Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout) be a recognizer P sys-
tem from CDC(1). We denote by M∗

j the multiset over Γ × {j} obtained from
Mj by replacing a ∈ Γ by (a, j), and for each finite multiset w over Σ, we denote
w∗ the multiset over Σ × {iin} obtained fromMj by replacing a ∈ Σ by (a, iin)

The rules from R1 ∪ · · · ∪ Rq are of the following form: (a, out), (b, in) and
[a]i → [b]i [c]i. These rules can be considered, in a certain sense, as a dependency
between the object triggering the rule and the object produced by its application.

• The rules in Ri of type (a, out) can be described as the pair (a, i) produces the
pair (a, p(i)).

• The rules in Ri of type (b, in) can be described as the pair (b, p(i)) produces
the pair (b, i).

• The rules in Ri of type [a]i → [b]i [c]i can be described as the pair (a, i)
produces the pairs (b, i) and (c, i).

We formalize these ideas in the following definition.

Definition 6. Let Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout) be a recog-
nizer P system from CDC(1). The dependency graph associated with Π is the
directed graph GΠ = (VΠ , EΠ) defined as follows:

• The set of vertices is VΠ = {s} ∪ V LΠ ∪ V RΠ , where:
V LΠ = {(a, i) ∈ Γ × {0, . . . , q} | [(a, out) ∈ Ri] ∨ [∃j ∈ ch(i)((a, in) ∈ Rj)]∨

[∃b, c ∈ Γ ([a]i → [b]i[c]i ∈ Ri])}
V RΠ = {(a, i) ∈ Γ × {0, . . . , q} | [(a, in) ∈ Ri] ∨ [∃j ∈ ch(i)((a, out) ∈ Rj)]∨

[∃b, c ∈ Γ ([b]i → [a]i[c]i ∈ Ri)]}.
• The set of edges is:

EΠ = {(s, (a, j)) | 1 ≤ j ≤ q ∧ (a, j) ∈M∗
j}∪

{((a, i), (b, j)) ∈ VΠ × VΠ | [a = b] ∧ [j = p(i) ∧ (a, out) ∈ Ri] ∨
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[a = b] ∧ [i = p(j) ∧ (a, in) ∈ Rj ] ∨
[i = j] ∧ [∃c ∈ Γ ([a]i → [b]i[c]i ∈ Ri)]}.

In what follows, we show that the dependency graph associated with a P sys-
tem from CDC(1), can be constructed by a single deterministic Turing machine
working in polynomial time.

Proposition 1. Let Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout) be a rec-
ognizer P systems from CDC(1). There exists a Turing machine that constructs
the dependency graph, GΠ , associated with Π, in polynomial time (that is, in a
time bounded by a polynomial function depending on the total number of rules and
the maximum length of the rules).

Proof. A deterministic algorithm that, given a recognizer P system Π from
CDC(1), whose set of rules is R = R1 ∪ · · · ∪ Rq, constructs the correspond-
ing dependency graph, is the following:

Input: (Π,R)
VΠ ← {s}; EΠ ← ∅
for j = 1 to q do

for each pair (a, j) ∈M∗
j do

EΠ ← EΠ ∪ {(s, (a, j))}
end for

end for

for each rule r ∈ R of Π do

if r = (a, in) ∈ Ri then

VΠ ← VΠ ∪ {(a, p(i)), (a, i)}; EΠ ← EΠ ∪ {((a, p(i)), (a, i))}
end if

if r = (a, out) ∈ Ri then

VΠ ← VΠ ∪ {(a, i), (a, p(i))}; EΠ ← EΠ ∪ {((a, i), (a, p(i)))}
end if

if r = [a]i → [b]i[c]i ∈ Ri then

VΠ ← VΠ ∪ {(a, i), (b, i), (c, i)};
EΠ ← EΠ ∪ {((a, i)), (b, i))} ∪ {((a, i), (c, i))}

end if

end for

The running time of this algorithm is bounded by O(|R|) ⊂ O(q · |Γ |3). �

Proposition 2. Let Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout) be a rec-
ognizer confluent P system from CDC(1). The following assertions are equivalent:

(1)There exists an accepting computation of Π.
(2) There exists a path (with length greater or equal than 2) from s to (yes, 0) in

the dependency graph associated with Π.
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Proof. (1)⇒ (2). First, we show that for each accepting computation C of Π there
exists a path from s to (yes, 0) in the dependency graph associated with Π. By
induction on the length n of C.

Let n = 1 and C = (C0, C1) be an accepting computation of Π with length 1.
Then, a rule of the form (yes, out) ∈ R1, with a ∈ Γ , has been applied at initial
configuration C0. Then, yes ∈ C0(1), so (yes, 1) ∈M∗

1. Hence, (s, (yes, 1), (yes, 0))
is a path from s to (yes, 0) in the dependency graph associated with Π.

Let us suppose that the result holds for n. Let C = (C0, C1, . . . , Cn, Cn+1)
be an accepting computation of Π with length n + 1. In this situation,
C′ = (C1, . . . , Cn, Cn+1) is an accepting computation of the system Π ′ =
(Γ, E , Σ, µ,M′

1, . . . ,M′
q,R1, · · · ,Rq, iin, iout), being M′

j = {(a, i) ∈ Γ ×
{0, . . . , q} | C1(j) = a} the “content” of membrane j in configuration C1, for 1 ≤
j ≤ q. By induction hypothesis there exists a path γC′ = (s, (b1, i1), . . . , (yes, 0))
from s to (yes, 0) in the dependency graph associated with Π ′ (with length greater
or equal than 2). We distinguish two cases. If b1 ∈ C0(i1) (that means that in the
first step of computation C, a division rule has been applied to membrane i1 such
that object b1 does not appear in the rule), then γC = (s, (b1, i1), . . . , (yes, 0)) is a
path from s to (yes, 0) in the dependency graph associated with Π, and the result
holds. Otherwise, there is an element b0 ∈ C0(i0) producing (b1, i1) at the first step
of computation C. Hence, γC = (s, (b0, i0), (b1, i1), . . . , (yes, 0)) is a path from s to
(yes, 0) in the dependency graph associated with Π.

(2)⇒ (1). Let us see that for each path from s to (yes, 0) in the dependency graph
associated with Π, with length k ≥ 2, there exists an accepting computation of
Π. By induction on the length k of the path.

Let k = 2 and (s, (a0, i0), (yes, 0)). Then, i0 = 1 is the label of the skin mem-
brane, (a0, out) ∈ R1, a0 = yes, and the computation C = (C0, C1) where the rule
(a0, out) ∈ R1 belongs to the multiset of rules that yields configuration C1 from
C0, is an accepting computation of Π.

Let us suppose that the result holds for k ≥ 2. Let

(s, (a0, i0), (a1, i1), . . . (ak−1, ik−1), (yes, 0))

be a path from s to (yes, 0) in the dependency graph of length k+ 1. If (a0, i0) =
(a1, i1), then the result holds by induction hypothesis. Otherwise, let C1 be a con-
figuration of Π reached from C0 by the application of a multiset of rules containing
a rule that yields (a1, i1) from (a0, i0). Then (s, (a1, i1), . . . (ak−1, ik−1), (yes, 0)) is
a path from s to (yes, 0) of length k, in the dependency graph of associated with
the system

Π ′ = (Γ, E , Σ, µ,M′
1, . . . ,M′

q,R1, · · · ,Rq, iin, iout),

where M′
j = {(a, i) | C1(j)} is the content of membrane j in configuration C1,

for 1 ≤ j ≤ q. By induction hypothesis, there exists an accepting computation
C′ = (C1, . . . , Ct) of Π ′. Hence, C = (C0, C1, . . . , Ct) is an accepting computation of
Π. �
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Corollary 1. Let X = (IX , θX) be a decision problem. Let Π = {Π(n) | n ∈ N} be
a family of recognizer P systems from CDC(1) solving X, according to Definition
3. Let (cod, s) be the polynomial encoding associated with that solution. Then, for
each instance w of the problem X the following assertions are equivalent:

(a) θX(w) = 1 (that is, the answer to the problem is yes for w).
(b) There exists a path from s to (yes, 0) in the dependency graph associated with

the system Π(s(w)) with input multiset cod(w).

Proof. Let w ∈ IX . Then θX(w) = 1 if and only if there exists an accepting
computation of the system Π(s(w)) + cod(w). Bearing in mind that Π(s(w)) +
cod(w) is a confluent system, from Proposition 4 we deduce that θX(w) = 1 if and
only if there exists a path from s to (yes, 0) in the dependency graph associated
with the system Π(s(w)) + cod(w). �

Theorem 1. P = PMCCDC(1)

Proof. We have P ⊆ PMCCDC(1) because PMCCDC(1) is a nonempty class
closed under polynomial–time reduction. Next, we show that PMCCDC(1) ⊆ P.
For that, let X ∈ PMCCDC(1) and let Π = (Π(n))n∈N be a family of recognizer
P systems from CDC(1) solving X, according to Definition 3. Let (cod, s) be the
polynomial encoding associated with that solution.

We consider the following deterministic algorithm:

Input: An instance w of X

- Construct the system Π(s(w)) + cod(w).

- Construct the dependency graph GΠ(s(w))+cod(w) associated with

Π(s(w)) + cod(w).

- Reachability (GΠ(s(w))+cod(w), s, (yes, 0))

Obviously this algorithm is polynomial in the size |w| of the input. �

5 Non efficiency of P systems from CSC(1)

In this section, we show that the polynomial complexity class associated with the
class of recognizer P systems with symport/antiport rules and membrane sepa-
ration is equal to the class P, when we consider only communication rules with
length 1.

In order to associate a dependency graph with each P system from CSC(1),
let us notice that the application of a membrane separation rule [a]i → [Γ0]i [Γ1]i
consumes object a and the remaining objects in that membrane are separated in
two membranes with the same label.
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Definition 7. Let Π be a recognizer P system from CSC(1) whose set of rules is
R = R1 ∪ · · · ∪Rq. The dependency graph associated with Π is the directed graph
GΠ = (VΠ , EΠ) defined as follows:

• The set of vertices is VΠ = {s} ∪ V LΠ ∪ V RΠ , where:
V LΠ = {(a, i) ∈ Γ × {0, . . . , q} : [(a, out) ∈ Ri] ∨ [∃j ∈ ch(i) ((a, in) ∈ Rj)]∨

[[a]i → [Γ0]i[Γ1]i ∈ Ri])}
V RΠ = {(a, i) ∈ Γ × {0, . . . , q} : [(a, in) ∈ Ri] ∨ [∃j ∈ ch(i)((a, out) ∈ Rj)]}.

• The set of edges is
EΠ = {(s, (a, j)) | 1 ≤ j ≤ q ∧ (a, j) ∈M∗

j} ∪
{((a, i), (a, j)) ∈ VΠ × VΠ : [j = p(i) ∧ (a, out) ∈ Ri] ∨

[i = p(j) ∧ (a, in) ∈ Rj ]}.
In a similar way as in the previous section, the following results are obtained.

Proposition 3. Let Π be a recognizer P system from CSC(1). There exists a
Turing machine that constructs the dependency graph GΠ associated with Π, in
polynomial time.

Proposition 4. Let Π be a recognizer confluent P system from CSC(1). The
following assertions are equivalent:

(1)There exists an accepting computation of Π.
(2) There exists a path (with length greater or equal than 2) from s to (yes, 0) in

the dependency graph associated with Π.

Theorem 2. P = PMCCSC(1)

6 Conclusions and Further Works

In the framework of (cell-like) P systems with symport/antiport rules, two new
kind of rules inspired by the processes of mitosis and membrane fission in eukary-
otic cells, have been considered, called P systems with symport/antiport rules and
membrane division or membrane separation.

By using the dependency graph technique, the computational efficiency of these
P systems has been studied in the case of non-cooperative systems, that is, systems
with communication rules of length 1.

For future work, we plan to establish the efficiency of these kind of P systems in
order to obtain borderline of the efficiency of the problems in terms of syntactical
ingredients of P systems with symport/antiport rules.
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Mario J. Pérez-Jiménez1, Henry N. Adorna2

1Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: mdelamor@us.es, dorellana@us.es, marper@us.es
2Algorithms and Complexity Laboratory
Department of Computer Science
University of the Philippines Diliman
Diliman 1101 Quezon City, Philippines
E-mail: fccabarle@up.edu.ph, hnadorna@up.edu.ph

Summary. Current parallel simulation algorithms for Spiking Neural P (SNP) systems
are based on a matrix representation. This helps to harness the inherent parallelism
in algebraic operations, such as vector-matrix multiplication. Although it has been
convenient for the first parallel simulators running on Graphics Processing Units
(GPUs), such as CuSNP, there are some bottlenecks to cope with. For example, matrix
representation of SNP systems with a low-connectivity-degree graph lead to sparse
matrices, i.e. containing more zeros than actual values. Having to deal with sparse
matrices downgrades the performance of the simulators because of wasting memory and
time.

However, sparse matrices is a known problem on parallel computing with GPUs, and
several solutions and algorithms are available in the literature. In this paper, we briefly
analyse some of these ideas and apply them to represent some variants of SNP systems.
We also conclude which variant better suit a sparse-matrix representation.

Keywords: Spiking Neural P systems, Simulation Algorithm, Sparse Matrix
Representation, GPU computing, CUDA

1 Introduction

Spiking Neural P (SNP) systems [9] are a type of P systems [16] composed of a
directed graph inspired by how neurons are interconnected by axons and synapses
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in the brain. Neurons communicate through spikes, and the time difference between
them plays an important role in the computation.

The simulation of SNP systems have been carried out through sequential sim-
ulators such as pLinguaCore [11]. For parallel simulation, a matrix representation
was introduced [17], so that the simulation algorithm is based on applying matrix
operations. For instance, efficient algebra libraries have been defined for GPUs,
given that they fit well to the highly parallel architecture of these devices. This
have been harnessed already to introduce the first parallel SNP system simulators
on GPUs, cuSNP [4, 5].

However, this matrix representation can be sparse, having a majority of
zero values, because the directed graph of SNP systems are not normally fully
connected. In many disciplines, sparse vector-matrix operations are natural, so
many solutions have been proposed in the literature [6]. For this reason, we transfer
some of these ideas to the simulation of SNP systems with matrix operations. First,
we give a first approach, which is further optimized by splitting the main matrix
into several structures. Second, ideas to deal with dynamic networks are given.

The paper is structured as follows: Section 2 gives a short formal definition of
SNP systems; Section 3 summarizes the matrix-based simulation algorithm; Sec-
tion 4 briefly introduces GPU computing and sparse vector-matrix representations;
Section 5 discussed the ideas on introducing sparse vector-matrix representation
for SNP system simulation; and the paper finishes with conclusions and future
work.

2 Spiking Neural P Systems

Definition 1. A spiking neural P system of degree q ≥ 1 is a tuple

Π = (O, syn, σ1, . . . , σq, iout)

where:

• O = {a} is the singleton alphabet (a is called spike);
• syn = (V,E) is a directed graph such that V = {σ1, . . . , σq} and (σi, σi) 6∈ E

for 1 ≤ i ≤ q;
• σ1, . . . , σm are neurons of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
– ni ≥ 0 is the initial number of spikes within neuron labelled by i; and
– Ri is a finite set of rules associated to neuron labelled by i, of the following

forms:
(1) E/ac → ap, being E a regular expression over {a}, c ≥ p ≥ 1 (firing

rules);
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(2) as → λ for some s ≥ 1, with the restriction that for each rule E/ac → ap

of type of type (1) from Ri, we have as 6∈ L(E) (forgetting rules).
• iout ∈ {1, 2, . . . , q} such that outdegree(iout) = 0

A spiking neural P system of degree q ≥ 1 can be viewed as a set of q
neurons {σ1, . . . , σq} interconnected by the arcs of a directed graph syn, called
synapse graph There is a distinguished neuron iout, called output neuron, which
communicates with the environment.

If a neuron σi contains k spikes at an instant t, and ak ∈ L(E), k ≥ c, then
the rule E/ac → ap can be applied. By the application of that rule, c spikes are
removed from neuron σi and the neuron fires producing p spikes immediately. The
spikes produced by a neuron σi are received for all neuron σj such that (σi, σj) ∈ E.
If σi is the output neuron then the spikes are sent to the environment.

The rules of type (2) are forgetting rules, and they are applied as follows: If
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be applied.
By the application of this rule all s spikes are removed from σi.

In spiking neural P systems, a global clock is assumed, marking the time for
the whole system. Only one rule can be executed in each cell at step t. As models
of computation, spiking neural P systems are Turing complete, i.e. as powerful as
Turing machines. On one hand, common way to introduce input to the system is
to encode into some or all of the ni’s the input(s) of the problem to be solved. On
the other hand, a common way to obtain the output is by observing iout: either
by getting the interval t2 − t1 = n, where iout sent its first two spikes at times t1
and t2 (we say n is computed or generated by the system), or by counting all the
spikes sent by iout to the environment until the system halts.

Aside from computing numbers, spiking neural P systems can also compute
strings, and hence, languages. More general ways to provide the input or receive the
output include the use of spike trains, i.e. a stream or sequence of spikes entering or
leaving the system. Further results and details on computability, complexity, and
applications of spiking neural P systems are detailed in [15], a dedicated chapter
in the Handbook in [8], and an extensive bibliography until February 2016 in [14].
There are some interesting ingredients we are going to explain here. A broader
explanation of them and more variants is provided at [1, 3, 13].

2.1 Spiking Neural P Systems with Budding

Based on the idea of neuronal budding, where a cell is divided in two new cells, we
can abstract it to budding rules. In this process, the new cells can differ in some
aspects: their connections, contents and shape. A budding rule has the following
form:

[E]i → [ ]i/[ ]j ,

where E is a regular expression and i, j ∈ {1, . . . , q}.
If a neuron σi contains s spikes, as ∈ L(E), and there is no neuron σj such that

there exists a synapse (i, j) in the system, then the rule [E]i → [ ]i/[ ]j is enabled
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and it can be executed. A new neuron σj is created, and both neurons σi and σj
are empty after the execution of the rule. This neuron σi keeps all the synapses
that were going in, and this σj inherits all the synapses that were going out of
σi in the previous configuration. There is also a synapse (i, j) between neurons σi
and σj , and the rest of synapses of σj are given to the neuron depending on the
synapses of syn.

2.2 Spiking Neural P Systems with Division

Inspired by the process of mitosis, division rules have been widely used within the
field of Membrane Computing. In SN P systems, a division rule can be defined as
follows:

[E]i → [ ]j ||[ ]k,

where E is a regular expression and i, j, k ∈ {1, . . . , q}.
If a neuron σi contains s spikes, as ∈ L(E), and there is no neuron σg such

that the synapse (g, i) or (i, g) exists in the system, g ∈ {j, k}, then the rule
[E]i → [ ]j ||[ ]k is enabled and it can be executed. Neuron σi is then divided into
two new cells, σj and σk. The new cells are empty at the time of their creation.
The new neurons keep the synapses previously associated to the original neuron
σi, that is, if there was a synapse from σg to σi, then a new synapse from σg to σj
and a new one to σk are created, and if there was a synapse from σi to σg, then a
new synapse from σj to σg and a new one from σk to σg are created. The rest of
synapses of σj and σk are given by the ones defined in syn.

2.3 Spiking Neural P Systems with Plasticity

It is known that new synapses can be created in the brain thanks to the process
of synaptogenesis. We can recreate this process in the framework of spiking neural
P systems defining plasticity rules in the following form:

E/ac → αk(i,Nj),

where E is a regular expression, c ≥ 1, α ∈ {+,−,±,∓}, k ≥ 1 and Nj ⊆
{1, . . . , q}. For a neuron σi, let us define the presynapses of this neuron as
pres(i) = {j|(i, j) ∈ syn}.

If a neuron σi contains s spikes, as ∈ L(E), then the rule E/ac → αk(i,Nj) is
enabled and can be executed. The rule consumes c spikes and, depending on the
value of α, it performs one of the following:

• If α = + and Nj − pres(i) = ∅, or if α = − and pres(i) = ∅, then there is
nothing more to do.

• If α = + and |Nj−pres(i)| ≤ k, deterministically create a synapse to every σg,
g ∈ Nj − pres(i). Otherwise, if |Nj − pres(i)| > k, then non-deterministically
select k neurons in Nj−pres(i) and create one synapse to each selected neuron.
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• If α = − and |pres(i)| ≤ k, deterministically delete all synapses in pres(i).
Otherwise, if |pres(i)| > k, then non-deterministically select k neurons in
pres(i) and delete each synapse to the selected neurons.

• If α = {±,∓}, create (respectively, delete) synapses at time t and then delete
(resp., create) synapses at time t+ 1. Even when this rule is applied, neurons
are still open, that is, they can continue receiving spikes.

Let us notice that if, for some σi, we apply a plasticity rule with α ∈ {+,±,∓},
when a synapse is created, a spike is sent from σi to the neuron that has
been connected. That is, when σi attaches to σj through this method, we have
immediately transferring one spike to σj .

3 Simulation of SNP Systems

So far, P system parallel simulators make use of ad-hoc representations, specifically
defined for a certain variant [12]. In order to ease the simulation of SNP system and
its deployment to parallel environments, a matrix representation was introduced
[17]. By using a set of algebraic operations, it is possible to reproduce the
transitions of a computation. Although the baseline representation only involves
SNP systems without delays and static structure, many extensions have followed
such as for enabling delays or supporting non-determinism [4, 5].

This representation includes the following vectors and matrices, for a SNP
system π of degree (n,m) (n rules and m neurons):

Configuration vector : Ck is the vector containing all spikes in every neuron
on the kth computation step/time, where C0 denotes the initial configuration. It
contains m elements.

Spiking vector : Sk shows if a rule is going to fire at the transition step k
(having value 1 ) or not (having value 0 ). Given the non-determinism nature of
SNP systems, it would be possible to have a set of valid spiking vectors. However,
for the computation of the next configuration vector, only a spiking vector is used.
It contains n elements.

Spiking transition matrix : Mπ is a matrix comprised of aij elements where aij
is given as

Definition 2.

aij =


−c, rule ri is in σj and is applied consuming c spikes;
p, rule ri is in σs (s 6= j and (s, j) ∈ syn)

and is applied producing p spikes in total;
0, rule ri is in σs (s 6= j and (s, j) /∈ syn).

Thus, rows represent rules and columns represent neurons in the spiking
transition matrix. Note also that a negative entry corresponds to the consumption
of spikes. Thus, it is easy to observe that each row has exactly one negative entry,
and each column has at least one negative entry [17]. It contains n ·m elements.
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Hence, to compute the transition k, it is enough to select a spiking vector Sk
and calculate: Ck = Sk ·Mπ + Ck−1.

4 GPU Computing and SpMV Operations

The Graphics Processing Unit (GPU) has been employed for P system simulations
since the introduction of CUDA . This technology allows to run scientific
computations in parallel on the GPU, given that a device typically contains
thousands of cores and high memory bandwidth [10]. However, parallel computing
on a GPU has more constraints than on a CPU: threads have to run in a SIMD
fashion, accessing data in a coalesced way; that is, best performance is achieved
when the execution of threads is synchronized and accessing contiguous data from
memory.

Some algorithms fit perfectly to the GPU parallel model, such as algebraic
operations. Indeed, matrix computation is a “hello world” when getting started
with CUDA [18], and there are many efficient libraries for algebra computations
like cuBLAS. It is usual that when working with large matrices, these are almost
“empty”, or with a majority of zero values. This is known as sparse matrix, and
this downgrades the runtime in two ways: lot of memory is wasted, and lot of
operations are redundant.

Given the importance of linear algebra in many computational disciplines,
sparse vector-matrix operations (SpMV, in short) have been subject of study in
parallel computing (and so, on GPUs). Today there exists many approaches to
tackle this problem [2]. In this paper, we will focus on two formats to represent
sparse matrices, assuming that threads will access rows in parallel:

• CSR format. Only non-null values are represented by using 3 arrays: row
pointers, non-zero values and columns (see Figure 1 for an example). First,
the row-pointers array is accessed, which contains a position per row of the
original matrix. Each position says the index where the row start in the non-
zero values and columns arrays. The non-zero values and the columns arrays
can be seen as a single array of pairs, since every entry has to be accessed at the
same time. Once a row is indexed, then a loop over the values in that row has
to be performed, so that the corresponding column is found, and therefore, the
value. If the column is not present, then the value is assumed to be zero, since
this data structures contains all non-zero values. The main advantage is that
it is a full-compressed format if NumNonZeroV alues · 2 > NumZeroV alues,
where NumNonZeroV alues and NumZeroV alues are the number of non-zero
and zero values in the original matrix, respectively. However, the drawbacks is
that the search of elements in the non-zero values and columns arrays is not
coalesced when using parallelism per row. Moreover, since it is a full-compressed
format, there is no room for modifying the values, such as introducing new non-
zero values.
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3  0  1  0
0  2  4  1
0  0  0  0
-2 1  5  1

0 2 5 5

3 1 2 4 1 -2 1 5 1

0 2 1 2 3 0 1 2 3

Row pointers:

Non-zero val:

Columns:

Fig. 1: CSR format example

• ELL format. This representation aims at increase the memory coalescing access
of threads in CUDA. This is achieved by using a matrix of pairs, containing
a trimmed, transposed version of the original matrix (see Figure 2 for an
example). Each column of the ELL matrix is devoted for each row of the
matrix, even though the row is empty (all elements are zero). Every element
is a pair, where the first position denotes the column and the second is the
value, of only the non-zero elements in the corresponding row. However, the
size of the matrix is fixed, so the number of columns equals the number of rows
of the original matrix, but the number of rows is the maximum length of a
row in terms of non-zero values; in other words, the maximum amount of non-
zero elements in a row of the original matrix. Rows containing fewer elements
will pad the difference with null elements. The main advantage of this format
is that threads will always access the elements of all rows in coalesced way,
and the null elements padded by short rows can be utilize to incorporate new
data. However, there is a waste of memory, which is worst when the rows are
unbalance in terms of number of zeros.

3  0  1  0
0  2  4  1
0  0  0  0
-2 1  5  1

(0,3) (1,2) X (0,-2)
(2,1) (2,4) X (1,1)

X (3,1) X (2,5)
X X X (3,1)

                      Length of
                            longest row

Column Value

Fig. 2: ELL format example

5 Sparse Matrix Representation of SNP Systems

SNP systems in the literature typically are not fully connected graphs. In such
situations, the transition matrix gets sparse, and therefore, further optimizations
based on SpMV can be conveyed. In the following subsections, we discuss some
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approaches. Of course, if the graph inherent to a SNP system leads to a dense
transition matrix, then a normal format can be employed, because using sparse
formats will increase the memory footprint.

5.1 Approach with ELL Format

The first approach to compress the representation of a sparse transition matrix,
Mπ, is to use the ELL format (see Figure 3 for an example), leading to the
compressed matrix Ms

π. The following aspects have to be taken into consideration:

• The number of rows of Ms
π equals the maximum amount of non-zero values in

a row of Mπ, denoted by Z. It can be shown that Z = MaxOutDegree + 1,
where MaxOutDegree is the maximum output degree found in the neurons
of the SNP system. Z can be derived from the composition of the transition
matrix, where a row devoted for a rule E/ac → ap contains the values +p for
every neuron (columns) to which the neuron it belongs has a synapse, and a
value −c for consuming the spikes in the neuron it belongs.

• The values inside columns can be sorted, so that the consumption of spikes
(−c values) are placed at the first row. In this way, all threads can start with
the same task, consuming spikes.

• Every position of Ms
π is a pair (although not represented in Figure 3), where

the first element is a neuron label, and second is +p.

The idea is to assign a thread to each rule, and so, one per column of the
spiking vector Sk and one per column of Ms

π (real rows of the transition matrix).
For the vector-matrix multiplication, it is enough to iterate Z times (number of
rows in Ms

π). In each iteration, the computed value is added to the corresponding
neuron position in the configuration vector Ck. Since some threads will possibly
write to the same positions in the configuration vector, a solution would be to
use atomic operations, which are available on GPUs to calculate additions, among
others.

5.2 Optimized Approach

If, in general, there are more than one rule in the neurons, lot of threads in
the first approach will be inactive (having a 0 in the spiking vector), causing
branch divergence and non-coalesced memory access. Moreover, note in Figure 3
that columns corresponding to rules belonging to the same neuron will contain
redundant information: the generation of spikes is replicated for all synapses.

Therefore, a more efficient sparse matrix representation can be obtained when
maintaining the synapses separated from the rule information. This can be done
as follows:

• Rule information. By using a CSR-like format (see Figure 4 for an example),
rules of the form E/ac → ap (also forgetting rules are included, assuming
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Spiking vector:

Sparse transition
matrix:

              Z

Fig. 3: Sparse matrix representation of a SNP system based on ELL format

p = 0) can be represented by a double array storing the values c and p (also
the regular expression, but this is required only to select a spiking vector, and
hence is out of scope of this work). A pointer array is employed to relate, for
each neuron, the subset of rules that has associated.

• Synapse matrix, Syπ. It has a column per neuron i, and a row for every neuron j
such that (i, j) ∈ Syn (there is a synapse). That is, every element of the matrix
corresponds to a synapse or null, given that the number of rows equals to the
maximum output degree in the neurons of the SNP system π, and padding is
required.

• Spiking vector is modified, containing only m positions, one per neuron, and
stating which rule 0 ≤ r ≤ n is selected.

The way to operate with this approach is to assign a thread to each column of
the synapse matrix (requiring m threads, one per neuron). Each thread will access
to the corresponding rule stated in the spiking vector, delete c in the configuration
vector Ck, and add p to each neuron defined in synapse matrix in Ck.
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Fig. 4: Optimized sparse matrix representation

5.3 Ideas for Dynamic Networks

The optimized sparse matrix representation discussed in Section 5.2 can be further
extended to support rules that modify the network, such as budding, division or
plasticity.

Figure 5 shows an example on how a budding rule can be supported. First,
the synapse matrix has to be flexible enough to host new neurons. This can
be accomplished by allocating a matrix large enough to populate new neurons
(probably up to fill the whole memory available on the GPU). Thus, for a budding
rule [E]i → []j/[]k, the required operations to modify the synapse matrix are:

1. Allocate a column for the new neuron k.
2. Copy column i to k.
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3. Delete content of column i and add only one element for k.
4. Change label i to j.

This will require to use a map of the column labels of the synapse matrix,
saying to which neuron it corresponds. The same map can be used to index the
rule information structure. A further optimization is to swap the labels i for k
instead of copying the column content. One major drawback of this approach is
that the creation of new neurons cannot run fully in parallel; that is, assigning
new columns to created neurons in a transition step is a serialized process. Some
techniques such as prefix sum can be applied to cope with this issue and convert
a serial process into a logarithmic-step operation.

y

i

x

i

k

k

x

y

Fig. 5: Extension for budding

An example for division rules can be seen in Figure 6. Again, the synapse matrix
has to be extended to contain empty columns to host populated new neurons
during the simulation, and a map of neuron labels have to be managed.

For a division rule [E]i → []j ||[]k, the following operations have to be performed:

1. Allocate a new column for neuron k.
2. Copy column i to k.
3. Change label of i to j.
4. Find all occurrences of i in the synapse matrix, change it for j and add k in

the column.

The last operation can be shown to be very expensive, since it requires to loop
all over the synapse matrix. Moreover, when adding k in all the neurons containing
i in the synapses, it would be possible to exceed the predetermined size Z. For
this situation, a special array of overflows will be needed, like ELL+COO format
for SpMV [2].

Finally, Figure 7 shows an example for plasticity rules. In this case, the
synapse matrix can be allocated in advance to an exact size, since no new neurons
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Fig. 6: Extension for division

are created. However, enough rows Z have to be pre-established to support the
maximum amount of synapses, what can be precomputed by looking to the initial
out degrees of the neurons and the size of the N sets in the plasticity rules for
adding synapses: E/ac → αk(i,Nj), with α = +/± /∓.

The following operations have to be performed to reproduce the behaviour:

1. When deleting synapses, loop Z times to find the corresponding neurons in
the matrix, and set them to null. Holes might appear in the columns.

2. When adding synapses, loop Z times to find holes in the column and add the
corresponding neurons.

Since holes might appear in the columns when deleting synapses, we will need
to loop over Z times every column to compute the next transition, or to add new
synapses. Sorting algorithms can be run in parallel, but most probably it will not
worth the effort.

6 Conclusions and Future Work

In this paper, we have analysed the problem of having sparse matrices in the
matrix representation of SNP systems. Downgrades in the simulator performance
would appear if no solutions are found. However, this is a known issue in other
disciplines, and efficient sparse matrix representations have been introduced in the
literature.

We proposed a two efficient sparse representations for SNP systems, one based
on the classic format ELL, and an optimized one based on CSR and ELL. We also
analysed their behaviour when supporting rules for dynamic networks: division,
budding and plasticity. The representation for plasticity poses more advantages
than the one for division and budding, since the synapse matrix size can be
pre-computed. Thus, no label mapping nor empty columns for new neurons are
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Fig. 7: Extension for plasticity

required. Moreover, simulating the creation of new neurons in parallel can damage
the performance of the simulator significantly, because this operation can be
sequential. Plasticity rules do not create new neurons, so this is avoided.

As future work, we plan to provide implementations of this ideas within cuSNP
framework, and deep analyse the different results with real examples from the
literature. We believe that this ideas will help to bring efficient tools to simulate
SNP systems on GPUs, enabling the simulation of large networks in parallel.
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Summary. P systems with active membranes is a widely studied framework within the
field of Membrane Computing since the creation of the discipline. The abstraction of the
structure and behavior of living cells is reflected in the tree-like hierarchy and the kinds
of rules that can be used in these kinds of systems.

Resembling the organization and communication between cells within tissues
that form organs, tissue-like P systems were defined as their abstractions, using
symport/antiport rules, that is, moving and exchanging elements from one cell to an-
other one. All the cells are located in an environment where there exist an arbitrary
number of some elements.

Lately, symport/antiport rules have been used in the framework of cell-like mem-
brane systems in order to study their computational power. Interesting results have been
reached, since they act similarly to their counterparts in the framework of tissue P sys-
tems.

Here, the use of the former defined rules (that is, evolution, communication, dis-
solution and division/separation rules) is considered, but not working with a tree-like
structure. Some remarks about choosing good semantics are given.

Key words: Membrane Computing, Active cells, Computational Complexity, P
versus NP problem.

1 Introduction

Membrane Computing is a distributed parallel computing paradigm inspired by the
way the living cells process chemical substances, energy and information. The pro-
cessor units in the basic model are abstractions of biological membranes, selectively
permeable barriers which give cells their outer boundaries (plasma membranes)
and their inner compartments (organelles). They control the flow of information
between cells and the movement of substances into and out of cells and they are
also involved in the capture and release of energy. Biological membranes play an
active part in the life of the cell. In fact, the passing of a chemical substance
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through a biological membrane is often implemented by an interaction between
the membrane itself and the protein channels present in it. During this interac-
tion, the chemical substance and the membrane itself can be modified at least
locally.

P systems with active membranes [7] include rules inspired on the behavior of
the proteins inside the cells. Recalling, evolution rules are the abstraction of the
mutation of the chemical compounds within singular organelles, communication
rules give us the idea of the transport of the proteins through the membranes of
the cells, dissolution rules remember the process of apoptosis, which makes the cell
to “kill itself” (in this case, we take the inspiration and apply it to membranes).
At last, division and separation rules are the rules that can create an exponential
workspace in polynomial time. These are inspired by the asexual and sexual cell
processes, that give birth to new cells.

All of those rules can be successfully applied in the framework of tissue-like P
systems. Moreover, it would be a more natural way to describe the functioning of
these rules at the cells that in the membranes. As an analogy to P systems with
active membranes, we are going to call them P systems with active cells

The paper is organized as follows. Next section briefly introduces some prelimi-
naries needed to make the work self-contained. Section 3 will be devoted to present
both syntax and semantics of tissue-like P systems with active cells, letting Sec-
tion 4 dedicated to present some results concerning the computational complexity
classes reached by this kind of membrane systems. The paper ends with some open
problems and concluding remarks.

2 Preliminaries

An alphabet Γ is a non-empty set and their elements are called symbols. A string u
over Γ is an ordered finite sequence of symbols, that is, a mapping from a natural
number of n ∈ N onto Γ . The number n is called the length of the string u and it
is denoted by |u|. The empty string (with length 0) is denoted by λ. The set of all
strings over an alphabet Γ is denoted by Γ ∗. A language over Γ is a subset of Γ ∗.

A multiset over an alphabet Γ is an ordered pair (Γ, f) where f is a mapping
from Γ onto the set of natural numbers N. The support of a multiset m = (Γ, f)
is defined as supp(m) = {x ∈ Γ |f(x) > 0}. A multiset is finite (respectively,
empty) if its support is a finite (respectively, empty) set. We denote by ∅ the
empty multiset. We denote by Mf (Γ ) the set of all finite multisets over Γ . The
cardinal of a finite multiset m is defined as

∑
x∈Γ

m(x).

Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets over Γ , then the union of m1 and
m2, denoted by m1 + m2, is the multiset (Γ, g), where g(x) = f1(x) + f2(x) for
each x ∈ Γ . We say that m1 is contained in m2 and we denote it by m1 ⊆ m2, if
f1(x) ≤ f2(x) for each x ∈ Γ . The relative complement of m2 in m1, denoted by
m1 \m2, is the multiset (Γ, g), where g(x) = f1(x) − f2(x) if f1(x) ≥ f2(x), and
g(x) = 0 otherwise.
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A rooted tree is a connected, acyclic, undirected graph in which one of the
vertices (called the root of the tree) is distinguished from the others. Given a node
x (different from the root) in a rooted tree, if the last edge on the (unique) path
from the root to the node x is {x, y} (so x ̸= y), then y is the parent of node x
and x is a child of node y. We denote it by y = p(x) and x ∈ ch(y). The root is
the only node in the tree with no parent. A node with no children is called a leaf
(see [2] for details).

Let us recall that the pair function ⟨n,m⟩ = ((n + m)(n + m + 1)/2) + n is
a polynomial-time computable function which is also a primitive recursive and
bijective function from N× N to N.

A decision problem X is one whose solution is either “yes” or “no”. This can
be formally defined by an ordered pair (IX , θX), where IX is a language over a
finite alphabet and θX is a total boolean function over IX . The elements of IX are
called instances of the problem X.

2.1 Recognizer membrane systems

In this section, a membrane system designates any variant of P system. Recognizer
membrane systems were introduced in [4] and they provide a natural framework
to solve decision problems by means of devices in Membrane Computing.

Definition 1. A membrane system Π is a recognizer membrane system if the fol-
lowing holds:

1. The working alphabet Γ of Π has two distinguished objects yes and no.
2. There exists an (input) alphabet Σ strictly contained in Γ .
3. The initial multisetsM1, . . . ,Mq of Π are multisets over Γ \Σ.
4. There exists a distinguished membrane called the input membrane.
5. The output region iout is the environment.
6. All computations halt.
7. If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the environment, and only at the last step of the
computation.

In recognizer membrane systems any computation is either an accepting com-
putation (when object yes is released into the environment at the last step).

For each finite multiset m over the input alphabet Σ, the computation of the
system Π with input m starts from the configuration obtained by adding the input
multiset m to the contents of the input membrane, in the initial configuration of
Π. Therefore, in this kind of systems we have an initial configuration associated
with each input miltiset m (over the input alphabet Σ). We denote Π + m the
membrane system Π with input multiset m.
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2.2 Polynomial complexity classes of recognizer membrane systems

Next, let us recall the concept of efficient solvability by means of a family of
recognizer membrane systems (see [4] for more details).

Definition 2. A decision problem X = (IX , θX) is solvable in polynomial time by
a family Π = {Π(n)|n ∈ N} of recognizer membrane systems from a class R, in a
uniform way, denoted by X ∈ PMCR, if the following statements hold:

• the family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N;
• there exists a pair (cod, s) of polynomial-time computable functions over the
set IX such that:
– for each instance u ∈ IX , s(u) is a natural number and cod(u) is the input
multiset of the system Π(s(u));

– for each n ∈ N, s−1(n) is a finite set;
– the family Π is polynomially bounded with regard to (X, cod, s), that is,
there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u))+ cod(u) is halting and it performs at most p(|u|);

– the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX , if
there exists an accepting computation of Π(s(u))+cod(u), then θX(u) = 1;

– the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) + cod(u) is an accepting
one.

The polynomial complexity class PMCR is closed under polynomial-time reduc-
tion and under complement [5].

3 Tissue-like P Systems with Active Cells

This new kind of P systems keeps the inspiration keeps the foundations of classical
tissue P systems, that is, the exchange of elements between the cells. Here, instead
of the use of symport/antiport rules, we are going to introduce the application of
the rules typically used in cell-like P systems with active membranes.

3.1 Syntax

Definition 3. A tissue-like P system with active membranes and separation rules
of degree q ≥ 1 is a tuple (Γ, Γ0, Γ1, H,H0,H1, µ,M1, . . . ,Mq,R, iout), where:

• Γ is a finite alphabet and H = {1, . . . , q};
• {Γ0, Γ1} is a partition of Γ and {H0,H1} is a partition of H;
• M1, . . . ,Mq are finite multisets over Γ ;
• R is a finite set of rules over Γ of the following forms:
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(a) [a → u]αh for h ∈ H,α ∈ {+,−, 0}, a ∈ Γ, u ∈ Mf (Γ ) (object evolution
rules).

(b) a [ ]α1

h → [ b ]α2

h for h ∈ H,α1, α2 ∈ {+,−, 0}, a, b ∈ Γ (send-in commu-
nication rules).

(c) [ a ]α1

h → b [ ]α2

h for h ∈ H,α1, α2 ∈ {+,−, 0}, a, b ∈ Γ (send-out com-
munication rules).

(d) [ a ]αh → b for h ∈ H,α ∈ {+,−, 0}, a, b ∈ Γ (dissolution rules).
(e) [ a ]α1

h → [ b ]α2

h [ c ]α3

h for h ∈ H,α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ Γ (division
rules for elementary membranes).

(e) [ a ]α1

h → [ Γ0 ]α2

h [ Γ1 ]α3

h for h ∈ H,α1, α2, α3 ∈ {+,−, 0}, a ∈ Γ (separa-
tion rules for elementary membranes).

(f) [[ ]α1

h0
[ ]α2

h1
]αh → [[ ]α3

h0
]α5

h [[ ]α4

h1
]α6

h for h, h0, h1 ∈ H,
α, α1, α2, α3, α4, α5, α6 ∈ {+,−, 0} (division rules for non-elementary
membranes).

(f) [[ ]α1

h0
[ ]α2

h1
]αh → [Γ0[ ]α3

h0
]α5

h [Γ1[ ]α4

h1
]α6

h for h ∈ H,h0 ∈ H0, h1 ∈ H1,
α, α1, α2, α3, α4, α5, α6 ∈ {+,−, 0} (separation rules for
non-elementary membranes).

• iout ∈ H ∪ {env}, where env ̸∈ Γ ∪H.

A tissue-like P system with active cells of degre q ≥ 1 can be viewed as a set
of q cells, labelled by elements of H, arranged in a directed structure µ given by a
directed graph (the cell structure) whose nodes h that have outdegree(h) = 0 are
called elementary cells, such that: (a) M1, . . . ,Mq represent the finite multisets
of objects (symbols of the working alphabet Γ ) initially placed in the q cells of the
system; (b) R is a finite set of rules over Γ associated with the system; and (c)
iout ∈ H ∪ {env} indicates the output region. We use the term region i to refer
to cell i in the case i ∈ H and to refer to the “environment” of the system in the
case i = env. If the membrane system makes no use of separation rules for non-
elementary cells, then sets H0 and H1 will be omited. If separation rules either for
elementary and non-elementary cells are not used, then we can omit either the sets
H0 and H1 and Γ0 and Γ1. The length of a rule is the number of objects involved
in it (for instance, the length of the object evolution rule [ a→ u ]αh is 1 + |u|. Let
us notice that in this framework we can change (classical) object evolution rules
by cooperative evolution rules (see [11] for more details).

For each cell h different for cells h with indegree(h) ̸= 0, we denote p(h)
the label of the parent of h in µ. By convention, the “parent” of cells h with
indegree(h) = 0 is the environment of the system

3.2 Semantics

An instantaneous description or a configuration Ct at an instant t of a P system
with active cells is described by the cell structure at instant t and all multisets
of objects over Γ associated with all the membranes present in the system at the
moment.
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An object evolution rule [a → u]αh is applicable to a configuration Ct at an
instant t, if there exists a cell labelled by h with polarization α in Ct which contains
object a. When applying such a rule, object a is consumed and all objects from
multiset u are produced in that membrane.

A send-in communication rule a [ ]α1

h → [ b ]α2

h is applicable to a configuration
Ct at an instant t, if there exists a cell labelled by h with polarization α1 in Ct such
that indegree(h) > 0 and its parent one of its parent cells contain object a. When
applying such a rule, object a is consumed from the selected parent cell and object
b is produced in the corresponding cell h, and the polarization of cell h changes to
α2.

A send-out communication rule [ a ]α1

h → b [ ]α2

h is applicable to a configuration
Ct at an instant t, if there exists a cell labelled by h with polarization α1 in Ct
such that it contains object a. When applying such a rule, object a is consumed
from such cell and object b is produced in the one of its parent cells chosen in a
non-deterministic way, and the polarization of cell h changes to α2.

A dissolution rule [ a ]αh → b is applicable to a configuration Ct at an instant
t, if there exists a cell labelled by h with polarization α in Ct, different from the
output region, such that it contains object a. When applying such a rule, object a
is consumed, cell h is dissolved and its objects are sent to one of the parents cells,
chosen non-deterministically (or ancestors that have not been dissolved). For all
h′ such that f(h′) = h and h′′ such that f(h) = h′′, when h is dissolved, then new
edges from all h′′ to all h′ are created, and edges from h′′ to h and from h to h′

are removed.
A division rule [ a ]α1

h → [ b ]α2

h [ c ]α3

h is applicable to a configuration Ct at an
instant t, if there exists a cell labelled by h with polarization α1 in Ct, different
from the output region, such that it is an elementary cell and contains object a.
When applying such a rule, the cell is divided into two cells with the same label,
one with polarization α1 and the other one with polarization α2; at the same time,
object a is consumed and object b appears in the first cell, and c in the second
one, and the remaining objects get duplicated in the two created cells. For all h′

such that f(h′) = h and h′′ such that f(h) = h′′, when h is dissolved, then edges
from all h′′ to h and from h to h′ are duplicated.

A separation rule [ a ]α1

h → [ Γ0 ]α2

h [ Γ1 ]α3

h is applicable to a configuration Ct at
an instant t, if there exists a cell labelled by h with polarization α1 in Ct, different
from the output region, such that it is an elementary cell and contains object
a. When applying such a rule, the cell is separated into two cells with the same
label, one with polarization α1 and the other one with polarization α2; at the same
time, object a is consumed and the multiset of objects contained in membrane h
get distributed: the objects from Γ0 are placed in one cell, those from Γ1 are placed
in the second one. For all h′ such that f(h′) = h and h′′ such that f(h) = h′′,
when h is dissolved, then edges from all h′′ to h and from h to h′ are duplicated.

A division rule [[ ]α1

h0
[ ]α2

h1
]αh → [[ ]α3

h0
]α5

h [[ ]α4

h1
]α6

h is applicable to a configu-
ration Ct at an instant t, if there exists a cell labelled by h with polarization α in
Ct, different from the output region, such that it is the parent of a cell labelled by
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h0 with polarization α1 and of another cell labelled by h1 with polarization α2.
When applying such a division rule to a cell labelled by h in a configuration Ct,
that cell is divided into two cells with the same label with polarizations α5 and
α6, in such a way that the contents (multiset of objects) and relations (children
and parent cells) are duplicated into the two new cells, except from cells labelled
by h0, that becomes a child cell of the first one, with polarization α3, and h1, that
becomes a child cell of the second one, with polarization α4. For all h

′ such that
f(h′) = h and h′′ such that f(h) = h′′, when h is dissolved, then edges from all h′′

to h and from h to h′ are duplicated (except for edges from h to h0 and h1, which
ones remains one for each new created cell).

A separation rule [[ ]α1

h0
[ ]α2

h1
]αh → [Γ0[ ]α3

h0
]α5

h [Γ1[ ]α4

h1
]α6

h is applicable to a
configuration Ct at an instant t, if there exists a cell labelled by h with polarization
α in Ct, different from the output region, such that it is the parent of a cell labelled
by h0 with polarization α1 and of another cell labelled by h1 with polarization α2.
When applying such a separation rule to a cell labelled by h in a configuration Ct,
that cell is separated into two cells with the same label with polarizations α5 and
α6, in such a way that the contents (multisets of objects) and relations (children
cells) are distributed as follows: The first cell receives the multiset of objects from
Γ0, and all child cells whose label belongs to H0; and the second cell receives the
multiset of objects from Γ1, and all child cells whose label belongs to H1. For all h

′

such that f(h′) = h and h′′ such that f(h) = h′′, when h is dissolved, then edges
from all h′′ to h are duplicated, and edges from h to h′ are distributed depending
on whether they belong to H0 or H1.

In tissue-like P systems with active cells, the rules are applied according to the
following principles:

• The rules associated with membranes labelled with h are used for all copies of
this membrane.
• At one transition step, one object can be used by only one rule (chosen in a
non-deterministic way).
• At one transition step, a cell can be subject of only one rule of types (b)–(f),
and then it is applied at most once.
• Object evolution rules can be simultaneously applied to a cell with one rule
of types (b)–(f). Object evolution rules are applied in a maximally parallel
manner.
• If at the same time a membrane labelled with h is divided/separated by a rule
of type (e) or (f) and there are objects in this cells which evolve by means of
rules of type (a), then we suppose that first the evolution rules of type (a) are
used, changing the objects, and then the separation is produced. Of course,
this process takes only one transition step.
• Output cell can never get divided, separated, nor dissolved.

Let us consider a tissue-like P systems with active cells Π We say that configu-
ration Ct yields configuration Ct+1 in one transition step, denoted by Ct ⇒Π Ct+1,
if we can pass from Ct to Ct+1 by applying the rules from the system following the
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previous remarks. A computation of Π is a (finite or infinite) sequence of configura-
tions such that: (a) the first term is the initial configuration of the system; (b) for
each n ≥ 1, the n-th configuration of the sequence is obtained from the previous
configuration in one transition step; and (c) if the sequence is finite (called halting
computation) then the last term is a halting configuration (a configuration where
no rule of the system is applicable to it).

All computations start from an initial configuration and proceed as stated
above; only halting computations give a result, which is encoded by the objects
present in the output region iout associated with the halting configuration. If
C = {Ct}t<r+1 of Π (r ∈ N) is a halting computation, then the length of C, denoted
by |C|, is r, that is, |C| is the number of non-initial configurations which appear in
the finite sequence C. For each i (1 ≤ i ≤ q) we denote by Ct(i) the finite multiset
of objects over Γ contained in all cells labelled by i (by applying division or sep-
aration rules different cells with the same label can be created) at configuration Ct.

3.3 Families of tissue-like P systems with active cells

We use the following notations:

• NAC(α, β, δ), where α ∈ {+e,−e}, β ∈ {+c,−c} and δ ∈ {+d,−d}, is the
class of all recognizer P systems with active cells without using division nor
separation rules.
• DAC(α, β, δ, γ), where α ∈ {+e,−e}, β ∈ {+c,−c}, δ ∈ {+d,−d} and α ∈
{+n,−n},is the class of all recognizer P systems with active cells and division
rules.
• SAC(α, β, δ, γ), where α ∈ {+e,−e}, β ∈ {+c,−c}, δ ∈ {+d,−d} and
α ∈ {+n,−n},is the class of all recognizer P systems with active cells and
separation rules.

The meaning of parameters is the following:

• if α = +e (resp., −e) then evolution rules are permitted (resp., forbidden).
• if α = +c (resp., −c) then communication rules are permitted (resp., forbid-
den).
• if α = +d (resp., −d) then dissolution rules are permitted (resp., forbidden).
• if α = +n (resp., −n) then division/separation rules for elementary and non-
elementary cells are permitted (resp., only division/separation rules for ele-
mentary cells are permitted).

3.4 Another (not so relevant) approach

One question discussed when this framework was being created was:

In tissue-like membrane systems, the natural definition would be the one where
when we do a communication rule, the cell interacts the environment (objects go
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to the environment in send-out communication rules and comes from it in
send-in communication rules. The same goes to dissolution rules, that is, when a

cell dissolves, its contents go to the environment.

This definition seems the best in order to capture the behavior of tissue P
systems. But because of the simple structure created, it has little interest regarding
the computational complexity of these systems.

If this kind of systems is defined, we can suppose that there are q cells disposed
in the environment, and they can interact with it through communication and
dissolution rules. But we can simulate this behavior with P systems with active
membranes with q+1 membranes, where q membranes are situated within one that
acts as the environment in the previous system. So complexity classes where these
families of P systems were involved in would be weaker than classical P systems
with active membranes, therefore it will not be considered.

4 Some Results About Computational Complexity

First of all, it is easy to see that every P system with active cells is at least as pow-
erful as its active membranes counterpart. It can be proved because every P system
with active membranes structure is defined by a rooted tree µ. A tree is a particular
case of a graph, where cycles are not allowed. For every P system with active mem-
branes, we can define a P system with active cells that simulates its behavior. Let
Π = (Γ, Γ0, Γ1,H,H0,H1, µ,M1, . . . ,Mq,R, iout) a P system with active mem-
branes. We can create (in polynomial time) a P system with active membrane that
simulates its behavior. Let Π ′ = (Γ, Γ0, Γ1,H,H0, H1, µ

′,M1, . . . ,Mq,R, iout) be
the P system with active cells that simulates its behavior. µ′ is constructed as
follows:

• Let µ′ be a single node h, where h is the label of the skin membrane of Π.
• For every membrane h′ situated within another membrane h in Π, we create
a node h′ in µ′ and add an edge from h to h′.

The directed graph obtained has the shape of a directed rooted tree, and as it has
the same set of rules, semantics of the system makes Π ′ simulate the behavior of
Π ′. We can conclude with:

Theorem 1. PMCAM(α,β,δ,γ) ⊆ PMCAC(α,β,δ,γ),

no matter which kinds of rules we are using.

4.1 Some complexity classes

As it happened with P systems with active membranes, we can use the Milano
Theorem [14] to state that no computationally hard problems can be solved in
polynomial time without using rules allowing the generation of an exponential
number of membranes/cells in polynomial time. Then:



184 D. Orellana-Mart́ın

Theorem 2. P = PMCNAC

In [8, 9], an upper bound of the complexity of P systems with active membranes
was given. In fact, algorithms used there did not complain about the “direction of
the edges” in the graph defining the systems, so the same technique can be used
here.

Theorem 3. PSPACE = PMCDAC(+e,+c,+d,+n)

In fact, we can use this technique to define an upper bound for systems that
use separation rules instead of division rules.

Theorem 4. PMCSAM(+e,+c,+d,+n) ∪PMCSAC(+e,+c,+d,+n) ⊆ PSPACE

4.2 Polarizationless P systems with active cells

In previous works, P systems with active membranes were demonstrated to be
too powerful in order to obtain new frontiers to tackle the problem P vs. NP. In
order to obtain less powerful systems, polarizationes were avoided, giving place
to polarizationless P systems with active membranes. Some frontiers of efficiency
were obtained in this new framework. We can do the same in P systems with active
cells, so we would obtain polarizationless P systems with active cells. These systems
are defined as polarizationless P systems with active membranes are defined to P
systems with active membranes.

We use the following notations:

• DAC0(α, β, δ, γ), where α ∈ {+e,−e}, β ∈ {+c,−c}, δ ∈ {+d,−d} and α ∈
{+n,−n},is the class of all recognizer polarizationless P systems with active
cells and division rules.
• SAC0(α, β, δ, γ), where α ∈ {+e,−e}, β ∈ {+c,−c}, δ ∈ {+d,−d} and α ∈
{+n,−n},is the class of all recognizer polarizationless P systems with active
cells and separation rules.

The meaning of parameters is the same than before.

In [3, 12] that families of P systems which make no use of dissolution rules
can only solve tractable problems in an efficient way. The technique used is the
dependency graph technique, and we can adapt it to P systems with active cells,
so:

Theorem 5. P = PMCDAC0(+e,+c,−d,+n) = PMCSAC0(+e,+c,−d,+n)

Proof. Here, the creation of the graph differs from the original one since a cell can
have two parent cells, unlike in active membranes, where each membrane could
have at most one parent membrane. So, we have to contemplate this in the next
algorithm:

Input: Π (with R as its set of rules and H as its label set)
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VΠ ← ∅; EΠ ← ∅
for each rule r ∈ R of Π do

if r = [ a→ u ]h ∧ alph(u) = {a1, . . . , as} then
VΠ ← VΠ ∪

s∑
j=1

{(a, h), (aj , h)}

EΠ ← EΠ ∪
s∑

j=1

{((a, h), (aj , h))}

else if r = [ a ]h → b [ ]h then

VΠ ← VΠ ∪
∑

h′=f(h)

{(a, h), (b, h′)}

EΠ ← EΠ ∪
∑

h′=f(h)

{((a, h), (b, h′))}

else if r = a [ ]h → [ b ]h then

VΠ ← VΠ ∪
∑

h=f(h′)

{(a, h), (b, h′)}

EΠ ← EΠ ∪
∑

h=f(h′)

{((a, h), (b, h′))}

else if r = [ a ]h → [ b ]h[ c ]h then

VΠ ← VΠ ∪ {(a, h), (b, h), (c, h)}
EΠ ← EΠ ∪ {((a, h), (b, h)), (a, h), (c, h)}

else if r = [ a ]h → [ Γ0 ]h[ Γ1 ]h then

VΠ ← VΠ ∪ {(a, h)}
The running time of this algorithm is bounded by O(|R| · q), where q is the

value max(max{length(r) : r ∈ R}, |H|). The rest of the demonstration is similiar
to the given in [3, 12].

�

In [1], a uniform solution to QSAT problem was given with polarizationless P
systems with active membranes that make use of dissolution and division rules
for elementary and non-elementary membranes. This solution, of course, can be
adapted to polarizationless P systems with active cells. Thus:

Theorem 6. PSPACE = PMCDAC0(+e,+c,+d,+n)

Here, a new version of the Păun’s conjecture can be outlined:

P
?
= PMCDAC0(+e,+c,+d,−n)

4.3 Minimal cooperation in polarizationless P systems with active
membranes

Some interesting results have been reached in the framework of P systems with
active membranes when minimal cooperation has been introduced. That is, with
this kind of rules, we can make the objects in the regions collaborate with each
other. The term minimal tell us that the left part of a rule can have at most two
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objects, but even with this restriction, these systems are powerful enough to solve
computationally hard problems.

In the context of polarizationless P systems with active cells, the following
kinds of minimal cooperation in object evolution rules are considered.

• Primary minimal cooperation (pmc): object evolution rules are of the form
[ u→ v ]h, where h ∈ H, u, v are multisets over Γ , and 1 ≤ |u|, |v| ≤ 2, but at
least one object evolution rule verifies |u| = 2.
• Bounded minimal cooperation (bmc): object evolution rules are of the form
[ u→ v ]h, where h ∈ H, u, v are multisets over Γ , and 1 ≤ |u| ≤ |v| ≤ 2, but
at least one object evolution rule verifies |u| = 2.
• Minimal cooperation and minimal production (mcmp): object evolution rules
are of the form [ a → b ]h, [ a → b ]h, where h ∈ H, a, b, c ∈ Γ , but at least
one object evolution rule is of the second type.

We use the same notations that in polarizationless P systems with active cells
(that make use of classical object evolution rules), but now α ∈ {pmc, bmc,mcmp}.

In [10], the use of bounded minimal cooperation were demonstrated to be strong
enough to solve NP-complete problems.

Theorem 7. NP ∪ co−NP ⊆ PMCDAC0(bmc,+c,−d,−n)

In [13], this result was improved by using mcmp rules, that is:

Theorem 8. NP ∪ co−NP ⊆ PMCDAC0(mcmp,+c,−d,−n)

Nevertheless, it is different when we use separation rules instead of division
rules. In this framework, it was demonstrated in [11] that the use of bounded
minimal cooperation is not powerful enough to solve NP-complete problems. It
was demonstrated with the algorithmic technique, and in this case we can adapt
the algorithm to deal with polarizationless P systems with active cells.

Theorem 9. P = PMCSAC0(bmc,+c,+d,+n)

Bearing in mind that minimal cooperation with minimal production in object
evolution rules is a particular case of bounded minimal cooperation, we deduce
the following result:

Theorem 10. P = PMCSAC0(mcmp,+c,+d,+n)

In order to obtain efficient solutions to presumably intractable problems in the
framework of polarizationless P systems with active cells, we have to make use of
primary minimal cooperation. We can use the same solution to SAT problem that
in [12], therefore:

Theorem 11. NP ∪ co−NP ⊆ PMCSAC0(pmc,+c,−d,−n)



P Systems with Active Cells 187

5 Conclusions

In this work, we present a new kind of families of P systems, the so-called P
systems with active cells. The union of the syntax and semantics of P systems
with active membranes and the structure of tissue-like P systems give this kind of
membrane systems some interesting properties. It is useful in order to obtain new
frontiers of efficiency regarding the direction of the edges. We can see P systems
with active membranes as directed graphs that have edges in only one direction. If
we remove the restriction of the direction of the edges, we obtain P systems with
active membranes. It is no surprising that these membrane systems are at least as
powerful as the former ones.

Some classical results in P systems with active membranes are reviewed to
obtain their equivalent when we are treating with P systems with active cells.
Both systems with polarizations and polarizationless ones are studied, giving an
upper bound of them and, like in the framework of active membranes, isPSPACE.

Minimal cooperation have been recently investigated to study its relevance in
the power of polarizationless P systems with active membranes, and here we give
their counterpart active cells definitions. All the results given here are quite similar
to their active membranes counterparts, therefore a first question appear:

• Does the direction matter? That is, does:

PMCAM(α,β,δ,γ) = PMCAC(α,β,δ,γ)

remains?
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Summary. Major efforts have been made along the last decade on the modelling and
simulation of phenomena within areas such as Biochemistry, Ecology or Robotics, pro-
viding solutions for relevant problems (signalling pathways, population dynamics or logic
gene networks, or robot control and planning, among others). However, other areas ini-
tially explored have not received the same amount of attention. This is the case of compu-
tational economics, where an initial model of the so-called producer-retailer problem was
proposed by Gh. and R. Păun making use of membrane computing modelling and simu-
lation tools. In the present paper, we start designing a solution for that problem based on
PDP systems, obtaining results comparable with the foundational paper. Then, an en-
hanced and enriched model is proposed, including several economic issues not considered
in the initial model as: depreciation of production capacity, capacity increase decision
mechanism, dividends payment and costs associated to production factors. Additionally,
both models have been simulated making use of the framework provided by P-Lingua and
MeCoSim, and delivering a custom application based on them to reproduce the virtual
experiments. Finally, several scenarios have been analysed focusing on different elements
included in the model.

Key words: Membrane Computing, Economy, producer-retailer problem, Com-
putational Modelling, PDP Systems

1 Introduction

The main goal of this paper is to extend the success obtained by membrane com-
puting as a modelling tool in different fields to a less explored one, as computa-
tional economics. In the context of the so-called producer-retailer problem, mul-
tiset rewriting rules for modelling some economic processes were proposed [10],
mainly for production of goods from raw material, reception of orders from con-
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sumers and purchase transactions. Also, basic numerical evolution of this system
was suggested.

The paper mentioned implied a great starting point to show the capabilities of
the paradigm in certain fields, but it was not focused on the reproducibility with
specific conceptual and software tools. Thus, there were no indications for the
reader about the specific framework within membrane computing used to obtain
the results presented, neither hints about the membrane structure underlying the
system nor the rest of the implementation details.

In order to reinforce the interest in Computational Economics as a promising
research path within the applications of Membrane computing, the present paper
details the implementation of a PDP system that replicates the results obtained by
Gh. and R. Păun. We call this model “Initial producer-retailer model”, explaining
in depth its design in Section 3, right after introducing the context of this work
in Section 2. Once obtained this first result, we propose an “Enhanced producer-
retailer model” in Section 4, including several economic issues not considered in
the initial model. In both cases, implementation details are provided, along with
the analyses of the results obtained under different scenarios. Finally, we outline
the main conclusions of this work in Section 5.

2 Preliminaries

This section starts introducing the topic of computational modelling, discussing
some widely spread approaches and the choice made with membrane computing.
More specifically, it will present the framework of PDP systems, used to model
the economic processes presented at the end of the section.

2.1 Modelling approaches

Traditionally, biological systems have been mainly modelled using ordinary differ-
ential equations. This approach has several drawbacks: model complexity usually
requires a numerical approach; model extension or improvements requires a re-
construction of the model from scratch and difficulties arise handling cases when
objects appear in a reduced number of copies or processes have a strong discrete
nature.

On the contrary, membrane computing [9] has many advantages for modelling
systems. It presents a high degree of generality as a modelling framework (objects,
multisets and evolution rewriting rules can be used to model many different situa-
tions). It is easy to add any number of membranes and/or evolution rules without
essentially changing the type of P system. This modularity allows to introduce
extensions or improvements to the model. Additionally, parallelism is introduced
in a natural way in the model, and there are no limits to the number of variables
interacting simultaneously.

Due to these previous properties, membrane computing has been applied with
great success for modelling biological systems, both at a micro level, for cellular
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reactions [3], and at macro level, for population dynamics [2]. Although there
is a wide variety of ecosystems, they share many basic common features: there
are several species interacting and a huge number of members of each one; the
cyclic repetition of basic processes as feeding, growing, reproduction and death
and environment influences on the system evolution.

The following section will present th framework of PDP systems, used to model
the phenomena studied along this work.

2.2 Population Dynamic P systems

PDP Systems (Population Dynamic P system) were developed to consider the
computational impact of the previous issues [4]. Formally, a PDP system of degree
(q,m) and T ≥ 1 units of time is a tuple Π = (G,Γ,Σ, T, {Πk : 1 ≤ k ≤ m}, {Ej :
1 ≤ j ≤ m}, RE), where:

• G = (V, S) is a directed graph with m ≥ 1. V = {e1, , em}.
• Γ and Σ are alphabets such that Σ ( Γ .
• T ≥ 1, n ≥ 1 are natural numbers.
• ∀k, 1 ≤ k ≤ m,Πk = (Γ, µ,M1, · · · ,Mq,R, iin), where:

– µ is a rooted tree with q ≥ 1 nodes labelled with elements of {1, · · · , q} ×
{0,+,−}.

– ∀i, 1 ≤ i ≤ q,Mi ∈Mf (Γ ).

– R is a finite set of rules of the type: u[v]αi
p−−−→u′[v′]α

′

i , where u, v, u′, v′ ∈
Mf (Γ ), 1 ≤ i ≤ q, α, α′ ∈ {0,+,−}, and p is a probability function with
domain {0, · · · , T}. Also, the sum of probabilities of rules whose left hand
side (LHS) is u[v]αi is 1 at each instant t(0 ≤ t ≤ T ).

– iin is a node of µ.
• ∀j, 1 ≤ j ≤ m,Ej ∈Mf (Σ).
• RE is a finite set of environment rules of the type:

(x)ej
p1−−−→(y1)ej,1 , · · · , (yh)ej,h , where x, y1, · · · , yh ∈ Σ, {(ej , ej,i) ∈

S, 1 ≤ j ≤ m, 1 ≤ i ≤ h}, and p1 is a probability function with domain
{0, · · · , T}. Also, at each instant t, with 0 ≤ t ≤ T , the sum of all probability
function values associated to rules whose LHS is (x)ej must be 1.

• There are no rules of the type u[v]αi
p−−−→u′[v′]α

′

i in the skin membrane of

P Systems and environment rules of the type: (x)ej
p1−−−→(y1)ej,1 , · · · , (yh)ej,h

such that x ∈ u.
• Each environment ej contains exactly one system Πk.

Therefore, A PDP system Π of degree (q,m) presents m environments
e1, · · · , em interconnected by edges of a directed graph G. Each of these envi-
ronments ej can only contain symbols of alphabet Σ, and a unique ordinary P
System Πk = (Γ, µ,M1, · · · ,Mq,R, iin) with this same skeleton inside each envi-
ronment, but such that the initial multisets of Πk depend on ej and the probability
functions associated with rules of Πk depend on ej . Finally, the semantics of PDP
systems depends on the algorithm of simulation.
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2.3 Economic process modeling

Traditionally, economics processes have been modelled using differential equation
systems. Although these modelling techniques are predominant, many efforts have
been made to investigate other techniques such as multi-agent techniques [5]. Due
to the good performance of PDP systems modeling dynamics of biological sys-
tems, many researchers have proposed the idea of using membrane computing in
modeling economic processes [7, 8, 1, 10, 11].

A parallelism between biological and economic processes can be identified, as
Păun analyses in [10]. Many elements of membrane computing can be interpreted
in economic terms. An object can represent any unit of a generic item involved
in different economic processes. Also, they can represent elements of diverse na-
ture: material good, monetary units, depreciation representation, authorization
for transactions, caps of production, etc. A membrane can be any entity as pro-
ducer, consumers, markets, whole economy or any other element interacting with
another one. As usual in P systems, any membrane has objects associated with
it. Objects can have multiplicities greater than one, so a natural way or handling
them is to use multisets. Finally, multiset rewriting rules can model different kind
of interactions between objects of different or the same membrane and they can
represent a huge variety of processes as purchase transactions, production of goods
or depreciation phenomena.

3 Initial Retailer Producer model

This section will explore in certain detail some usual economic phenomena, through
the reference problem well known as “Retailer-producer” problem. After its general
description, the formal model designed is presented, along with the interpretation
of the elements included, the parameters involved and the deep analysis of the
different modules of rules involved in the evolution of the system. Finally, the
simulation results are shown and analysed.

3.1 General description

Informally, the retailer-producer problem can be described as a one good market
with several players interacting with each other. A set of producers Pi that trans-
form raw material produced by a generic source S into units of good d and a set of
retailers Rj , that receive orders d̄ from a generic consumer C. Both try to match
units of d with d̄ by means of transactions. These players are represented in 1 as
circles. Each one is characterized by a parameter: Pi has a production capacity,
Rj has a storage capacity, S produces raw material a at a constant rate and C
generates a demand d̄ at a constant rate. Transactions between players are rep-
resented as double arrow lines. Each of these transactions imply the exchange of
monetary units characterized by its owner. uS in possession of S, obtained from
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Pi who have paid a price for each unit of a; ui in possession of Pi, obtained from
Rj who have paid a price for each unit of d; vj in possession of C who have paid
a price for each unit of d̄ and uC in possession of C. These are injected externally
into the system allowing the consumer to throw orders.

Prices must be added to the different interactions: wholesale distributors price,
that is, price at which S sells a unit of a to Pi; the price of a unit of d when sold
by Rj to C and the price of a unit of d when sold by Pi to Rj . Simultaneously to
the existence of prices, there are budget restrictions associated to each player. No
more units of goods can be bought than the equivalent ones to the total number of
monetary units owned by each player. The existence of prices enriches the evolution
of the system, introducing the possibility of lack of money and making impossible
to apply certain rules.

Finally, the system evolves cyclically with five steps: 1) generation of the initial
conditions, 2) production of goods and reception of orders for those goods, 3)
generation of purchase authorizations, 4) purchase transactions and 5) technical
and cleaning rules.

Fig. 1. Schematic representation of retailer producer problem

Production side

In economic theory, Pi has a production function (number of goods or services
produced) with the following general form: Yi = fi (factors of production). These
factors are the different physical inputs used to produce goods. Typically, they are
classified into three main categories: raw material, labor of workers and capital
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stock. While fi specifies how factors are transformed into goods. For simplicity,
we make some assumptions. All Pi have access to the same technology, thus they
all have the same production function ∀i(Yi = Y ). Also, each Pi takes as factors:
raw material provided by S; production capacity (also known as capital stock)
and, for simplicity, labor is not considered. Thus, we can simplify the production
function obtaining: Yi = Y = f(rawmaterial, capital) = f(a, bi).

The multiplicity of a represents the total amount of raw material available for
production and the multiplicity bi represents the total production capacity of Pi.
Additionally, we consider the simplest form for f , where only one unit of a and bi
are consumed to produce one unit of d. This exchange rate can be easily changed
to consider more complex situations.

Demand side

In real markets, there is a bunch of individual consumers requiring units of good
d. In the context of the so-called, economic rational behavior model, the behav-
ior of each individual consumer is captured by a utility function of the form:
Ui = Ui(consumedinputs) = Ui(consumption, leisure). U quantifies in monetary
units the happiness of individuals, making explicit their preferences about the
simultaneous consumption of multiple disposable goods. Units of d obtained by
consumer is called consumption and leisure can be considered as the time not
dedicated to work (with a clear cost of opportunity). Classical economical models
consider that rational individuals try to maximize his utility function. For simplic-
ity, we make some assumptions. The only factor for utility is the consumption of d
and labor (as complementary to leisure) is not considered. All consumers have the
same utility function, same preferences and, thus, the same behavior ∀i(Ui = U).
This gives rise to the concept of representative consumer (more generally, represen-
tative agents). We can consider the sum of the utility functions of the population
of consumers, generating a, so called, aggregate demand of d (each unit is denoted
by d̄). This can be represented as a generic consumer C. Thus, we can simplify the
utility function obtaining: Ui = U = g(d̄).

3.2 Model formalization

A simple membrane structure for the PDP system is selected with a unique envi-
ronment containing one P system with two membranes. Membrane 1 is used for the
Rj and Pi operations of good and order generation. Membrane 2 is used for per-
forming the purchase transactions. The previous system will be modelled by a PDP
system of degree (2, 1) and T ≥ 1 units of time Π = (G,Γ,Σ, T,RE , µ,RΠ , {fr ∈
RΠ},M1,M2), where G = (V,E), with V = {e1} and E = (e1, e1) and working
alphabet: Γ = {bi, di, ui, cj , d̄j , vj , ēj , f(i, j) : 1 ≤ i ≤ k1, 1 ≤ j ≤ k2} ∪ {R1, R2} ∪
{C, S, d̄, a, uC , uS}, where:

• C: aggregate generic consumer.
• S: raw material supplier.
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• d̄: unit of aggregate demand from C.
• a: unit of supplied raw material provided by S.
• uC : monetary unit owned by C.
• uS : monetary unit owned by S.
• bi: unit of production capacity of Pi, 1 ≤ i ≤ k1.
• di: unit of good supplied by Pi, 1 ≤ i ≤ k1.
• ui: monetary unit owned by Pi, 1 ≤ i ≤ k1.
• cj : unit of capacity of Rj , 1 ≤ j ≤ k2.
• d̄j : unit of good demanded by Rj , 1 ≤ j ≤ k2.
• vj : monetary unit owned by Rj , 1 ≤ j ≤ k2.
• ēj : unit of good demanded by Rj and authorized for transaction unit of d̄j , 1 ≤

j ≤ k2.
• f(i, j): authorization for d̄j to be exchanged with di, for 1 ≤ i ≤ k1, 1 ≤ j ≤ k2.
• R1, R2: for technical reasons.
• Σ = ∅.
• RE = ∅.
• Π = {Γ, µ,M1,M2,RΠ}, where µ = [[ ]2]1 and M1 = {C, S,R1, R2} ∪
{bki,1i , u

ki,2
i : 1 ≤ i ≤ k1} ∪ {c

kj,3
j : 1 ≤ j ≤ k2}

Model parameters

• k1: total number of producers.
• k2: total number of retailers.
• k3: units of a inserted into the system by S.
• k4: allowed deviation from k3.
• k5: units of d̄ inserted into the system by C.
• k6: allowed deviation from k5.
• k7: price fixed by S for each unit of a.
• k8: price fixed by C as an estimation of each order of good.
• ki,1: initial production capacity of Pi, 1 ≤ i ≤ k1.
• ki,2: initial monetary units of Pi, 1 ≤ i ≤ k1.
• kj,3: initial capacity of Rj , 1 ≤ j ≤ k2.
• km,4: discrete prob distribution of units of a inserted into the system by S,

1 ≤ m ≤ 3.
• km,5: discrete prob distribution of units of d̄ inserted into the system by C,

1 ≤ m ≤ 3.
• ki,6: price fixed by Pi for each unit of di, 1 ≤ i ≤ k1.
• kj,7: price fixed by Rj for each order of good, 1 ≤ j ≤ k2.

3.3 Modules of rules

Module 1: Initialization

The initial conditions for the cycle are generated, including the disposability of d̄
and a. We assume that S can supply a nearly fixed amount of a at the beginning
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of each cycle. To introduce some variability (not associated to any concrete real
economic behavior), we will decompose the basic rule in a bunch of rules differ-
ing slightly around k3 in the number of generated units of a. This variability is
controlled by parameter k4 and the associated probability of each rule km,4.

r1 ≡ R1 s[ ]2
p=k1,4−−−→ ak3+k4s[R1]+2

r3 ≡ R1 s[ ]2
p=k3,4−−−→ ak3−k4s[R1]+2

r2 ≡ R1 s[ ]2
p=k2,4−−−→ ak3s[R1]+2

r4 ≡ R1 s[ ]2
p=1−k1,4−k2,4−k3,4−−−→ ak3−2∗k4s[R1]+2

We also assume that C generates a nearly fixed amount of d̄ at the beginning
of each cycle. Again, we decompose the basic rule in a bunch of rules differing
slightly around k5 in the number of generated units of d̄. This variability is con-
trolled by parameter k6 and the associated probability of each rule k(m, 5). C
also“generates” the amount of money estimated to throw orders to Rj to be able
to satisfy completely the demand d̄, controlled by k8.

r5 ≡ R2 c[ ]2
p=k1,5−−−→ d̄k5+k6u

(k5+k6)k8
C c[R2]+2

r6 ≡ R2 c[ ]2
p=k2,5−−−→ d̄k5uk5k8C c[R2]+2

r7 ≡ R2 c[ ]2
p=k3,5−−−→ d̄k5−k6u

(k5−k6)k8
C c[R2]+2

r8 ≡ R2 c[ ]2
p=(1−k1,5−k2,5−k3,5)−−−−−−−−−−−−−−→ d̄k5−2k6u

(k5−2k6)k8
C c[R2]+2

Despite being considered in theoretical models, this idea of generating money
from “nothing” at the beginning of each cycle is completely counterintuitive and do
not reflects the real behavior of actual systems. This is one of the ideas that leads
to an enhancement and reformulation of this initial model in following chapters.

Module 2: Producer & Retailer operation

Objects Pi have at their disposal the amount of a generated in Step 1. They
compete to obtain units of a, so that they can generate units of d according to
their production function. For each unit of a used by Pi it must pay a price k7,
reducing the number of ui owned by Pi and increasing the ones uS owned by S.
Finally, each unit of d produced by Pi is denoted by di, with 1 ≤ i ≤ k.

r9 ≡ abiu
k7
i c[ ]+2 → uk7S [di]

0
2, 1 ≤ i ≤ k1

Rj must provide service to d̄ generated in Step 1. They compete to get units
of d̄ to serve the demand of C. It may also be interpreted as Rj receives orders
from C. For each unit ordered by C to Rj it must pay a price kj,7, reducing the
number of uC owned by C and increasing the ones vj owned by Rj . We will allow
different prices for order to each Rj (parameter kj,7). Each unit of good necessity
d̄ served by Rj is denoted by d̄j , with 1 ≤ j ≤ k2.

r10 ≡ d̄cju
kj,7
C c[ ]+2 → [d̄jvj

kj,7
S ]02, 1 ≤ i ≤ k2
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Module 3: Performing transactions

Once orders d̄j have been received by Rj and units di are generated by Pi, the
commercial transactions can take place. One item of d is purchased by Rj from
Pi to satisfy the order d̄ carried by Rj . For each unit bought by Rj it must pay a
price, reducing the number of vj owned by Rj and increasing the ones ui owned
by Pi. Capacities cj and bi consumed in the production of di and d̄j are set free.

[did̄jv
price
j ]2

probability−−−−−−−→ [bicju
price
i ]2

Additionally, we can associate a probability to each possible transaction com-
prising many effects: the confidence of Rj on Pi; the price of the product offered by
Pi; the willing of Rj to buy a good or the necessity of Pi to sell a good. Depending
on the effects considered and their variability during the process, these probabili-
ties must be computed once at the beginning of the process or recalculated after
each cycle. An intuitive way of thinking about these probabilities is that the unit
probability is distributed among a bunch of rules of this type:

[d1d̄1v
price
1 ]2

p11−−−→ [b1c1u
price
1 ]2

[d3d̄1v
price
1 ]2

p13−−−→ [b3c1u
price
3 ]2

[d2d̄1v
price
1 ]2

p12−−−→ [b2c1u
price
2 ]2

so that p11 + p12 + p13 = 1. On the other hand, PDP systems do not allow a
direct translation of rules of this type because the evolution of any possible LHS
is determined by a set of rules summing probability one. This drawback is solved
creating for each exchange transaction between Pi and Rj , a symbol fj,i that acts
as an authorization card for the transaction. This fj,i follows the originally desired
probability distribution and can be used to simulate geographical barriers between
players or preference for one of the producers. Now, probabilities associated to rules
with the same LHS sum up to one and the purchase transactions can take place
but now with probability one.

r14 ≡ [d̄1]2
p=1−−−→[d̄1f1,1]2

r16 ≡ [d̄2]2
p=0.5−−−→[d̄2f2,1]2

r18 ≡ [d̄3]2
p=0.15−−−→[d̄3f3,1]2

r15 ≡ [d̄1]2
p=0−−−→[d̄1f1,2]2

r17 ≡ [d̄2]2
p=0.5−−−→[d̄2f2,2]2

r20 ≡ [d̄3]2
p=0.85−−−→[d̄3f3,2]2

r20 ≡ [did̄jfj,iv
k2,6
j ]02 → [bicju

k2,6
i ]−2 , 1 ≤ i ≤ k1, 1 ≤ j ≤ k2

Further developments of the model could explore the possibility of considering
dynamic probabilities for these transactions.

Technical & cleaning rules

Finally, some rules are necessary for technical reasons. fi,j not exhausted in pur-
chase transactions have no utility and symbols r1 and r2 are restored to their
original location.
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r26 ≡ [fi,j ]
−
2 → [ ]02, 1 ≤ i ≤ k1, 1 ≤ j ≤ k2

r30 ≡ [r1r2]−2 → r1r2[ ]02

di, d̄j and vj not exchanged represent real things and cannot be cleaned.

r27 ≡ [d̄j ]
−
2 → d̄j [ ]02, 1 ≤ j ≤ k2

r29 ≡ [di]
−
2 → di [ ]02, 1 ≤ i ≤ k1

r28 ≡ [vj ]
−
2 → vj [ ]02, 1 ≤ j ≤ k2

Similarly, we have the symmetric operations at the beginning of the cycle,
pushing these elements into the operational membrane 2.

r12 ≡ [d̄j ]
+
2 → d̄j [ ]02, 1 ≤ j ≤ k2

r11 ≡ [di]
+
2 → di [ ]02, 1 ≤ i ≤ k1

r13 ≡ [vj ]
+
2 → vj [ ]02, 1 ≤ j ≤ k2

3.4 Simulation results

To compare the results of our implementation to the ones described by Paun, we
will try to use the same set of values and number of cycles. In our model, 200
cycles with 5 steps in each cycle using DNDP-4 algorithm as inference engine.

For this purpose we consider the chart provided in Pauns article and compare
it to the plot of the same output variables in our model (u1, u2, v1, v2). Both charts
are represented with the same axis scale and number of T cycles.

(a) Pauns Model (b) Initial Model

Fig. 2. Evolution of monetary units owned by retailers - Paun Model vs Initial Model

4 Enhanced model

After the initial model presented, it started a process to go deeper into economic
phenomena, leading to an enhanced model, enriched with a number of features of
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Parameter Value/s Description

k1 2 Total number of producers

k2 3 Total number of retailers

k3 60 Units of a inserted into the system by S

k4 1 Deviation from k3

k5 60 Units of d̄ inserted into the system by C

k6 1 Deviation from k5

k7 11 Price fixed by S for each unit of a

k8 14 Price fixed by C as an estimation of each order of good

ki,1 (65, 35) Initial production capacity of Pi, 1 ≤ i ≤ k1

ki,2 (750, 400) Initial monetary units of Pi, 1 ≤ i ≤ k1

kj,3 (50, 30, 20) Initial capacity of Rj , 1 ≤ j ≤ k2

km,4 (0.01, 0.95, 0.03) Prob distrib. of a inserted into the system by S

km,5 (0.03, 0.90, 0.04) Prob distrib. of units of d̄ inserted into the system by C

ki,6 (12, 13) Price fixed by Pi for each unit of di

kj,7 (13, 14, 15) Price fixed by Rj for each order of good j, 1 ≤ j ≤ k2

Table 1. MeCoSim simulation parameter values

interest. This section focuses in the description of the new ingredients involved,
the new processes studied and the details of the new model designed, following
the section a structure similar to the previous one, from the foundations about the
processing to the exploration of the model and analysis of the simulations.

4.1 General description

The behavior of the previous initial model can be condensed as follows: a steady
increase of monetary units owned by Pi, Rj and C; nearly stable Pis and Rj ’s
capacities and monetary units obtained by S get out of circulation in the system.
These facts can be explained by the absence of variations in the rest of param-
eter of the model. First, prices associated to goods, raw material and aggregate
demand are initially settled and remain unchanged during the system evolution
(absence of a natural process trying to find a price of equilibrium). Secondly, Pi’s
and Rj ’s capacities are fixed and no changes are allowed (lack of a capital mar-
ket). Additionally, there is an artificial exogenous injection of monetary units at
the beginning of each cycle. To get our initial model nearer to real situations,
new issues must be modelled. In the next chapters, some of the latter restrictions
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will be relaxed or modified. First, variations of Pi’s and Rj ’s capacities will be
allowed (associated to capital stock depreciation and investment decisions). Sec-
ondly, the external injection of monetary units will be substituted by new cyclic
monetary flows in the systems. Finally, randomness arise in a much more elegant
way, characteristic of PDP models. This enhanced model is represented in Fig. 3.

Fig. 3. Schematic representation of retailer producer problem - Enhanced Model

Randomness in a PDP-way

In our first model, the randomness of a and d̄ was introduced in a very naive
way. Making use of a bunch of rules to generate that random behavior where
each rule represented a small variations around a central value. However, a more
elegant “PDP-way” of generating randomness in rewriting rules has been proposed.
Consider a set of generic rules with the following structure:

[s]→ [saN−Lw2L] [w]
0.5−−→ [#] [w]

0.5−−→ [a]
Its willing is to generate approximately N units of a (aN ). First, we generate

aN−Lw2L, where, N−L represents the lower limit of a hypothetic range for multi-
plicity of a and N +L, its upper limit. Secondly, two possible rules are applied to
this new symbol w, each one with probability 0.5. Transforming w in one unit of
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a or clearing it. The range of possible values for multiplicity of a is [aN−L, aN+L].
In our enhanced model, this strategy will be used at the beginning of each cycle in
the amount of a generated by S, of d̄ produced by C and in the investment deci-
sion mechanism. Further developments of the model could consider more sources
of variability: in prices, in the probabilities of performing transactions between Pi
and Rj .

Ownership of production factors and stakeholders

In real situations, there are no external injections of monetary units into the sys-
tem to maintain it evolving. On the contrary, real economy dynamically adjust its
parameters internally to maintain its activity cycle after cycle. Hence, we must
consider in our model some alternatives to replace this artificially injected money.
In a typical macroeconomic model, factors are property of the aggregate consumer
C. Thus, Pi (and Rj as intermediate producers) must hire these factors out from
its owners paying an amount of money for them (producers costs). In our model,
there are only costs associated to production capacities. Secondly, in a typical
economy, C is a stakeholder of Pi and Rj . Thus, the initial number of monetary
units in possession of Pi and Rj can be interpreted as the initial investment of C.
At the end of each cycle, stakeholders expect receiving a certain amount of divi-
dend depending on the benefits obtained by the company. Benefits not distributed
remain in the company allowing to pay costs of factors. These two mechanisms
generate a flow of monetary units from ui and vj to uC . Finally, to make our
system closed with no external factors or agents acting on it, C must also be
stakeholder of S. For simplicity, in our model, S does not need any production
capacity to generate units of a (no production costs). Therefore, there will be a
flow of monetary units from uS to uC . Provided these three sources of monetary
units for uC , there is no more need of an external injection of monetary units. In
this enhanced model, the total number of monetary units flowing in the system is
constant, and transactions between Pi, Rj , S and C creates monetary unit flows
preventing them from accumulation.

Investment decision capacity increase

Once purchase transactions have been performed, Pi have probably obtained a
surplus. Although in our initial model they simply accumulated these monetary
units, in real situations they must decide what to do with their earnings. This
is known as the investment saving decision. There are two choices: to dedicate
part of it to accumulate more production capacity. In other words, take decisions
about capital stock increase. Or instead of it, remain capacity unchanged, leaving
earnings accumulated as savings. This decision, should be based on concrete facts.

For this purpose, we will extend the utility of the “authorization” system (fj,i)
created in the initial model. Basically, not exhausted authorizations will be in-
terpreted as the existence of demand from Rj not satisfied. In an ideal situation,
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these fj,i are consumed while purchase transactions are performed. However, in
some cases transactions cannot be performed but symbol fj,i is present (aborted
transaction). If it is due to the lack of capacity, it should be increased. Otherwise,
it remains unchanged.

Capital stock depreciation

Production capacity suffers a phenomenon called depreciation. There exist several
economic interpretations for this depreciation: obsolescence; a reduction in the
remaining value of future goods this capital stock can produce or a reduction of
the market price of capital. In macroeconomic theory, the behavior of capital stock
is:Kt = Kt−1−Dt−1+It, where:Kt is the capital stock value (production capacity)
at time t; Kt−1 is the capacity at time t− 1; Dt−1 is the depreciation of Kt−1 and
It is the inversion at time t. Thus, a mechanism for increasing capacity is needed
to ensure recovery from depreciation if needed to satisfy orders not exhausted.
For simplicity, we assume a constant depreciation rate: Dt−1 = δKt−1. Thus, the
previous equation can be written as: Kt = (1− δ)Kt−1 + It. This depreciation can
be modelled as a fixed reduction of the multiplicity of bi.

4.2 Model formalization

The initial model must be modified to consider the new phenomena considered.
New symbols are added to the working alphabet, mainly associated to the new way
of random generation (p, q,mi) and the capacity increase mechanism (gi, yi, zi);
meanwhile, other ones are eliminated due to the creation of monetary flows in the
system (uS , R2): Γextended = Γ/{uS , R2} ∪ {gi, yi, ,mi, zi, hi : 1 ≤ i ≤ k1} ∪ {p, q}.

Additionally, the set of rules suffer changes: a) the generation of a and d̄ is
adapted to PDP mechanism of randomness, b) Pi and Rj operation are slightly
modified to consider Cs property of raw material source, c) new rules to consider
payments for capacity and clearing of non-paid capacity units and, also, for ca-
pacity increase mechanism and dividend distribution and d) purchase transaction
rules are adapted for the following steps of capacity depreciation. Also, new nec-
essary parameters are considered in the model meanwhile other ones are given a
new interpretation and other are no longer needed.

It is no necessary to modify the original membrane structure in our new model.
Finally, this modified system will be modelled by a PDP system of degree (2, 1)
and T ≥ 1 units of time Π = (G,Γ,Σ, T,RE , µ,RΠ , {fr ∈ RΠ},M1,M2), where
G = (V,E), with V = {e1} and E = {(e1, e1)}, and working alphabet: Γ =
{bi, di, ui, cj , d̄j , vj , ēj , fj,i, gi, yi, zi,mi, hi : 1 ≤ i ≤ k1, 1 ≤ j ≤ k2} ∪ {R1} ∪
{C, S, d̄, a, uC , p, q}, where:

• C: aggregate generic consumer.
• S: raw material supplier.
• a: unit of supplied raw material provided by S.
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• p: randomness generator for a provision by S.
• d̄: unit of aggregate demand from C.
• q: randomness generator for d̄ generation by C.
• uC : monetary unit owned by C.
• bi: unit of production capacity of Pi, 1 ≤ i ≤ k1.
• hi: unit of production capacity of Pi before depreciation, 1 ≤ i ≤ k1.
• di: unit of good supplied by Pi, 1 ≤ i ≤ k1.
• ui: monetary unit owned by Pi, 1 ≤ i ≤ k1.
• cj : unit of capacity of Rj , 1 ≤ j ≤ k2.
• d̄j : unit of good demanded by Rj , 1 ≤ j ≤ k2.
• vj : monetary unit owned by Rj , 1 ≤ j ≤ k2.
• ēj : unit of good demanded by Rj and authorized for transaction, 1 ≤ j ≤ k2.
• f(i, j): authorization for d̄j to be exchanged with di, 1 ≤ i ≤ k1, 1 ≤ j ≤ k2.
• yi: unit (in idle state) of aborted purchase transactions considered for capacity

increase, 1 ≤ i ≤ k1.
• mi: randomness generator for yi, 1 ≤ i ≤ k1.
• zi: activated unit of aborted purchase transactions considered for capacity in-

crease, 1 ≤ i ≤ k1.
• R1: for technical reasons.
• gi: for technical reasons, 1 ≤ i ≤ k1.
• Σ = ∅.
• RE = ∅.
• Π = (Γ, µ,M1,M2,RΠ , {fr ∈ RΠ}), where µ = [[ ]2]1, M1 = {C, S,R1} ∪
{gi, u

7ki,1k10
i : 1 ≤ i ≤ k1} ∪ {v

7kj,3k10
j : 1 ≤ j ≤ k2} and M2 = {ckj,3j : 1 ≤ j ≤

k2} ∪ {b
ki,1
i : 1 ≤ i ≤ k1}

Model parameters

In comparison with the previous initial model, we have introduced modifications
in the set of parameters. Some of them have been modified in terms of their
meaning, while others have been simply relabeled. Finally, the set of parameters
for our model is:

• k1: total number of producers.
• k2: total number of retailers.
• k3: raw material inserted into the system by S min value of range.
• k4: raw material inserted into the system by S max value of range.
• k5: aggregate demand inserted into the system by C min value of range.
• k6: aggregate demand inserted into the system by C max value of range.
• k7: price fixed by S for each unit of a.
• k8: number of failed purchases considered for increasing capital stock min

value.
• k9: number of failed purchases considered for increasing capital stock max

value.



204 E. Sánchez Karhunen, L. Valencia-Cabrera

• k10: cost of capital stock per cycle.
• k11: depreciation rate of capital stock.
• k12: step of capacity increase.
• k13: dividend percentage.
• ki,1: initial production capacity of Pi, 1 ≤ i ≤ k1.
• ki,2: price fixed by Pi for each unit of di, 1 ≤ i ≤ k1.
• kj,3: initial capacity of Rj , 1 ≤ j ≤ k2.
• kj,6: price fixed by Rj for each order of good j, 1 ≤ j ≤ k2.

4.3 Modules of rules

Based on the cyclic evolution of the initial model we have expanded it including
the new operations (Fig. 4): 1) generation of aggregate demand and raw mate-
rial disposability and rents payment for Pi’s and Rj ’s capacity, 2) production of
goods and reception of orders, 3) generation of the authorizations for purchase
transactions, 4) purchase transactions and 5) capacity increase decision, capacity
depreciation and dividend payment.

Fig. 4. Modules of rules Enhanced Model
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Module 1: Production factor and demand generation

Our first step consists in generating the initial conditions of the cycle: restoring ag-
gregate demand and ensuring raw material disposability. Unlike the initial model,
we will use the PDP-way of generating randomness in the amount of generated
a and d̄. Using new symbols p (respectively, q) to control the range [k3, k4] (re-
spectively, [k5, k6]) of possible values of a (respectively, d̄). This operation can be
performed with a simple set of rules:

r1 ≡ R1sc [ ]−2 → ak3pk4−k3 d̄k5qk6−k5sc [ ]+2

r2 ≡ p [ ]−2
p=0.5−−−−→ a [ ]+2

r3 ≡ p [ ]−2
p=0.5−−−−→ [ ]+2

r4 ≡ q [ ]−2
p=0.5−−−−→ [ ]+2

r5 ≡ q [ ]−2
p=0.5−−−−→ d̄ [ ]+2

Additionally, The generation of a and d̄ is unified in a single rule but rules on
p and q remain separated allowing their independent random behaviour. Also, any
reference to the spontaneous appearance of monetary units is removed from the
rules taking place at this step.

Module 2: Producers costs

The idea of Cs property of factors means that Rj and Pi must pay, at the beginning
of each cycle, for their capacities cj and bi. For simplicity, a unique common
parameter k10 has been selected for both capacities cost. For each unit of bi used
by Pi it must pay a price, reducing the number of ui owned by Pi and increasing
the uC owned by C. Similarly, for each unit of ci used by Rj it must pay a price,
reducing the number of vj owned by Rj and increasing the ones uC owned by C.
If Rj and Pi do not have enough monetary units to pay for their capacities, they
must give up using them and restore the value of each of these capacity units to
their proprietaries via uC units.

r9 ≡ uk10i [bi]2 → biu
k10
C [ ]+2 , 1 ≤ i ≤ k1

r11 ≡ [bi]
+
2 → uk10C [ ]2, 1 ≤ i ≤ k1

r9 ≡ vk10j [cj ]2 → cju
k10
C [ ]+2 , 1 ≤ j ≤ k2

r11 ≡ [cj ]
+
2 → uk10C [ ]2, 1 ≤ j ≤ k2

Module 3: Producers & retailers operations

Pis rules are slightly modified to include another big conceptual change of our
new model: C is the owner of S. This idea means a revolution in the system: in
the initial model, S simply accumulated the monetary units uS . Now, these units
travel from Pi to S and, again, return to C. For each unit of a used by Pi it
must pay a price (k7 monetary units), reducing the number of ui owned by Pi and
increasing the ones uC owned by C.
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r14 ≡ abiuk7i [ ]+2 → uk7C [di]
0
2, 1 ≤ i ≤ k1

Rj must face to an amount of aggregate demand generated previously com-
peting to catch units of d̄ to serve necessities of C. It also can be interpreted as
Rj receives orders from C. We will allow each retailer to fix a different price. For
each unit of d̄ ordered by C to Rj it must pay a price kj,6, reducing the number
of uC owned by C and increasing the ones vj owned by Rj . Finally, capacity units
not consumed are transferred out of membrane 1, waiting for later depreciation
operations.

r15 ≡ d̄cju
kj,6
C [ ]+2 → [d̄jv

kj,6
j ]02, 1 ≤ j ≤ k2

r16 ≡ bi[ ]2 → [bi]2, 1 ≤ i ≤ k1
r17 ≡ cj [ ]2 → [cj ]2, 1 ≤ j ≤ k2

Module 4: Purchase transactions

This module remains almost unchanged with respect to the initial model. A first
step of generation of transaction authorizations. Once generated, we can perform
the purchase transactions but now with probability one. Again, the discrete proba-
bility distributions are embedded in the authorizations generation rules. One item
of di is purchased by Rj from Pi to satisfy the order ēj carried by Rj . For each unit
of di, Rj must pay a price, reducing the number of vj and increasing the ones ui
owned by Pi. Capacities cj and bi consumed producing di and ē are freed. Finally,
free bi are transformed into new symbols hi waiting for depreciation operations.

r18 ≡ [d̄1]2
p1,1=1−−−−→ [ē1f1,1]2

r20 ≡ [d̄2]2
p2,1=0.5−−−−−→ [ē2f2,1]2

r22 ≡ [d̄3]2
p3,1=0.15−−−−−−→ [ē3f3,1]2

r19 ≡ [d̄1]2
p1,2=1−−−−→ [ē1f1,2]2

r21 ≡ [d̄2]2
p2,2=0.5−−−−−→ [ē2f2,2]2

r23 ≡ [d̄3]2
p3,2=0.85−−−−−−→ [ē3f3,2]2

r24 ≡ [diējfj,iv
ki,2
j ]2 → u

ki,2
i [hicj ]

−
2 , 1 ≤ i ≤ k1, 1 ≤ j ≤ k2

Further developments of the model could explore how to consider dynamic
probabilities for these transactions.

Module 5: Dividends distribution

Once purchase transactions have been performed, the remaining monetary units
owned by Rj and Pi can be interpreted as their benefits. On the other hand, C
can be interpreted as stakeholder of Rj and Pi, and their initial monetary units
can be considered the amount of money already invested by them. In this context,
a dividend payment can be considered. This dividend percentage is controlled by
parameter k13. For simplicity, this will be considered only in Pi:
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r25 ≡ [vj ]
−
2 → vj [ ]02, 1 ≤ j ≤ k2

r26 ≡ [ui]
−
2

p=k13−−−−→ uC [ ]02, 1 ≤ i ≤ k1
r27 ≡ [ui]

−
2

p=1−k13−−−−−−→ ui [ ]02, 1 ≤ i ≤ k1

Module 6: Capacity depreciation

As explained in previous chapter, depreciation will be considered as a reduction
of production capacity. For simplicity, it will only be considered a Pi’s capacity
depreciation. This can be easily modelled as a reduction of bi’s multiplicity with a
probability controlled by parameter k11, representing capacity disappearance rate.

r31 ≡ [hi]
−
2

p=1−k11−−−−−−→ [bi]
0
2, 1 ≤ i ≤ k1 r32 ≡ [hi]

−
2

p=k11−−−−→ [ ]02, 1 ≤ i ≤ k1

The global evolution suffered by bi can be outlined in the following flow:

[bi]
0
2
payrents−−−−−−→ bi[ ]+2

productionofgoods−−−−−−−−−−−−→ [hi]
−
2

depreciationrules−−−−−−−−−−−→ [bi]
0
2

Further developments of the model could extend the depreciation rules to all
actors’ capacities of the system. Indeed, the application of this depreciation rules
to any capacity is paired to the necessity of a production capacity increase deci-
sion mechanism. If only depreciation acts, it will be reached a point of capacity
exhaustion that stops system evolution.

Module 7: Capacity increase decision

The number of aborted transactions considered to increase capacity is controlled
by the multiplicity of a new symbol mi. This will be arbitrarily low to generate a
reasonably rate of capacity increasing. Additionally, randomness will be included
in the generation of symbol mi.

In the previous sections, we analysed the circumstances accompanying a non-
performed authorized purchase transaction and determined that this could be a
good signal to trigger a capacity increase mechanism. If it is not due to a lack of
producer capacity, it is not necessary to increase it.

r28 ≡ [fj,idi]
−
2 → [di]

0
2, 1 ≤ i ≤ k1, 1 ≤ j ≤ k2

r29 ≡ [fj,ihi]
−
2

1−k11−−−−→ [bi]
0
2, 1 ≤ i ≤ k1, 1 ≤ j ≤ k2

r30 ≡ [fj,ihi]
−
2

k11−−→ [ ]02, 1 ≤ i ≤ k1, 1 ≤ j ≤ k2
Otherwise, it is necessary to increase it (controlled by parameter k12). To en-

sure a gradual adaptation of capacity it will be introduced a limit to the number of
considered aborted transactions (represented by multiplicity of symbol yi). Addi-
tionally, to incorporate randomness into the process, rules in the PDP-way will be
included for the generation of symbol yi, using symbol mi. The range of values for
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yi varies in range [k8, k9]. Symbol zi is simply an evolved form of yi to determine
the exact moment of activating this operation. Finally, non-exhausted units of fj,i
and zi are removed.

r6 ≡ gi[ ]02 → [giy
k8
i m

k9−k8
i ]+2 , 1 ≤ i ≤ k1

r7 ≡ [mi]
+
2

0.5−−→ [ ]02, 1 ≤ i ≤ k1 r8 ≡ [mi]
+
2

0.5−−→ [yi]
0
2, 1 ≤ i ≤ k1

r33 ≡ [yi]
−
2 → [zi]

0
2, 1 ≤ i ≤ k1

r34 ≡ [fj,izi]
0
2 → bk12i [ ]+2 , 1 ≤ i ≤ k1, 1 ≤ j ≤ k2

r35 ≡ [fj,i]
+
2 → [ ]02, 1 ≤ i ≤ k1, 1 ≤ j ≤ k2 r36 ≡ [zi]

+
2 → [ ]02, 1 ≤ i ≤ k1

Technical & cleaning rules

Finally, some rules are necessary for technical reasons. ēj and vj not exchanged
represent real received orders and monetary units so cannot be eliminated.

r13 ≡ vj [ ]+2 → [vj ]
0
2, 1 ≤ j ≤ k2 r37 ≡ [ēj ]

+
2 → [d̄j ]

0
2, 1 ≤ j ≤ k2

Symbols r1 and gi are restored to their initial location. r1 controls the genera-
tion of a and d̄, while gi controls the generation of symbols yi.

r38 ≡ [r1]−2 → r1[ ]02 r39 ≡ [g1]−2 → g1[ ]02, 1 ≤ j ≤ k2

4.4 Simulation results

To make these results comparable with the ones obtained from the previous model,
we will use a similar set of values. The complete relation of parameters is:

Simulations will be performed (again 200 cycles with 5 steps in each cycle
using DNDP-4 algorithm as inference engine) for different situations to show the
effect of each phenomenon included in the model, along with its contribution to
the global behavior and stability of the system. In the following section, several
situations are discussed. Case A: (capacity depreciation standalone) we will show
producers capacity evolution when depreciation rate = 0.1 and capacity increase
mechanism is deactivated. Initial capacity of producers has been set to k1,1 = 65
and k2,1 = 35. As expected, along the cycles capacities are reduced until they are
completely exhausted. The slope of these curves is controlled by k11. As seen in
the previous chapters, a mechanism of capacity increase is necessary to maintain
the evolution of the system.

Case B (capacity depreciation + capacity increase mechanism): we will show
how the previous evolution changes when capacity increase mechanism and div-
idend payment mechanisms are activated. These mechanisms parameters are
k12 = 1 (step of capacity increase), k8 = 3 and k9 = 5 (range of aborted purchase
transaction considered), and k13 = 0.01 (dividend percentage). As expected, in a
cycle each producers producer capacities suffer depreciation. This diminishing of
production generates the abortion of multiple purchase transactions that activate
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Parameter Value/s Description

k1 2 Total number of producers

k2 3 Total number of retailers

k3 59 Units of a inserted into the system by S min value of range

k4 62 Units of a inserted into the system by S max value of range

k5 59 Units of d̄ inserted into the system by C min value of range

k6 62 Units of d̄ inserted into the system by C max value of range

k7 11 Price fixed by S for each unit of a

k8 3 # failed purchases considered for increasing capital min value

k9 5 # failed purchases considered for increasing capital max value

k10 2 cost of capital stock per cycle

k11 0.1 depreciation rate of capital stock

k12 1 step of capacity increase

k13 0.01 Dividend percentage

ki,1 (65, 35) Initial production capacity of Pi, 1 ≤ i ≤ k1

ki,2 (13, 13) Price fixed by Pi for each unit of di

kj,3 (50, 30, 20) Initial capacity of Rj , 1 ≤ j ≤ k2

kj,6 (15, 15, 15) Price fixed by Rj for each order of good j, 1 ≤ j ≤ k2

Table 2. Parameters utilized for simulation of enhanced model

the capacity increase mechanism. As we have seen in the previous chapters, during
the evolution of the system, depreciation mechanism pushes capacity down and
capacity increase mechanism competes with the previous one to maintain system
evolution alive.

Case C: (capacity depreciation + capacity increase mechanism + dividend pay-
ment deactivated). In this case, we will show how the previous evolution changes
when dividend payment mechanism is deactivated. Depreciation mechanism pushes
capacity down, capacity increase mechanism competes with the previous one to
maintain system evolution alive but all these processes are not possible is not pos-
sible if there are no enough movement of monetary units between all the actors in
the system.

Once situation is restored to case B, the following stable behavior of uC is
obtained:

Clearly these three mechanisms cooperation (capacity depreciation, capacity
increase decision and monetary unit flow mechanisms) is crucial to the stable
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Fig. 5. Evolution of bi in presence of depreciation standalone

Fig. 6. Evolution of bi in presence of depreciation and capacity increase mechanism

Fig. 7. Evolution of C monetary units with dividend payment mechanism deactivated

Fig. 8. Evolution of C monetary units with dividend payment mechanism activated
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evolution of the system. Next figures show the evolution of the rest of variables of
the system.

Fig. 9. Evolution of retailers capacities in line chart and accumulated columns

Fig. 10. Evolution of producers capacities in line chart and accumulated columns

5 Conclusions

In our work, we have implemented the ideas sketched by Gh. and R. Păun [10]
into a specific P system framework (more specifically, PDP systems). The results
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Fig. 11. Evolution of retailers monetary units in line chart and accumulated columns

Fig. 12. Evolution of producers monetary units in line chart and accumulated columns

obtained look very promising. Firstly, we have been able to replicate Păuns’ numer-
ical results, designing a model for the producer-retailer problem and simulating it
using MeCoSim [12]. In this initial model, some basic interactions between produc-
ers and retailers are considered, such as, production of goods from raw material,
reception of orders from consumers and purchase transaction to match this goods
and orders. It includes several simplifications and an exogenous artificial injection
of monetary units that prevents system from reaching a halting configuration.
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Aimed by these results we have proposed an enhanced model for the producer-
retailer problem. The initial model has been enriched considering a plethora of
phenomena to move it closer to the complexities of real world. We have taken
advantage from modularity, one of the main membrane computing advantages
for systems modelling. Hence, it has not been necessary to build again the model
from scratch, we have added complexity to the model over the initial layer. Many
real economic world interactions have been included in the model as a new layer:
capital stock depreciation, capacity increase decision mechanism, costs of capital
(rents for its owners), dividend payments, and a general idea of making monetary
units flow across the system. Additionally, randomness has been introduced, in
several steps of the model, by means of mechanisms frequently used in PDP world.

This enhanced model has also been simulated using MeCoSim and system evo-
lution was analysed in depth. Some remarkable facts are that system can evolve
autonomously without any exogenous influence. Although initial values of variables
are settled, they change their values reaching an equilibrium point. Once reached
this stability point, system varies slightly around it. From the previous results,
we can derive that multiple economic issues can be modelled using membrane
computing. Therefore, more efforts must be done in this direction.
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Summary. Membrane computing is a computing paradigm providing a class of dis-
tributed parallel computing devices of a biochemical type whose process units represent
biological membranes. In the cell-like basic model, a hierarchical membrane structure
formally described by a rooted tree is considered. It is well known that families of such
systems where the number of membranes can only decrease during a computation (for
instance by dissolving membranes), can only solve in polynomial time problems in class
P. P systems with active membranes is a variant where membranes play a central role in
their dynamics. In the seminal version, membranes have an electrical polarization (posi-
tive, negative, or neutral) associated in any instant, and besides being dissolved, they can
also replicate by using division rules. These systems are computationally universal, that
is, equivalent in power to deterministic Turing machines, and computationally efficient,
that is, able to solve computationally hard problems in polynomial time. If polarizations
in membranes are removed and dissolution rules are forbidden, then only problems in
class P can be solved in polynomial time by these systems (even in the case when divi-
sion rules for non-elementary membranes are permitted). In that framework it has been
shown that by considering minimal cooperation (left-hand side of such rules consists of
at most two symbols) and minimal production (only one object is produced by the appli-
cation of such rules) in object evolution rules, such systems provide efficient solutions to
NP–complete problems. In this paper, minimal cooperation and minimal production in
communication rules instead of object evolution rules is studied, and the computational
efficiency of these systems is obtained in the case where division rules for non-elementary
membranes are permitted.

Key words: Membrane Computing, polarizationless P systems with active mem-
branes, cooperative rules, the P versus NP problem, SAT problem.
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1 Introduction

Membrane Computing is an emergent branch of Natural Computing providing
distributed parallel and non-deterministic computing models whose computational
devices are called membrane systems having units processor called compartments.
This computing paradigm is inspired by some basic biological features, by the
structure and functioning of the living cells, as well as from the cooperation of cells
in tissues, organs, and organisms. Celllike membrane systems use the biological
membranes arranged hierarchically, inspired from the structure of the cell.

In Membrane Computing, some variants capture the fact that membranes are
not at all passive from a biochemistry view, for instance, the passing of a chem-
ical compound through a membrane is often done by a direct interaction with
the membrane itself. Some variants of P systems where the central role in their
dynamics is played by the membranes have been considered. In these models, the
membranes not only directly mediate the evolution and the communication of ob-
jects, but they can replicate themselves by means of a division process. Inspired
by these features, P systems with active membranes [6] were introduced, based
on processing multisets by means of non-cooperative rewriting rules, that is, rules
where its left-hand side has at most only one object. Specifically, objects evolve
inside membranes which can communicate between each other, can dissolve, and
moreover (inspired by cellular mitosis process) can replicate by means of division
rules. It is assumed that each membrane has associated an electrical polarization
in any instant, one of the three possible: positive, negative, or neutral.

P systems with active membranes are computationally complete, that is, any
recursively enumerable set of vectors of natural numbers (in particular, each re-
cursively enumerable set of natural numbers) can be generated by such a system
[6]. Hence, they are equivalent in power to deterministic Turing machines.

What about the computational efficiency of P systems with active membranes?
The key is certainly in the use of division rules, as we can deduce from the so-
called Milano theorem [13]: A deterministic P system with active membranes but
without membrane division can be simulated by a deterministic Turing machine
with a polynomial slowdown.

However, P systems with active membranes which make use of division rules
have the ability to provide efficient solutions to computationally hard problems, by
making use of an exponential workspace created in a polynomial time. Specifically,
NP-complete problems can be solved in polynomial time by families of P systems
with active membranes, without dissolution rules and which use division rules only
for elementary membranes [6]. Moreover, the class of decision problems which can
be solved by families of P systems with active membranes with dissolution rules
and which use division for elementary and non-elementary membranes is equal
to PSPACE [8]. Consequently, the usual framework of P systems with active
membranes and electrical polarizations for solving decision problems seems to be
too powerful from the computational complexity point of view.

With respect to the computational efficiency, in the classical framework of P
system with active membranes, dissolution rules play an “innocent” role as well as
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division for non-elementary membranes. However, if electrical charges are removed
then these kind of rules come to play a relevant role. Specifically, P systems with
active membranes and without electrical charges were initially studied in [1, 2] by
replacing electrical charges by the ability to change the label of the membranes.
In this paper, polarizationless P systems with active membranes where labels of
membranes keep unchanged by the application of rules, are considered. In this
new framework, if dissolution rules are forbidden then only problems in class P
can be solved in an efficient way, even in the case that division for non-elementary
membranes are permitted [5]. Is the class of polarizationless P systems with active
membranes, with dissolution but using only division rules for elementary mem-
branes computationally efficient? If P 6= NP, which is at all expected, then it is
an open question, so-called Păun’s conjecture.

In the seminal paper where P systems with active membranes were intro-
duced, Gh. Păun says that “working with non-cooperative rules is natural from
a mathematical point of view but from a biochemical point of view this is not only
non-necessary, but also non-realistic: most of the chemical reactions involve two
or more than two chemical compounds (and also produce two or more than two
compounds)”. In this context, a restricted cooperation has been considered in the
classical framework of polarizationless P systems with active membranes. Specifi-
cally, minimal cooperation (the left-hand side and the right-hand side of any rules
have, at most, two objects) in object evolution rules, has been previously stud-
ied from a computational complexity point of view. A polynomial-time solution
to the SAT problem by means of families of polarizationless P systems with active
membranes, with minimal cooperation in object evolution rules, has been provided
[9]. Recently, this result has been improved by considering minimal cooperation in
object evolution rules with and additional restriction: the right-hand side of any
rules has only one object (called minimal cooperation and minimal production)
[11]. A relevant fact in these results is the following: dissolution rules and division
rules for non-elementary membranes are not necessary to reach the computational
efficiency.

In this paper the role of minimal cooperation and minimal production in com-
munication rules instead of object evolution rules, is studied from a complexity
point of view. Specifically, by using families of membrane systems which use these
syntactical ingredients, a polynomial-time solution to the SAT problem is provided
but allowing division rules for non-elementary membranes.

The paper is structured as follows. First, some basic notions are recalled and
the terminology and notation to be used in the paper is presented. Then, Section 3
introduces the model that will be investigated in this paper: polarizationless P sys-
tems with active membranes, with minimal cooperation and minimal production
in their communication rules. Section 4 contains the main result of this paper,
showing that these systems are capable of solving an NP-complete problem in an
efficient way. Finally, the paper concludes with some final remarks and ideas for
future work.
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2 Preliminaries

An alphabet Γ is a non-empty set and their elements are called symbols. A string u
over Γ is an ordered finite sequence of symbols, that is, a mapping from a natural
number n ∈ N onto Γ . The number n is called the length of the string u and it is
denoted by |u|. The empty string (with length 0) is denoted by λ. The set of all
strings over an alphabet Γ is denoted by Γ ∗. A language over Γ is a subset of Γ ∗.

A multiset over an alphabet Γ is an ordered pair (Γ, f) where f is a mapping
from Γ onto the set of natural numbers N. The support of a multiset m = (Γ, f) is
defined as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite (respectively, empty)
if its support is a finite (respectively, empty) set. We denote by ∅ the empty
multiset. Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets over Γ , then the union of m1

and m2, denoted by m1 + m2, is the multiset (Γ, g), where g(x) = f1(x) + f2(x)
for each x ∈ Γ . We denote by Mf (Γ ) the set of all multisets over Γ .

2.1 Graphs and trees

Let us recall some notions related with graph theory (see [3] for details). An
undirected graph is an ordered pair (V,E) where V is a set whose elements are
called nodes or vertices and E = {{x, y} | x ∈ V, y ∈ V, x 6= y} whose elements
are called edges. A path of length k ≥ 1 from a node u to a node v in a graph
(V,E) is a finite sequence (x0, x1, . . . , xk) of nodes such that x0 = u, xk = v and
{xi, xi+1} ∈ E. If k ≥ 2 and x0 = xk then we say that the path is a cycle of
the graph. A graph with no cycle is said to be acyclic. An undirected graph is
connected if there exist paths between every pair of nodes.

A rooted tree is a a connected, acyclic, undirected graph in which one of the
vertices (called the root of the tree) is distinguished from the others. Given a node
x (different from the root), if the last edge on the (unique) path from the root of
the tree to the node x is {x, y} (in this case, x 6= y), then y is the parent of node
x and x is a child of node y. The root is the only node in the tree with no parent.
A node with no children is called a leaf.

2.2 The Cantor pairing function

The Cantor pairing function encodes pairs of natural numbers by single natural
numbers, and it is defined as follows: for each n, p ∈ N

〈n, p〉 =
(n+ p)(n+ p+ 1)

2
+ n

The Cantor pairing function is a primitive recursive function and bijective from
N × N onto N. Then, for each t ∈ N there exist unique natural numbers n, p ∈ N
such that t = 〈n, p〉.
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2.3 Decision problems and languages

A decision problem X is an ordered pair (IX , θX), where IX is a language
over a finite alphabet ΣX and θX is a total Boolean function over IX .
The elements of IX are called instances of the problem X. Each decision
problem X has associated a language LX over the alphabet ΣX as follows:
LX = {u ∈ ΣX

∗ | θX(u) = 1}. Conversely, every language L over an alphabet
Σ has associated a decision problem XL = (IXL

, θXL
) as follows: IXL

= Σ∗ and
θXL

(u) = 1 if and only if u ∈ L. Therefore, given a decision problem X we have
XLX

= X, and given a language L over an alphabet Σ we have LXL
= L. Then,

solving a decision problem can be expressed equivalently as the task of recognizing
the language associated with it.

2.4 Recognizer membrane systems

Recognizer membrane systems were introduced in [7] and they provide a natural
framework to solve decision problems. This kind of systems are characterized by
the following features: (a) the working alphabet Γ has two distinguished objects
yes and no; (b) there exists an input membrane and an input alphabet Σ strictly
contained in Γ ; (c) the initial contents of the membranes are multisets over Γ \Σ;
(d) all computations halt; and (e) for each computation, either object yes or object
no (but not both) must have been released into the environment, and only at the
last step of the computation.

Given a recognizer membrane system, Π, for each multiset m over the input
alphabet Σ we denote by Π +m the membrane system Π with input multiset m,
that is in the initial configuration of that system, the multiset m is added to the
initial content of the input membrane. Thus, in a recognizer membrane system,
Π, there exists an initial configuration associated with each multiset m ∈Mf (Σ).

3 Minimal cooperation and minimal production in
communication rules

Definition 1. A polarizationless P system with active membranes, with simple
object evolution rules, without dissolution, with division rules for elementary and
non-elementary membranes, and which makes use of minimal cooperation and
minimal production in send-in communication rules, is a tuple

Π = (Γ,Σ,H, µ,M1, . . . ,Mq,R, iin, iout)

where:

• Γ is a finite alphabet whose elements are called objects and contains two dis-
tinguished objects yes and no.

• Σ ( Γ is the input alphabet.
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• H is a finite alphabet such that H ∩ Γ = ∅ whose elements are called labels.
• q ≥ 1 is the degree of the system.
• µ is a labelled rooted tree (called membrane structure) consisting of q nodes

injectively labelled by elements of H (the root of µ is labelled by rµ).
• M1, . . . ,Mq are multisets over Γ \Σ.
• R is a finite set of rules, of the following forms:

(a0) [ a → b ]h, where h ∈ H, a, b ∈ Γ , u ∈ Mf (Γ ) (simple object evolution
rules).

(b0) a b [ ]h → [ c ]h, where h ∈ H \ {rµ}, a, b, c ∈ Γ (send–in communication
rules with minimal cooperation and minimal production).

(c0) [ a ]h → b [ ]h, where h ∈ H, a, b ∈ Γ (send–out communication rules).

(d0) [ a ]h → b, where h ∈ H \ {iout, rµ}, a, b ∈ Γ (dissolution rules).

(e0) [ a ]h → [ b ]h [ c ]h, where h ∈ H \ {iout, rµ}, a, b, c ∈ Γ and h is the label of
an elementary membrane µ (division rules for elementary membranes).

(f0) [ [ ]h1 [ ]h2 ]h0 → [ [ ]h1 ]h0 [ [ ]h2 ]h0 , where h0, h1, h2 ∈ H and h0 6= rµ (divi-
sion rules for non-elementary membranes).

• iin ∈ H, iout ∈ H ∪ {env} (if iout ∈ H then iout is the label of a leaf of µ).

In a similar way is defined the concept of “polarizationless P system with active
membranes, with simple object evolution rules, without dissolution, with division
rules for elementary and non-elementary membranes, and which makes use of
minimal cooperation and minimal production in send-out communication rules ”.
The only difference concerns rules of type (b0) and (c0). In this case are, respec-
tively:

(b′0) a [ ]h → [ b ]h for h ∈ H \ {rµ}, a, b ∈ Γ (send–in communication rules).
(c′0) [ a b ]h → c [ ]h for h ∈ H, a, b, c ∈ Γ (send–out communication rules with

minimal cooperation and minimal production).

The semantics of this kind of P systems follows the usual principles of P systems
with active membranes [6].
We denote by DAM0(+es,mcmpin,−d,+n) (respectively,
DAM0(+es,mcmpout,−d,+n)) the class of all recognizer polarizationless P
system with active membranes, with simple object evolution rules, without
dissolution, with division rules for elementary and non-elementary membranes,
which make use of minimal cooperation and minimal production in send-in
(respectively, send-out) communication rules.

4 Solving SAT in DAM0(+es,mcmpin,−d,+n)

In this section, a polynomial-time solution to SAT problem, is explicitly given in
the framework of recognizer polarizationless P systems with active membranes
with simple object evolution rules, without dissolution and with division rules for
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elementary and non-elementary membranes which make use of minimal coopera-
tion and minimal production in send-in communication rules. For that, a family
Π = {Π(t) | t ∈ N} of recognizer P systems from DAM0(+es,mcmpin,−d,+n)
will be presented.

4.1 Description of a solution to SAT problem in
DAM0(+es,mcmpin,−d,+n)

For each n, p ∈ N, we consider the recognizer P system

Π(〈n, p〉) = (Γ,Σ,H, µ,M0,M1,M2,R, iin, iout)

from DAM0(+es,mcmpin,−d,+n), defined as follows:

(1)Working alphabet:
Γ = Σ ∪ {yes , no ,#} ∪ {ai,k | 1 ≤ i ≤ n ∧ 1 ≤ k ≤ 2i− 1}∪

{αk | 0 ≤ k ≤ 4np+ 2n+ 2p+ 1} ∪ {βk | 0 ≤ k ≤ 4np+ 2n+ 2p+ 2}∪
{γk | 0 ≤ k ≤ 4np+ 2n}∪
{ti,k, fi,k | 1 ≤ i ≤ n ∧ 2i− 1 ≤ k ≤ 2n+ 2p− 1} ∪ {Ti, Fi | 1 ≤ i ≤ n}∪
{cj | 1 ≤ j ≤ p} ∪ {cj,k | 1 ≤ j ≤ p ∧ 0 ≤ k ≤ np− 1}∪
{dj | 1 ≤ j ≤ p} ∪ {xi,j,k, xi,j,k, x∗i,j,k | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ p∧
1 ≤ k ≤ 2n+ 2np+ n(j − 1) + (i− 1)}

where the input alphabet is Σ = {xi,j,0, xi,j,0, x∗i,j,0 | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ p};
(2)H = {0, 1, 2};
(3)Membrane structure: µ = [ [ [ ]2 ]1 ]0, that is, µ = (V,E) where V = {0, 1, 2}

and
E = {(0, 1), (1, 2)};

(4)Initial multisets:
M0 = {α0, β0}, M1 = {γ0} ∪ {T pi , F

p
i | 1 ≤ i ≤ n}, M2 = {ai,1 | 1 ≤ i ≤ n};

(5)The set of rules R consists of the following rules:

5.1Counters for synchronize the answer of the system.

[ αk −→ αk+1 ]0 , for 0 ≤ k ≤ 4np+ 2n+ 2p
[ βk −→ βk+1 ]0 , for 0 ≤ k ≤ 4np+ 2n+ 2p+ 1
[ γk −→ γk+1 ]1 , for 0 ≤ k ≤ 4np+ 2n− 1

5.2Rules to generate 2n membranes labelled by 1 and 2n membranes labelled
by 2 (these encoding all possible truth assignment of n variables of the
input formula).

[ ai,2i−1 ]2 −→ [ ti,i ]2 [ fi,i ]2 , for 1 ≤ i ≤ n

[ ai,j −→ ai,j+1 ]2 , for 2 ≤ i ≤ n, 1 ≤ j ≤ 2i− 2
[ [ ]2 [ ]2 ]1 −→ [ [ ]2 ]1 [ [ ]2 ]1

[ ti,j −→ ti,j+1 ]2
[ fi,j −→ fi,j+1 ]2

}
, for 1 ≤ i ≤ n, i ≤ j ≤ 2n− 1
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5.3Rules to produce exactly p copies of each truth assignment encoded by
membranes labelled by 2.

[ti,2jn]2 −→ ti,2jn+1 [ ]2
[fi,2jn]2 −→ fi,2jn+1 [ ]2

}
, for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[ ti,2jn+k −→ ti,2jn+k+1 ]1
[ fi,2jn+k −→ fi,2jn+k+1 ]1

}
, for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
1 ≤ k ≤ n− 1

ti,(2j+1)n Fi[ ]2 −→ [ ti,(2j+1)n+1 ]2
fi,(2j+1)n Ti[ ]2 −→ [ fi,(2j+1)n+1 ]2

}
, for

1 ≤ i ≤ n,
1 ≤ j ≤ p− 1

[ ti,(2j+1)n+k −→ ti,(2j+1)n+k+1 ]2
[ fi,(2j+1)n+k −→ fi,(2j+1)n+k+1 ]2

}
, for

1 ≤ i ≤ n,
1 ≤ j ≤ p

ti,2np+n Fi[ ]2 −→ [#]2
fi,2np+n Ti[ ]2 −→ [#]2

}
, for 1 ≤ i ≤ n

5.4Rules to prepare the input formula for check clauses:

[ xi,j,k −→ xi,j,k+1 ]1
[ xi,j,k −→ xi,j,k+1 ]1
[ x∗i,j,k −→ x∗i,j,k+1 ]1

 , for

1 ≤ i ≤ n,
1 ≤ j ≤ p,
0 ≤ k ≤ 2np+ 2n

+n(j − 1) + (i− 1)− 1

5.5Rules implementing the first checking stage.

Ti xi,j,2np+2n+n(j−1)+(i−1)[ ]2 −→ [cj,0]2
Ti xi,j,2np+2n+n(j−1)+(i−1)[ ]2 −→ [#]2
Ti x

∗
i,j,2np+2n+n(j−1)+(i−1)[ ]2 −→ [#]2

Fi xi,j,2np+2n+n(j−1)+(i−1)[ ]2 −→ [#]2
Fi xi,j,2np+2n+n(j−1)+(i−1)[ ]2 −→ [cj,0]2
Fi x

∗
i,j,2np+2n+n(j−1)+(i−1)[ ]2 −→ [#]2


, for

1 ≤ i ≤ n,
1 ≤ j ≤ p

5.6Rules implementing the second checking stage.

[cj,k −→ cj,k+1]2 , for 1 ≤ j ≤ p, 0 ≤ k ≤ np− 2
[cj,np−1]2 −→ cj [ ]2 , for 1 ≤ j ≤ p
γ4np+2n c1[ ]2 −→ [ d1 ]2
[ dj ]2 −→ dj [ ]2 , for 1 ≤ j ≤ p
dj cj+1 [ ]2 −→ [ dj+1 ]2 , for 1 ≤ j ≤ p− 1

5.7Rules to provide the correct answer of the system.

[ dp ]1 −→ dp[ ]1
α4np+2n+2p+1 dp[ ]1 −→ [ yes ]1
α4np+2n+2p+1 β4np+2n+2p+2[ ]1 −→ [ no ]1
[ yes ]1 −→ yes[ ]1
[ no ]1 −→ no[ ]1
[ yes ]0 −→ yes[ ]0
[ no ]0 −→ no[ ]0

(6)the input membrane is the membrane labelled by 1 (iin = 1) and the output
region is the environment (iout = env).
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5 A formal verification

Let ϕ = C1 ∧ . . . ∧ Cp an instance of SAT problem consisting of p clauses
Cj = lj,1 ∨ . . . ∨ lj,rj , 1 ≤ j ≤ p, where V ar(ϕ) = {x1, . . . , xn}, and lj,k ∈
{xi,¬xi|1 ≤ i ≤ n}, 1 ≤ j ≤ p, 1 ≤ k ≤ rj . Let us asume that the number of
variables, n, and the number of clauses, p, of ϕ, are greater or equal to 2.

We consider the polynomial encoding (cod, s) from SAT in Π defined as follows:
For each ϕ ∈ ISAT with n variables and p clauses, s(ϕ) = 〈n, p〉 and

cod(ϕ) = {xi,j,0|xi ∈ Cj} ∪ {xi,j,0|¬xi ∈ Cj} ∪ {x∗i,j,0|xi 6∈ Cj ,¬xi 6∈ Cj}

For instance, the formula ϕ = (x1 +x2 +x3)(x2 +x4)(x2 +x3 +x4) is encoded
as follows:

cod(ϕ) =

x1,1,0 x2,1,0 x3,1,0 x
∗
4,1,0

x∗1,2,0 x2,2,0 x
∗
3,2,0 x4,2,0

x∗1,3,0 x2,3,0 x3,3,0 x4,3,0


That is, j-th row (1 ≤ j ≤ p) represents the j-th clause Cj of ϕ. We denote
(cod(ϕ))pj the code of the clauses Cj , . . . , Cp, that is, the expression containing
from j-th row to p-th row. For instance,

cod(ϕ)p2 =

(
x∗1,2,0 x2,2,0 x

∗
3,2,0 x4,2,0

x∗1,3,0 x2,3,0 x3,3,0 x4,3,0

)
We denote (codk(ϕ))pj ) the code cod(ϕ)pj when the third index of the variables

equal 3. For instance: row to p-th row. For instance,

cod3(ϕ)p2 =

(
x∗1,2,3 x2,2,3 x

∗
3,2,3 x4,2,3

x∗1,3,3 x2,3,3 x3,3,3 x4,3,3

)
We denote (cod′k(ϕ))pj ) the code cod(ϕ)pj when the third index of the variables

equal 3. For instance: row to p-th row. For instance,

cod′3(ϕ)p2 =

(
x∗′1,2,3 x

′
2,2,3 x

∗′
3,2,3 x

′
4,2,3

x∗′1,3,3 x
′
2,3,3 x′3,3,3 x′4,3,3

)
We denote (cod∗(ϕ))pj ) the code cod(ϕ)pj when the third index does not exist.

For instance: row to p-th row. For instance,

cod∗(ϕ)p2 =

(
x∗1,2 x2,2 x

∗
3,2 x4,2

x∗1,3 x2,3 x3,3 x4,3

)
The Boolean formula ϕ will be processed by the system Π(s(ϕ)) + cod(ϕ).

Next, we informally describe how that system works.
The solution proposed follows a brute force algorithm in the framework of

recognizer P systems with active membranes, minimal cooperation in object evo-
lution rules and division rules only for elementary membranes, and it consists of
the following stages:
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• Generation stage: using separation rules, beside other rules that make a
“simulation” of division rules, we get all truth assignments for the variables
{x1, . . . , xn} associated with ϕ are produced. Specifically, 2n membranes la-
belled by 2 and 2n labelled by 1 are generated. Each of the former ones en-
codes a truth assignment. This stage takes exactly 2n+ 2np steps, being n the
number of variables of ϕ.

• First Checking stage: checking whether or not each clause of the input formula
ϕ is satisfied by the truth assignments generated in the previous stage, encoded
by each membrane labelled by 2. This stage takes exactly np steps, being n the
number of the variables and p the number of clauses of ϕ.

• Second Checking stage: checking whether or not all clauses of the input formula
ϕ are satisfied by some truth assignment encoded by a membrane labelled by
2. This stage takes exactly np+ 2p steps, being n the number of variables and
p the number of clauses of ϕ.

• Output stage: the system sends to the environment the right answer according
to the results of the previous stage. This stage takes 4 steps if the answer is
yes and 5 steps if the answer is no.

5.1 Generation stage

Through this stage, all the different truth assignments for the variables associated
with the Boolean formula ϕ will be generated within membranes labelled by 1, by
the applications of rules from 5.2 and 5.3. In the first 2n steps, 2n membranes
labelled by 2 and 2n membranes labelled by 1, alternating between the division of
membranes labelled by 2 (in odd steps) and the division of membranes labelled by
1 (in even steps).

Proposition 1. Let C = (C0, C1, . . . , Cq) be a computation of the system Π(s(ϕ))
with input multiset cod(ϕ).

(a0) For each 2k (0 ≤ k ≤ n− 1) at configuration C2k we have the following:
- C2k(0) = {α2k, β2k}
- There are 2k membranes labelled by 1 such that each of them contains

? the input multiset cod2k(ϕ);
? an object γ2k; and
? p copies of every Ti and Fi, 1 ≤ i ≤ n.

- There are 2k membranes labelled by 2 such that each of them contains
? objects ai,2k+1, k + 1 ≤ i ≤ n; and
? a different subset {r1,j , . . . , rk,j}, k + 1 ≤ j ≤ 2k, being r ∈ {t, f}.

(a1) For each 2k + 1 (0 ≤ j ≤ n− 1) at configuration C2k+1 we have the following:
- C2k+1(0) = {α2k+1, β2k+1}
- There are 2k membranes labelled by 1 such that each of them contains

? the input multiset cod2k+1(ϕ);
? an object γ2k+1; and
? p copies of every Ti and Fi, 1 ≤ i ≤ n.
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- There are 2k+1 membranes labelled by 2 such that each of them contains
? objects ai,2(k+1), k + 1 ≤ i ≤ n; and
? a different subset {r1,j , . . . , rk+1,j}, k+1 ≤ j ≤ 2k+1, being r ∈ {t, f}.

(b) C2n(0) = {α2n, β2n}, and in C2n there are 2n membranes labelled by 1, such
that each of them contains the input multiset cod2n(ϕ), p copies of every Ti
and Fi (1 ≤ i ≤ n) and an object γ2n; and 2n membranes labelled by 2, such
that each of them contains a different subset of objects ri,2n+1−i, 1 ≤ i ≤ n

Proof. (a) is going to be demonstrated by induction on k

- The base case k = 0 is trivial because:
(a0) at the initial configuration C0 we have: C0(0) = {α0, β0} and there exists

a single membrane labelled by 1 containing the input multiset cod(ϕ), an
object γ0 and p copies of Ti and Fi, being 1 ≤ i ≤ n; and a single membrane
labelled by 2 containing the objects a1,1, . . . , an,1. Then, configuration C0
yields configuration C1 by applying the rules:

[ a1,1 ]2 → [ t1,1 ]2 [ f1,1 ]2
[ ai,1 → ai,2 ]2 , for k + 1 ≤ i ≤ n
[ α0 → α1 ]0
[ β0 → β1 ]0
[ γ0 → γ1 ]1
[ xi,j,0 → xi,j,1 ]1
[ xi,j,0 → xi,j,1 ]1
[ x∗i,j,0 → x∗i,j,1 ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

(a1) at C1 we have C1(0) = {α1, β1} and there exists a single membrane labelled
by 1 containing the input multiset cod1(ϕ), an object γ1 and p copies of
Ti and Fi, being 1 ≤ i ≤ n; and two membranes labelled by 2 containing
the objects a2,2, . . . , an,2 and one with the object t1,1 and the other one
with the object f1,1. Then, the configuration C1 yields configuration C2 by
applying the rules:

[ t1,1 → t1,2 ]2
[ f1,1 → f1,2 ]2
[ [ ]2 [ ]2]1 → [ [ ]2]1 [ [ ]2]1
[ai,2 → ai,3 ]2 , for 2 ≤ i ≤ n
[ α1 → α2 ]0
[ β1 → β2 ]0
[ γ1 → γ2 ]1
[ xi,j,1 → xi,j,2 ]1
[ xi,j,1 → xi,j,2 ]1
[ x∗i,j,1 → x∗i,j,2 ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Thus, C2(0) = {α2, β2}, and there exist two membranes labelled by 1 con-
taining the input multiset cod2(ϕ), an object γ2 and p copies of Ti and Fi,
being 1 ≤ i ≤ n; and two membranes labelled by 2 containing the objects
a2,3, . . . , an,3 and one with the object t1,2 and the other one with the object
f1,2. Hence, the result holds for k = 1.
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- Supposing, by induction, result is true for k (0 ≤ k ≤ n− 1)
- C2k(0) = {α2k, β2k}
- In C2k there are 2k membranes labelled by 1 such that each of them contains

? the input multiset cod2k(ϕ);
? an object γ2k; and
? p copies of Ti and Fi, 1 ≤ i ≤ n.

- In C2k there are 2k membranes labelled by 2 such that each of them contains
? objects ai,2k+1, k + 1 ≤ i ≤ n; and
? a different subset {r1,j , . . . , rk,j}, k + 1 ≤ j ≤ 2k, being r ∈ {t, f}.
Then, configuration C2k yields configuration C2k+1 by applying the rules:

[ ak,2k+1 ]2 → [ tk,k ]2 [ fk,k ]2
[ ai,2k+1 → ai,2k+2 ]2 , for k + 1 ≤ i ≤ n
[ ti,j → ti,j+1 ]2
[ fi,j → fi,j+1 ]2

}
for 1 ≤ i ≤ k − 1, k + 1 ≤ j ≤ 2k

[ α2k → α2k+1 ]0
[ β2k → β2k+1 ]0
[ γ2k → γ2k+1 ]1
[ xi,j,2k → xi,j,2k+1 ]1
[ xi,j,1 → xi,j,2k+1 ]1
[ x∗i,j,1 → x∗i,j,2k+1 ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Therefore, the following holds
- C2k+1(0) = {α2k+1, β2k+1}
- In C2k+1 there are 2k membranes labelled by 1 such that each of them

contains
? the input multiset cod2k+1(ϕ);
? an object γ2k+1; and
? p copies of Ti and Fi, 1 ≤ i ≤ n.

- In C2k+1 there are 2k+1 membranes labelled by 2 such that each of them
contains
? objects ai,2(k+1), k + 1 ≤ i ≤ n; and
? a different subset {r1,j , . . . , rk+1,j}, k+ 1 ≤ j ≤ 2k+ 1, being r ∈ {t, f}.
Then, configuration C2k+1 yields configuration C2(k+1) by applying the rules:

[ ti,j → ti,j+1 ]2
[ fi,j → fi,j+1 ]2

}
for 1 ≤ i ≤ k + 1, k + 1 ≤ j ≤ 2k + 1

[ [ ]2 [ ]2]1 → [ [ ]2]1 [ [ ]2]1
[ ai,2(k+1) → ai,2(k+1)+1 ]2 , for k + 1 ≤ i ≤ n
[ α2k+1 → α2(k+1) ]0
[ β2k+1 → β2(k+1) ]0
[ γ2k+1 → γ2(k+1) ]1
[ xi,j,2k+1 → xi,j,2k+2 ]1
[ xi,j,2k+1 → xi,j,2k+2 ]1
[ x∗i,j,2k+1 → x∗i,j,2k+2 ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Therefore, the following holds
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- C2(k+1)(0) = {α2(k+1), β2(k+1)}
- In C2(k+1) there are 2k+1 membranes labelled by 1 such that each of them

contains
? the input multiset cod2(k+1)(ϕ);
? an object γ2(k+1); and
? p copies of Ti and Fi, 1 ≤ i ≤ n.

- In C2(k+1) there are 2k+1 membranes labelled by 2 such that each of them
contains
? objects ai,2(k+1)+1, k + 1 ≤ i ≤ n; and
? a different subset {r1,j , . . . , rk+1,j}, k + 1 ≤ j ≤ 2(k + 1) + 1.
Hence, the result holds for k + 1.

- In order to prove (b) it is enough to notice that, on the one hand, from (a)
configuration C2n−1 holds:
- C2n−1(0) = {α2n−1, β2n−1}
- In C2n−1 there are 2n−1 membranes labelled by 1 such that each of them

contains
? the input multiset cod2n−1p(ϕ);
? an object γ2n−1; and
? p copies of Ti and Fi, 1 ≤ i ≤ n.

- In C2n−1 there are 2n membranes labelled by 2 such that each of them
contains a different subset of objects ri,2n−i, 1 ≤ i ≤ n.
Then, configuration C2n−1 yields C2n by applying the rules:

[ ti,2n−i → ti,2n+1−i ]2
[ fi,2n−i → fi,2n+1−1 ]2

}
for 1 ≤ i ≤ n

[ [ ]2 [ ]2]1 → [ [ ]2]1 [ [ ]2]1
[ α2n−1 → α2n ]0
[ β2n−1 → β2n ]0
[ γ2n−1 → γ2n ]1
[ xi,j,2n−1 → xi,j,2n ]1
[ xi,j,2n−1 → xi,j,2n ]1
[ x∗i,j,2n−1 → x∗i,j,2n ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Then, we have C2n(0) = {α2n, β2n}, and there exist 2n membranes labelled
by 1 containing the input multiset cod2n(ϕ), an object γ2n and p copies of
Ti and Fi, being 1 ≤ i ≤ n; and 2n membranes labelled by 2 containing a
different multiset of objects ri,2n+1−i, being 1 ≤ i ≤ n.

�

When the tree structure is created, we start assigning a truth assignment to each
branch. It is executed in the next 2np steps. The last n steps are different from
the previous ones, so they deserve another proposition of the following one.

Proposition 2. Let C = (C0, C1, . . . , Cq) be a computation of the system Π(s(ϕ))
with input multiset cod(ϕ).
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(a0) For each k (1 ≤ k ≤ n) and l (0 ≤ l ≤ p − 1) at configuration C2n+2ln+k we
have the following:
- C2n+2ln+k(0) = {α2n+2ln+k, β2n+2ln+k}
- There are 2n membranes labelled by 1 such that each of them contains

? the input multiset cod2n+2ln+k(ϕ);
? an object γ2n+2ln+k;
? p copies of every Ti and Fi, 1 ≤ i ≤ n if the truth assignment associated

to the branch contains its corresponding ti or fi object, and p− l copies
otherwise; and

? objects ri,2n+2ln+k−i+1, 1 ≤ i ≤ k, being r ∈ {t, f}.
- There are 2n membranes labelled by 2 such that each of them contains a

different subset of objects ri,2n+2ln+k−i+1, k + 1 ≤ i ≤ n, being r ∈ {t, f}.
(a1) For each k (1 ≤ k ≤ n) and l (0 ≤ l ≤ p − 2) at configuration C3n+2ln+k we

have the following:
- C3n+2ln+k(0) = {α3n+2ln+k, β3n+2ln+k}
- There are 2n membranes labelled by 1 such that each of them contains

? the input multiset cod3n+2ln+k(ϕ);
? an object γ3n+2ln+k;
? p copies of every Ti and Fi, 1 ≤ i ≤ n if the truth assignment associated

to the branch contains its corresponding ti or fi object; otherwise, there
are p− l objects if k + 1 ≤ i ≤ n, p− l − 1 otherwise; and

? objects ri,3n+2ln+k−i+1, k + 1 ≤ i ≤ n, being r ∈ {t, f}.
- There are 2n membranes labelled by 2 such that each of them contains a

different subset of objects ri,3n+2ln+k−i+1, 1 ≤ i ≤ k, being r ∈ {t, f}.
(b) Cn+2np(0) = {αn+2np, βn+2np}, and in Cn+2np there are 2n membranes labelled

by 1, such that each of them contains the input multiset codn+2np(ϕ), an ob-
ject γn+2np, p copies of every Ti and Fi, 1 ≤ i ≤ n if the truth assignment
associated to the branch contains its corresponding ti or fi object, and 1 object
otherwise and objects ri,n+2np−i+1, 1 ≤ i ≤ n, being r ∈ {t, f}, that is, the
truth assignment associated with the branch; and 2n empty membranes labelled
by 2.

Proof. (a) is going to be demonstrated by induction on l

- The base case l = 0 is going to be demonstrated by induction on k
(a0) The base case k = 1 is trivial because:

- at configuration C2n we have: C2n(0) = {α2n, β2n} and there exist 2n

membranes labelled by 1 containing the input multiset cod2n(ϕ), an
object γ2n and p copies of Ti and Fi, being 1 ≤ i ≤ n; and 2n membranes
labelled by 2 containing a different subset of objects ri,2n−i+1, 1 ≤ i ≤ n,
being r ∈ {t, f}, the corresponding truth assignment of the branch.
Then, configuration C2n yields configuration C2n+1 by applying the rules:

[ ti,2n ]2 → ti,2n+1[ ]2
[ fi,2n ]2 → fi,2n+1[ ]2
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[ ti,2n+1−i → ti,2n+2−i ]2
[ fi,2n+1−i → fi,2n+2−1 ]2

}
for 2 ≤ i ≤ n

[ α2n → α2n+1 ]0
[ β2n → β2n+1 ]0
[ γ2n → γ2n+1 ]1
[ xi,j,2n → xi,j,2n+1 ]1
[ xi,j,2n → xi,j,2n+1 ]1
[ x∗i,j,2n → x∗i,j,2n+1 ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Thus, C2n+1(0) = {α2n+1, β2n+1}, and there exist 2n membranes la-
belled by 1 containing the input multiset cod2n+1(ϕ), an object γ2n+1,
p copies of Ti and Fi, being 1 ≤ i ≤ n and an object r1,2n+1, being
r ∈ {t, f}; and 2n membranes labelled by 2 containing a different subset
of objects ri,2n−i+2, 2 ≤ i ≤ n, being r ∈ {t, f}.

- Supposing, by induction, result is true for k (1 ≤ k ≤ n)
- C2n+k(0) = {α2n+k, β2n+k}
- In C2n+k there are 2n membranes labelled by 1 such that each of them

contains
? the input multiset cod2n+k(ϕ);
? an object γ2n+k;
? p copies of every Ti and Fi, 1 ≤ i ≤ n; and
? objects ri,2n+k−i+1, 1 ≤ i ≤ k, being r ∈ {t, f}.

- In C2n+k there are 2n membranes labelled by 2 such that each of them
contains a different subset of objects ri,2n+k−i+1, k + 1 ≤ i ≤ n, being
r ∈ {t, f}.
Then, configuration C2n+k yields configuration C2n+k+1 by applying the
rules:

[ tk+1,2n ]2 → tk+1,2n+1[ ]2
[ fk+1,2n ]2 → fk+1,2n+1[ ]2
[ ti,2n+k−i+1 → ti,2n+k−i+2 ]2
[ fi,2n+k−i+1 → fi,2n+k−i+2 ]2

}
for k + 2 ≤ i ≤ n

[ ti,2n+k−i+1 → ti,2n+k−i+2 ]1
[ fi,2n+k−i+1 → fi,2n+k−i+2 ]1

}
for 1 ≤ i ≤ k

[ α2n+k → α2n+k+1 ]0
[ β2n+k → β2n+k+1 ]0
[ γ2n+k → γ2n+k+1 ]1
[ xi,j,2n+k → xi,j,2n+k+1 ]1
[ xi,j,2n+k → xi,j,2n+k+1 ]1
[ x∗i,j,2n+k → x∗i,j,2n+k+1 ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Therefore, the following holds
- C2n+k+1(0) = {α2n+k+1, β2n+k+1}
- In C2n+k+1 there are 2n membranes labelled by 1 such that each of them

contains
? the input multiset cod2n+k+1(ϕ);
? an object γ2n+k+1;
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? p copies of Ti and Fi, 1 ≤ i ≤ n; and
? objects ri,2n+k−i+2, 1 ≤ i ≤ k + 1, being r ∈ {t, f}.

- In C2n+k+1 there are 2n membranes labelled by 2 such that each of them
contains a different subset of objects ri,2n+k−i+2, k + 2 ≤ i ≤ n, being
r ∈ {t, f}.

(a1) The base case k = 1 is trivial because:
- at configuration C3n we have C3n(0) = {α3n, β3n} and there exist 2n

membranes labelled by 1 containing the input multiset cod3n(ϕ), an
object γ3n, p copies of Ti and Fi, being 1 ≤ i ≤ n and a different subset of
objects ri,3n+1−i, 1 ≤ i ≤ n, being r ∈ {t, f}, that is, the corresponding
truth assignment of the branch; and 2n empty membranes labelled by
2. Then, configuration C3n yields configuration C3n+1 by applying the
rules:
t1,3n F1[ ]2 → [ t1,3n+1 ]2
f1,3n T1[ ]2 → [ f1,3n+1 ]2
[ ti,3n−i+1 → ti,3n−i+2 ]1
[ fi,3n−i+1 → fi,3n−i+2 ]1

}
for 2 ≤ i ≤ n

[ α3n → α3n+1 ]0
[ β3n → β3n+1 ]0
[ γ3n → γ3n+1 ]1
[ xi,j,3n → xi,j,3n+1 ]1
[ xi,j,3n → xi,j,3n+1 ]1
[ x∗i,j,3n → x∗i,j,3n+1 ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Thus, C3n+1(0) = {α3n+1, β3n+1}, and there exist 2n membranes la-
belled by 1 containing the input multiset cod3n+1(ϕ), an object γ3n+1,
p copies of Ti and Fi, being 2 ≤ i ≤ n, and p − 1 copies of T1 (resp.
F1) if we have its corresponding f1 (resp. t1) object in that branch, p
copies otherwise, and a different subset of objects ri,3n−i+2, 2 ≤ i ≤ n,
being r ∈ {t, f}; and 2n membranes labelled by 2 containing an object
r1,3n+1, being r ∈ {t, f}.

- Supposing, by induction, result is true for k (1 ≤ k ≤ n)
- C3n+k(0) = {α3n+k, β3n+k}
- In C3n+k there are 2n membranes labelled by 1 such that each of them

contains
? the input multiset cod3n+k(ϕ);
? an object γ3n+k;
? p copies of every Ti and Fi, if k + 1 ≤ i ≤ n or their corresponding

ti or fi is assigned to that branch, p− 1 copies otherwise; and
? objects ri,3n+k−i+1, k + 1 ≤ i ≤ n, being r ∈ {t, f}.

- In C3n+k there are 2n membranes labelled by 2 such that each of them
contains a different subset of objects ri,3n+k−i+1, 1 ≤ i ≤ k, being
r ∈ {t, f}.
Then, configuration C3n+k yields configuration C3n+k+1 by applying the
rules:
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tk+1,3nFk[ ]2 → [ tk+1,3n+1 ]2
fk+1,3nTk[ ]2 → [ fk+1,3n+1 ]2
[ ti,3n+k−i+1 → ti,3n+k−i+2 ]1
[ fi,3n+k−i+1 → fi,3n+k−i+2 ]1

}
for k + 2 ≤ i ≤ n

[ ti,3n+k−i+1 → ti,3n+k−i+2 ]2
[ fi,3n+k−i+1 → fi,3n+k−i+2 ]2

}
for 1 ≤ i ≤ k

[ α3n+k → α3n+k+1 ]0
[ β3n+k → β3n+k+1 ]0
[ γ3n+k → γ3n+k+1 ]1
[ xi,j,3n+k → xi,j,3n+k+1 ]1
[ xi,j,3n+k → xi,j,3n+k+1 ]1
[ x∗i,j,3n+k → x∗i,j,3n+k+1 ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Therefore, the following holds
- C3n+k+1(0) = {α3n+k+1, β3n+k+1}
- In C3n+k+1 there are 2n membranes labelled by 1 such that each of them

contains
? the input multiset cod3n+k+1(ϕ);
? an object γ3n+k+1;
? p copies of every Ti and Fi, if k+ 2 ≤ i ≤ n or the corresponding ti

or fi is assigned to that branch, p− 1 copies otherwise; and
? objects ri,3n+k−i+2, k + 2 ≤ i ≤ n, being r ∈ {t, f}.

- In C3n+k+1 there are 2n membranes labelled by 2 such that each of them
contains a different subset of objects ri,3n+k−i+2, 1 ≤ i ≤ k + 1, being
r ∈ {t, f}.

- Supposing, by induction, result is true for l (0 ≤ l ≤ p− 1)

(a0) The base case k = 1 is trivial because:
- at configuration C2n+(l+1)n

1 we have: C2n+(l+1)n(0) = {α2n+(l+1)n,
β2n+(l+1)n} and there exist 2n membranes labelled by 1 containing the
input multiset cod2n+(l+1)n(ϕ), an object γ2n+(l+1)n and p copies of Ti
and Fi, being 1 ≤ i ≤ n, and p−l copies for Ti (resp. Fi) objects that are
in a branch with an object fi (resp. ti); and 2n membranes labelled by 2
containing a different subset of objects ri,2n+(l+1)n−i+1, 1 ≤ i ≤ n, be-
ing r ∈ {t, f}, the corresponding truth assignment of the branch. Then,
configuration C2n+(l+1)n yields configuration C2n+(l+1)n+1 by applying
the rules:

[ ti,2n+(l+1)n ]2 → ti,2n+(l+1)n+1[ ]2
[ fi,2n+(l+1)n ]2 → fi,2n+(l+1)n+1[ ]2
[ ti,2n+(l+1)n+1−i → ti,2n+(l+1)n+2−i ]2
[ fi,2n+(l+1)n+1−i → fi,2n+(l+1)n+2−i ]2

}
for 2 ≤ i ≤ n

1 Note that (l + 1)n = ln + n, and it has been demonstrated in the first step of the
induction that it is correct.
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[ α2n+(l+1)n → α2n+(l+1)n+1 ]0
[ β2n+(l+1)n → β2n+(l+1)n+1 ]0
[ γ2n+(l+1)n → γ2n+(l+1)n+1 ]1
[ xi,j,2n+(l+1)n → xi,j,2n+(l+1)n+1 ]1
[ xi,j,2n+(l+1)n → xi,j,2n+(l+1)n+1 ]1
[ x∗i,j,2n+(l+1)n → x∗i,j,2n+(l+1)n+1 ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Thus, C2n+(l+1)n+1(0) = {α2n+(l+1)n+1, β2n+(l+1)n+1}, and there
exist 2n membranes labelled by 1 containing the input multiset
cod2n+(l+1)n+1(ϕ), an object γ2n+(l+1)n+1, p copies of Ti (resp. Fi) be-
ing 1 ≤ i ≤ n if the corresponding ti (resp. fi) object exists in that
branch, and p − l copies of Fi (resp. Ti) and an object r1,2n+(l+1)n+1,
being r ∈ {t, f}; and 2n membranes labelled by 2 containing a different
subset of objects ri,2n+(l+1)n−i+2, 2 ≤ i ≤ n, being r ∈ {t, f}.

- Supposing, by induction, result is true for k (1 ≤ k ≤ n)
- C2n+(l+1)n+k(0) = {α2n+(l+1)n+k, β2n+(l+1)n+k}
- In C2n+(l+1)n+k there are 2n membranes labelled by 1 such that each of

them contains
? the input multiset cod2n+(l+1)n+k(ϕ);
? an object γ2n+(l+1)n+k;
? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if the corresponding ti

(resp. fi) object exists in that branch, and p− l copies of Fi (resp.
Ti); and

? objects ri,2n+(l+1)n+k−i+1, 1 ≤ i ≤ k, being r ∈ {t, f}.
- In C2n+(l+1)n+k there are 2n membranes labelled by 2 such that each of

them contains a different subset of objects ri,2n+(l+1)n+k−i+1, k + 1 ≤
i ≤ n, being r ∈ {t, f}.
Then, configuration C2n+k yields configuration C2n+(l+1)n+k+1 by ap-
plying the rules:

[ tk+1,2n+(l+1)n ]2 → tk+1,2n+(l+1)n+1[ ]2
[ fk+1,2n+(l+1)n ]2 → fk+1,2n+(l+1)n+1[ ]2
[ ti,2n+(l+1)n+k−i+1 → ti,2n+k−i+2 ]2
[ fi,2n+(l+1)n+k−i+1 → fi,2n+k−i+2 ]2

}
for k + 2 ≤ i ≤ n

[ ti,2n+(l+1)n+k−i+1 → ti,2n+(l+1)n+k−i+2 ]1
[ fi,2n+(l+1)n+k−i+1 → fi,2n+(l+1)n+k−i+2 ]1

}
for 1 ≤ i ≤ k

[ α2n+(l+1)n+k → α2n+(l+1)n+k+1 ]0
[ β2n+(l+1)n+k → β2n+(l+1)n+k+1 ]0
[ γ2n+(l+1)n+k → γ2n+(l+1)n+k+1 ]1
[ xi,j,2n+(l+1)n+k → xi,j,2n+(l+1)n+k+1 ]1
[ xi,j,2n+(l+1)n+k → xi,j,2n+(l+1)n+k+1 ]1
[ x∗i,j,2n+(l+1)n+k → x∗i,j,2n+(l+1)n+k+1 ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Therefore, the following holds
- C2n+(l+1)n+k+1(0) = {α2n+(l+1)n+k+1, β2n+(l+1)n+k+1}
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- In C2n+(l+1)n+k+1 there are 2n membranes labelled by 1 such that each
of them contains
? the input multiset cod2n+(l+1)n+k+1(ϕ);
? an object γ2n+(l+1)n+k+1;
? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if the corresponding ti

(resp. fi) object exists in that branch, and p− l copies of Fi (resp.
Ti); and

? objects ri,2n+(l+1)n+k−i+2, 1 ≤ i ≤ k + 1, being r ∈ {t, f}.
- In C2n+(l+1)n+k+1 there are 2n membranes labelled by 2 such that each

of them contains a different subset of objects ri,2n+(l+1)n+k−i+2, k+2 ≤
i ≤ n, being r ∈ {t, f}.

(a1) The base case k = 1 is trivial because:
- at configuration C3n+(l+1)n we have C3n+(l+1)n(0) = {α3n+(l+1)n,

β3n+(l+1)n} and there exist 2n membranes labelled by 1 containing the
input multiset cod3n+(l+1)n(ϕ), an object γ3n+(l+1)n, p copies of Ti (resp.
Fi) being 1 ≤ i ≤ n if the corresponding ti (resp. fi) object exists in that
branch, and p− l copies of Fi (resp. Ti) and a different subset of objects
ri,3n+(l+1)n−i+1, 1 ≤ i ≤ n, being r ∈ {t, f}, that is, the corresponding
truth assignment of the branch; and 2n empty membranes labelled by
2. Then, configuration C3n+(l+1)n yields configuration C3n+(l+1)n+1 by
applying the rules:
t1,3n+(l+1)n F1[ ]2 → [ t1,3n+(l+1)n+1 ]2
f1,3n+(l+1)n T1[ ]2 → [ f1,3n+(l+1)n+1 ]2
[ ti,3n+(l+1)n−i+1 → ti,3n+(l+1)n−i+2 ]1
[ fi,3n+(l+1)n−i+1 → fi,3n+(l+1)n−i+2 ]1

}
for 2 ≤ i ≤ n

[ α3n+(l+1)n → α3n+(l+1)n+1 ]0
[ β3n+(l+1)n → β3n+(l+1)n+1 ]0
[ γ3n+(l+1)n → γ3n+(l+1)n+1 ]1
[ xi,j,3n+(l+1)n → xi,j,3n+(l+1)n+1 ]1
[ xi,j,3n+(l+1)n → xi,j,3n+(l+1)n+1 ]1
[ x∗i,j,3n+(l+1)n → x∗i,j,3n+(l+1)n+1 ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Thus, C3n+(l+1)n+1(0) = {α3n+(l+1)n+1, β3n+(l+1)n+1}, and there
exist 2n membranes labelled by 1 containing the input multiset
cod3n+(l+1)n+1(ϕ), an object γ3n+(l+1)n+1, p copies of Ti (resp. Fi) be-
ing 1 ≤ i ≤ n if the corresponding ti (resp. fi) object exists in that
branch, and p − l copies of Fi (resp. Ti) if k + 1 ≤ i ≤ n, p − l − 1
otherwise, and a different subset of objects ri,3n+(l+1)n−i+2, 2 ≤ i ≤ n,
being r ∈ {t, f}; and 2n membranes labelled by 2 containing an object
r1,3n+(l+1)n+1, being r ∈ {t, f}.

- Supposing, by induction, result is true for k (1 ≤ k ≤ n)
- C3n+(l+1)n+k(0) = {α3n+(l+1)n+k, β3n+(l+1)n+k}
- In C3n+(l+1)n+k there are 2n membranes labelled by 1 such that each of

them contains
? the input multiset cod3n+(l+1)n+k(ϕ);
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? an object γ3n+(l+1)n+k;
? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if the corresponding ti

(resp. fi) object exists in that branch, and p− l copies of Fi (resp.
Ti) if k + 1 ≤ i ≤ n, p− l − 1 otherwise; and

? objects ri,3n+k−i+1, k + 1 ≤ i ≤ n, being r ∈ {t, f}.
- In C3n+(l+1)n+k there are 2n membranes labelled by 2 such that each of

them contains a different subset of objects ri,3n+(l+1)n−i+1, 1 ≤ i ≤ k,
being r ∈ {t, f}.
Then, configuration C3n+(l+1)n+k yields configuration C3n+(l+1)n+k+1 by
applying the rules:
tk+1,3n+(l+1)n Fk[ ]2 → [ tk+1,3n+(l+1)n+1 ]2
fk+1,3n+(l+1)n Tk[ ]2 → [ fk+1,3n+(l+1)n+1 ]2
[ ti,3n+(l+1)n+k−i+1 → ti,3n+(l+1)n+k−i+2 ]1
[ fi,3n+(l+1)n+k−i+1 → fi,3n+(l+1)n+k−i+2 ]1

}
for k + 2 ≤ i ≤ n

[ ti,3n+(l+1)n+k−i+1 → ti,3n+(l+1)n+k−i+2 ]2
[ fi,3n+(l+1)n+k−i+1 → fi,3n+(l+1)n+k−i+2 ]2

}
for 1 ≤ i ≤ k

[ α3n+(l+1)n+k → α3n+(l+1)n+k+1 ]0
[ β3n+(l+1)n+k → β3n+(l+1)n+k+1 ]0
[ γ3n+(l+1)n+k → γ3n+(l+1)n+k+1 ]1
[ xi,j,3n+(l+1)n+k → xi,j,3n+(l+1)n+k+1 ]1
[ xi,j,3n+(l+1)n+k → xi,j,3n+(l+1)n+k+1 ]1
[ x∗i,j,3n+(l+1)n+k → x∗i,j,3n+(l+1)n+k+1 ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Therefore, the following holds
- C3n+(l+1)n+k+1(0) = {α3n+(l+1)n+k+1, β3n+(l+1)n+k+1}
- In C3n+(l+1)n+k+1 there are 2n membranes labelled by 1 such that each

of them contains
? the input multiset cod3n+(l+1)n+k+1(ϕ);
? an object γ3n+(l+1)n+k+1;
? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if the corresponding ti

(resp. fi) object exists in that branch, and p− l copies of Fi (resp.
Ti) if k + 2 ≤ i ≤ n, p− l − 1 otherwise; and

? objects ri,3n+(l+1)n+k−i+2, k + 2 ≤ i ≤ n, being r ∈ {t, f}.
- In C3n+(l+1)n+k+1 there are 2n membranes labelled by 2 such that each

of them contains a different subset of objects ri,3n+(l+1)n+k−i+2, 1 ≤
i ≤ k + 1, being r ∈ {t, f}.

- In order to prove (b) it is enough to notice that, on the one hand, from (a)
configuration Cn+2np−1

2 holds:
- Cn+2np−1(0) = {αn+2np−1, βn+2np−1}
- In Cn+2np−1 there are 2n membranes labelled by 1 such that each of them

contains
? the input multiset codn+2np−1(ϕ);
? an object γn+2np−1;

2 Note that n + 2np− 1 = 2n + 2n(p− 1) + (n− 1)
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? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if the corresponding ti (resp.
fi) object exists in that branch, and 1 copy otherwise; and

? objects ri,n+2np−i, 1 ≤ i ≤ n− 1
- In Cn+2np−1 there are 2n membranes labelled by 2 such that each of them

contains an object rn,2np, being r ∈ {t, f}.
Then, configuration Cn+2np−1 yields Cn+2np by applying the rules:

[ tn,2np ]2 → tn,2np+1[ ]2
[ fn,2np ]2 → fn,2np+1[ ]2
[ ti,n+2np−i → ti,n+2np−i+1 ]1
[ fi,n+2np−i → fi,n+2np−i ]1

}
for 1 ≤ i ≤ n− 1

[ αn+2np−1 → αn+2np ]0
[ βn+2np−1 → βn+2np ]0
[ γn+2np−1 → γn+2np ]1
[ xi,j,n+2np−1 → xi,j,n+2np ]1
[ xi,j,n+2np−1 → xi,j,n+2np ]1
[ x∗i,j,n+2np−1 → x∗i,j,n+2np ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Then, we have Cn+2np(0) = {αn+2np, βn+2np}, and there exist 2n mem-
branes labelled by 1 containing the input multiset codn+2np(ϕ), an object
γn+2np, p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if the corresponding ti
(resp. fi) object exists in that branch, and 1 copy otherwise and a different
multiset of objects ri,n+2np−i+1, 1 ≤ i ≤ n, being r ∈ {t, f}, that is, the
truth assignment associated with the branch; and 2n empty membranes
labelled by 2.

�

Proposition 3. Let C = (C0, C1, . . . , Cq) be a computation of the system Π(s(ϕ))
with input multiset cod(ϕ).

(a) For each k (1 ≤ k ≤ n− 1) at configuration Cn+2np+k we have the following:
- Cn+2np+k(0) = {αn+2np+k, βn+2np+k}
- There are 2n membranes labelled by 1 such that each of them contains

? the input multiset codn+2np+k(ϕ);
? an object γn+2np+k;
? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if the corresponding ti (resp. fi)

object exists in that branch, and 1 copy of Fi (resp. Ti) if k+1 ≤ i ≤ n;
and

? objects ri,n+2np+k−i+1, k + 1 ≤ i ≤ n, being r ∈ {t, f}.
- there are 2n membranes labelled by 2 such that each of them contains k

objects #
(b) C2n+2np(0) = {α2n+2np, β2n+2np}, and in C2n+2np there are 2n membranes

labelled by 1, such that each of them contains the input multiset cod2n+2np(ϕ),
an object γ2n+2np, p copies of every Ti and Fi, 1 ≤ i ≤ n if the truth assignment
associated to the branch contains its corresponding ti or fi object; and 2n

membranes labelled by 2, such that each of them contains n objects #.
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Proof. (a) is going to be demonstrated by induction on k

- the base case k = 1 is trivial because:
- at Cn+2np we have Cn+2np(0) = {αn+2np, βn+2np} and there exist 2n mem-

branes labelled by 1 containing the input multiset codn+2np(ϕ), an object
γn+2np p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if the corresponding ti
(resp. fi) object exists in that branch, and 1 copy otherwise and a different
multiset of objects ri,n+2np−i+1, 1 ≤ i ≤ n, being r ∈ {t, f}, that is, the
truth assignment associated with the branch; and 2n empty membranes
labelled by 2. Then, configuration Cn+2np yields Cn+2np+1 by applying the
rules.
t1,n+2np F1[ ]2 → [ # ]2
f1,n+2np T1[ ]2 → [ # ]2
[ ti,n+2np−i+1 → ti,n+2np−i+2 ]1
[ fi,n+2np−i+1 → fi,n+2np−i+2 ]1

}
for 2 ≤ i ≤ n

[ αn+2np → αn+2np+1 ]0
[ βn+2np → βn+2np+1 ]0
[ γn+2np → γn+2np+1 ]1
[ xi,j,n+2np → xi,j,n+2np+1 ]1
[ xi,j,n+2np → xi,j,n+2np+1 ]1
[ x∗i,j,n+2np → x∗i,j,n+2np+1 ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Thus, Cn+2np+1(0) = {αn+2np+1, βn+2np+1}, and there exist 2n mem-
branes labelled by 1 containing the input multiset codn+2np+1(ϕ), an object
γn+2np+1, p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if their corresponding
ti (resp. fi) object exists in that branch, and 1 copy of Fi (resp. Ti) if
k+ 2 ≤ i ≤ n and objects ri,n+2np−i+2, k+ 2 ≤ i ≤ n, being r ∈ {t, f}; and
2n membranes labelled by 2 containing an object #.

- Supposing, by induction, result is true for k (1 ≤ k ≤ n− 1)
- Cn+2np+k(0) = {αn+2np+k, βn+2np+k}
- In Cn+2np+k there are 2n membranes labelled by 1 such that each of them

contains
? the input multiset codn+2np+k(ϕ);
? an object γn+2np+k;
? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if their corresponding ti

(resp. fi) object exists in that branch, and 1 copy of Fi (resp. Ti) if
k + 1 ≤ i ≤ n; and

? objects ri,n+2np+k−i+1, k + 1 ≤ i ≤ n, being r ∈ {t, f}.
- In Cn+2np+k there are 2n membranes labelled by 2 such that each of them

contains k objects #.
Then, configuration Cn+2np+k yields configuration Cn+2np+k+1 by applying
the rules:
tk+1,n+2np F1[ ]2 → [ # ]2
fk+1,n+2np T1[ ]2 → [ # ]2
[ ti,n+2np+k−i+1 → ti,n+2np+k−i+2 ]1
[ fi,n+2np+k−i+1 → fi,n+2np+k−i+2 ]1

}
for 2 ≤ i ≤ n
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[ αn+2np+k → αn+2np+k+1 ]0
[ βn+2np+k → βn+2np+k+1 ]0
[ γn+2np+k → γn+2np+k+1 ]1
[ xi,j,n+2np+k → xi,j,n+2np+k+1 ]1
[ xi,j,n+2np+k → xi,j,n+2np+k+1 ]1
[ x∗i,j,n+2np+k → x∗i,j,n+2np+k+1 ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Therefore, the following holds
- Cn+2np+k+1(0) = {αn+2np+k+1, βn+2np+k+1}
- In Cn+2np+k+1 there are 2n membranes labelled by 1 such that each of them

contains
? the input multiset codn+2np+k+1(ϕ);
? an object γn+2np+k+1;
? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if their corresponding ti

(resp. fi) object exists in that branch, and 1 copy of Fi (resp. Ti) if
k + 2 ≤ i ≤ n; and

? objects ri,n+2np+k−i+2, k + 2 ≤ i ≤ n, being r ∈ {t, f}.
- In Cn+2np+k+1 there are 2n membranes labelled by 2 such that each of them

contains k + 1 objects #.
- In order to prove (b) it is enough to notice that, on the one hand, from (a)

configuration C2n+2np−1
3 holds:

- C2n+2np−1(0) = {α2n+2np−1, β2n+2np−1}
- In C2n+2np−1 there are 2n membranes labelled by 1 such that each of them

contains
? the input multiset cod2n+2np−1(ϕ);
? an object γ2n+2np−1;
? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if the corresponding ti (resp.

fi) object exists in that branch, and 1 copy of Fn (resp. Tn); and
? an object rn,n+2np, being r ∈ {t, f}.

- In C2n+2np−1 there are 2n membranes labelled by 2 such that each of them
contains n− 1 objects #.
Then, configuration C2n+2np−1 yields configuration C2n+2np by applying the
rules:
tn,n+2np F1[ ]2 → [ # ]2
fn,n+2np T1[ ]2 → [ # ]2
[ α2n+2np−1 → α2n+2np ]0
[ β2n+2np−1 → β2n+2np ]0
[ γ2n+2np−1 → γ2n+2np ]1
[ xi,j,2n+2np−1 → xi,j,2n+2np ]1
[ xi,j,2n+2np−1 → xi,j,2n+2np ]1
[ x∗i,j,2n+2np−1 → x∗i,j,2n+2np ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Therefore, the following holds
- C2n+2np(0) = {α2n+2np, β2n+2np}

3 Note that 2n + 2np− 1 = n + 2np + (n− 1)
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- In C2n+2np there are 2n membranes labelled by 1 such that each of them
contains
? the input multiset cod2n+2np(ϕ);
? an object γ2n+2np; and
? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if their corresponding ti (resp.

fi) object exists in that branch.
- In C2n+2np there are 2n membranes labelled by 2 such that each of them

contains n objects #.

�

5.2 First checking stage

At this stage, we try to determine the clauses satisfied for the truth assignment
encoded by each branch. For that, rules from 5.5 will be applied in such manner
that in the m-th step, being m = ln+k (1 ≤ k ≤ n, 0 ≤ l ≤ p−1), clause Cl+1 will
be evaluated with the k-th variable of the formula. This stage will take exactly np
steps.

Proposition 4. Let C = (C0, C1, . . . , Cq) be a computation of the system Π(s(ϕ))
with input multiset cod(ϕ).

(a) For each k (1 ≤ k ≤ n) and l (0 ≤ l ≤ p − 1) at configuration C2n+2np+ln+k

we have the following:
- C2n+2np+ln+k(0) = {α2n+2np+ln+k, β2n+2np+ln+k}
- There are 2n membranes labelled by 1 such that each of them contains

? the (n− k)-th last elements of cod2n+2np+ln+k(ϕ)l+1
l+1;

? the input multiset cod2n+2np+ln+k(ϕ)pl+2;
? an object γ2n+2np+ln+k; and
? p− l copies of objects Ti or Fi, k+1 ≤ i ≤ n, p− l−1 copies otherwise,

corresponding to the truth assignment assigned to the branch.
- There are 2n membranes labelled by 2 such that each of them contains

? m objects cj,t (1 ≤ j ≤ l + 1, 0 ≤ t ≤ ln + k − 1), that is, clauses that
have been satisfied by any variable; and

? n+ ln+ k −m objects #.
(b) C2n+3np(0) = {α2n+3np, β2n+3np}, and in C2n+3np there are 2n membranes

labelled by 1, such that each of them contains an object γ2n+3np; and 2n mem-
branes labelled by 2 such that each of them contains m objects cj,t (1 ≤ j ≤ p,
0 ≤ t ≤ np− 1), that is, the clauses satisfied by any variable and n+ np−m
objects #.

Proof. (a) is going to be demonstrated by induction on l

- The base case l = 0 is goig to be demonstrated by induction on k
- The base case k = 1 is trivial because:
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- at configuration C2n+2np we have: C2n+2np(0) = {α2n+2np, β2n+2np} and
there exist 2n membranes labelled by 1, such that each of them con-
tains the input multiset cod2n+2np(ϕ), an object γ2n+2np and p copies
of objects Ti and Fi, 1 ≤ i ≤ n, representing the correspondent truth
assignment to the branch; and 2n membranes labelled by 2 such that
each of them contains n objects #. Then, configuration C2n+2np yields
configuration C2n+2np+1 by applying the rules:
T1 x1,1,2n+2np[ ]2 −→ [c1,0]2
T1 x1,1,2n+2np[ ]2 −→ [#]2
T1 x

∗
1,1,2n+2np[ ]2 −→ [#]2

F1 x1,1,2n+2np[ ]2 −→ [#]2
F1 x1,1,2n+2np[ ]2 −→ [c1,0]2
F1 x

∗
1,1,2n+2np[ ]2 −→ [#]2

4

[ α2n+2np → α2n+2np+1 ]0
[ β2n+2np → β2n+2np+1 ]0
[ γ2n+2np → γ2n+2np+1 ]1
[ xi,j,2n+2np → xi,j,2n+2np+1 ]1
[ xi,j,2n+2np → xi,j,2n+2np+1 ]1
[ x∗i,j,2n+2np → x∗i,j,2n+2np+1 ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Thus, C2n+2np+1(0) = {α2n+2np+1, β2n+2np+1}, and there exist 2n mem-
branes labelled by 1 containing the last n− 1 elements of cod2n+2np+1(ϕ)11,
the input multiset cod2n+2np+1(ϕ)p2, p copies of Ti or Fi, being 2 ≤ i ≤ n,
and p− 1 copies of T1 or F1; and 2n membranes labelled by 2 containing n
objects # and an object c1,0 if the corresponding truth assignment makes
true clause 1 with variable 1, another object # otherwise.

- Supposing, by induction, result is true for k (1 ≤ k ≤ n)
- C2n+2np+k(0) = {α2n+2np+k, β2n+2np+k}
- In C2n+2np+k there are 2n membranes labelled by 1 such that each of

them contains
? the (n− k)-th last elements of cod2n+2np+k(ϕ)11;
? the input multiset cod2n+2np+k(ϕ)p2;
? an object γ2n+2np+k; and
? p copies of objects Ti or Fi, k+ 1 ≤ i ≤ n, p− 1 copies if 1 ≤ i ≤ k,

corresponding to the truth assignment assigned to the branch.
- In C2n+2np+k there are 2n membranes labelled by 2 such that each of

them contains
? m objects c1,t (0 ≤ t ≤ k − 1), that is, the number of variables

with the corresponding truth assignment that makes true the input
formula ϕ; and

? n+ k −m objects #.
Then, configuration C2n+2np+k yields configuration C2n+2np+k+1 by ap-
plying the rules:

4 If k = 1, l = 0, then i = 1, j = 1, so 2np + 2n + n(j − 1) + (i− 1) = 2n + 2np
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Tk xk+1,1,2n+2np+k[ ]2 −→ [c1,0]2
Tk xk+1,1,2n+2np+k[ ]2 −→ [#]2
Tk x

∗
k+1,1,2n+2np+k[ ]2 −→ [#]2

Fk xk+1,1,2n+2np+k[ ]2 −→ [#]2
Fk xk+1,1,2n+2np+k[ ]2 −→ [c1,0]2
Fk x

∗
k+1,1,2n+2np+k[ ]2 −→ [#]2

5

[ α2n+2np+k → α2n+2np+k+1 ]0
[ β2n+2np+k → β2n+2np+k+1 ]0
[ γ2n+2np+k → γ2n+2np+k+1 ]1
[ xi,j,2n+2np+k → xi,j,2n+2np+k+1 ]1
[ xi,j,2n+2np+k → xi,j,2n+2np+k+1 ]1
[ x∗i,j,2n+2np+k → x∗i,j,2n+2np+k+1 ]1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[ c1,t → c1,t+1 ]2 for 0 ≤ t ≤ k − 1
Therefore, the following holds
- C2n+2np+k+1 = {α2n+2np+k+1, β2n+2np+k+1}
- In C2n+2np+k+1 there are 2n membranes labelled by 1 such that each of

them contains
? the (n− k + 1)-th last elements of cod2n+2np+k+1(ϕ)11;
? the input multiset cod2n+2np+k+1(ϕ)p2,
? an object γ2n+2np+k+1; and
? p copies of objects Ti or Fi, k+2 ≤ i ≤ n, p−1 copies if 1 ≤ i ≤ k+1,

corresponding to the truth assignment assigned to the branch.
- In C2n+2np+k+1 there are 2n membranes labelled by 2 such that each of

them contains
? m objects c1,t (0 ≤ t ≤ k), that is, the number of variables with the

corresponding truth assignment that makes true the clause C1; and
? n+ k + 1−m objects #.

- Supposing, by induction, result is true for l (0 ≤ l ≤ p− 1)
- The base case k = 1 is trivial because:

- at configuration C2n+2np+(l+1)n we have: C2n+2np+(l+1)n(0) =
{α2n+2np+(l+1)n, β2n+2np+(l+1)n} and there exist 2n membranes labelled
by 1 containing the input multiset cod2n+2np+(l+1)n(ϕ)pl+1, an object
γ2n+2np+(l+1)n and p − l copies of objects Ti or Fi, 1 ≤ i ≤ n; and 2n

membranes labelled by 2 containing m objects cj,t (1 ≤ j ≤ l, 0 ≤ t ≤
ln − 1), that is, the number of variables with the corresponding truth
assignment that makes true the clauses from C1 to Cl and n+ (l+ 1)n−
m objects #. Then, configuration C2n+2np+(l+1)n yields configuration
C2n+2np+(l+1)n+1 by applying the rules:

5 If l = 0, then i = k + 1, j = 1, so 2np + 2n + n(j − 1) + (i− 1) = 2n + 2np + k
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T1 x1,1,2n+2np+(l+1)n[ ]2 −→ [cl+1,0]2
T1 x1,1,2n+2np+(l+1)n[ ]2 −→ [#]2
T1 x

∗
1,1,2n+2np+(l+1)n[ ]2 −→ [#]2

F1 x1,1,2n+2np+(l+1)n[ ]2 −→ [#]2
F1 x1,1,2n+2np+(l+1)n[ ]2 −→ [cl+1,0]2
F1 x

∗
1,1,2n+2np+(l+1)n[ ]2 −→ [#]2

[ α2n+2np+(l+1)n → α2n+2np+(l+1)n+1 ]0
[ β2n+2np+(l+1)n → β2n+2np+(l+1)n+1 ]0
[ γ2n+2np+(l+1)n → γ2n+2np+(l+1)n+1 ]1
[ xi,j,2n+2np+(l+1)n → xi,j,2n+2np+(l+1)n+1 ]1
[ xi,j,2n+2np+(l+1)n → xi,j,2n+2np+(l+1)n+1 ]1
[ x∗i,j,2n+2np+(l+1)n → x∗i,j,2n+2np+(l+1)n+1 ]1

 for
1 ≤ i ≤ n
1 ≤ j ≤ p

[ cj,t → cj,t+1 ]2 for 1 ≤ j ≤ l + 1, 0 ≤ t ≤ ln− 1
Thus, C2n+2np+(l+1)n+1(0) = {α2n+2np+(l+1)n+1, β2n+2np+(l+1)n+1}, and
there exist 2n membranes labelled by 1 containing the last n− 1 elements
of cod2n+2np+(l+1)n+1(ϕ)l+1

l+1, the input multiset cod2n+2np+(l+1)n+1(ϕ)pl+2,
p−l copies of Ti or Fi, being 2 ≤ i ≤ n, and p−l−1 copies of T1 or F1; and 2n

membranes labelled by 2 containing m objects cj,t (1 ≤ j ≤ ln, 0 ≤ t ≤ ln),
that is, the number of variables with the corresponding truth assignment
that makes true the clauses from C1 to Cl+1 and n+(l+1)n+1−m objects
#.

- Supposing, by induction, result is true for k (1 ≤ k ≤ n)
- C2n+2np+(l+1)n+k(0) = {α2n+2np+(l+1)n+k, β2n+2np+(l+1)n+k}
- In C2n+2np+(l+1)n+k there are 2n membranes labelled by 1 such that

each of them contains
? the (n− k)-th last elements of cod2n+2np+(l+1)n+k(ϕ)l+1

l+1;
? the input multiset cod2n+2np+(l+1)n+k(ϕ)pl+2,
? an object γ2n+2np+(l+1)n+k; and
? p − l copies of objects Ti or Fi, k + 1 ≤ i ≤ n, p − l − 1 copies if

1 ≤ i ≤ k, corresponding to the truth assignment assigned to the
branch.

- In C2n+2np+(l+1)n+k there are 2n membranes labelled by 2 such that
each of them contains
? m objects cj,t (1 ≤ j ≤ l + 1, 0 ≤ t ≤ ln + k − 1), that is, the

number of variables with the corresponding truth assignment that
makes true clauses from C1 to Cl+1; and

? n+ (l + 1)n+ k + 1−m objects #.
Then, configuration C2n+2np+(l+1)n+k yields configuration
C2n+2np+(l+1)n+k+1 by applying the rules:
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Tk x1,1,2n+2np+(l+1)n+k[ ]2 −→ [cl+1,0]2
Tk x1,1,2n+2np+(l+1)n+k[ ]2 −→ [#]2
Tk x

∗
1,1,2n+2np+(l+1)n+k[ ]2 −→ [#]2

Fk x1,1,2n+2np+(l+1)n+k[ ]2 −→ [#]2
Fk x1,1,2n+2np+(l+1)n+k[ ]2 −→ [cl+1,0]2
Fk x

∗
1,1,2n+2np+(l+1)n+k[ ]2 −→ [#]2

[ α2n+2np+(l+1)n+k → α2n+2np+(l+1)n+k+1 ]0
[ β2n+2np+(l+1)n+k → β2n+2np+(l+1)n+k+1 ]0
[ γ2n+2np+(l+1)n+k → γ2n+2np+(l+1)n+k+1 ]1
[ xi,j,2n+2np+(l+1)n+k → xi,j,2n+2np+(l+1)n+k+1 ]1
[ xi,j,2n+2np+(l+1)n+k → xi,j,2n+2np+(l+1)n+k+1 ]1
[ x∗i,j,2n+2np+(l+1)n+k → x∗i,j,2n+2np+(l+1)n+k+1 ]1

 for
1 ≤ i ≤ n

1 ≤ j ≤ p

[ cj,t → cj,t+1 ]2 for 1 ≤ j ≤ l + 1, 0 ≤ t ≤ ln+ k − 1
Therefore, the following holds

- C2n+2np+(l+1)n+k+1(0) = {α2n+2np+(l+1)n+k+1, β2n+2np+(l+1)n+k+1}
- In C2n+2np+(l+1)n+k+1 there are 2n membranes labelled by 1 such that

each of them contains
? the (n− (k + 1))-th last elements of cod2n+2np+(l+1)n+k+1(ϕ)l+1

l+1,
? the input multiset cod2n+2np+(l+1)n+k+1(ϕ)pl+1,
? an object γ2n+2np+(l+1)n+k+1;
? p − l copies of objects Ti or Fi, k + 2 ≤ i ≤ n, p − l − 1 copies if

1 ≤ i ≤ k + 1, corresponding to the truth assignment assigned to
the branch.

- In C2n+2np+(l+1)n+k+1 there are 2n membranes labelled by 2 such that
each of them contains
? m objects cj,t (1 ≤ j ≤ l+ 1, 0 ≤ t ≤ ln+ k), that is, the number of

variables with the corresponding truth assignment that makes true
clauses from C1 to Cl+1; and

? n+ (l + 1)n+ k + 1−m objects #.
- In order to prove (b) it is enough to notice that, on the one hand, from (a)

configuration C2n+3np−1
6 holds:

- C2n+3np−1(0) = {α2n+3np−1, β2n+3np−1}
- In C2n+3np−1 there are 2n membranes labelled by 1 such that each of them

contains
? the last element of cod2n+3np−1(ϕ)pp;
? an object γ2n+3np−1; and
? an object Tn or Fn corresponding to the truth assignment assigned to

the branch.
- In C2n+3np−1 there are 2n membranes labelled by 2 such that each of them

contains

6 Note that 2n + 3np− 1 = 2n + 3n(p− 1) + (n− 1)
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? m objects cj,t (1 ≤ j ≤ p, 0 ≤ t ≤ np−2), that is, the number of variables
with the corresponding truth assignment that makes true clauses from
C1 to Cp; and

? n+ np− 1−m objects #.
Then, configuration C2n+3np−1 yields C2n+3np by applying the rules:
Tn xn,p,2n+3np−1[ ]2 −→ [cp,0]2
Tn xn,p,2n+3np−1[ ]2 −→ [#]2
Tn x

∗
n,p,2n+3np−1[ ]2 −→ [#]2

Fn xn,p,2n+3np−1[ ]2 −→ [#]2
Fn xn,p,2n+3np−1[ ]2 −→ [cp,0]2
Fn x

∗
n,p,2n+3np−1[ ]2 −→ [#]2

[ α2n+2np+(l+1)n+k → α2n+2np+(l+1)n+k+1 ]0
[ β2n+2np+(l+1)n+k → β2n+2np+(l+1)n+k+1 ]0
[ γ2n+2np+(l+1)n+k → γ2n+2np+(l+1)n+k+1 ]1
[ xi,j,2n+2np+(l+1)n+k → xi,j,2n+2np+(l+1)n+k+1 ]1
[ xi,j,2n+2np+(l+1)n+k → xi,j,2n+2np+(l+1)n+k+1 ]1
[ x∗i,j,2n+2np+(l+1)n+k → x∗i,j,2n+2np+(l+1)n+k+1 ]1

 for
1 ≤ i ≤ n

1 ≤ j ≤ p

[ cj,t → cj,t+1 ]2 for 1 ≤ j ≤ l + 1, 0 ≤ t ≤ np− 2
Therefore, the following holds
- C2n+3np(0) = {α2n+3np, β2n+3np}
- In C2n+3np there are 2n membranes labelled by 1 such that each of them

contains an object γ2n+3np.
- In C2n+3np there are 2n membranes labelled by 2 such that each of them

contains
? m objects cj,t (1 ≤ j ≤ p, 0 ≤ t ≤ np − 1), that is, the number of

variables with the corresponding truth assignment that makes true
clauses from C1 to Cp; and

? n+ np−m objects #.

�

5.3 Second checking stage

At this stage, started at configuration C2n+3np, we try to determine the truth
assignments that make true the input formula ϕ, using rules from 5.6. We are
going to divide this stage in two phases. The first one will be devoted to send out
all the objects cj , for 1 ≤ j ≤ p in order to get them ready for the next phase.

Let k = ln + i (0 ≤ l ≤ p − 1, 1 ≤ i ≤ n), so we can refer to each clause

(l + 1) when we are doing the verification. Let m =
p∑
j=1

mj , being mj the number

of objects cj,k in each membrane 2 at step C2n+3np. In this stage, we cannot be
sure of how many objects cl+1,k are present at each membrane when i 6= 0 7, so if

7 That is because objects cj,k do not have to be created consecutively.
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we cannot be sure of that, we are going to say that there are m̃j (remember that
m̃j is always less than or equal to mj) objects within membrane 2. We will ignore
objects # since they have no effect from here.

Proposition 5. Let C = (C0, C1, . . . , Cq) be a computation of the system Π(s(ϕ))
with input multiset cod(ϕ).

(a) For each k (1 ≤ k ≤ np−1) at configuration C2n+3np+k we have the following:
- C2n+3np+k(0) = {α2n+3np+k, β2n+3np+k}
- There are 2n membranes labelled by 1 such that each of them contains

? an object γ2n+3np+k; and
? mj objects cj for 1 ≤ j ≤ l and ml+1 − m̃l+1 objects cl+1

- There are 2n membranes labelled by 2 such that each of them contains m̃l+1

objects cl+1,t ((p− 1)n+ 1 ≤ t ≤ np− 1) and mj objects cj,t (l + 2 ≤ j ≤
p, ln+ i ≤ t ≤ np− 1)

(b) C2n+4np(0) = {α2n+4np, β2n+4np}, there are 2n membranes labelled by 1, such
that each of them contains m objects cj (1 ≤ j ≤ p) and an object γ2n+4np;
and 2n empty membranes labelled by 2.

Proof. (a) is going to be demonstrated by induction on k

- The base case k = 1 is trivial because: At configuration C2n+3np we have:
C2n+3np(0) = {α2n+3np, β2n+3np} and there exist 2n membranes labelled by 1
containing an object γ2n+3np; and 2n membranes labelled by 2 containing m
objects cj,t (1 ≤ j ≤ k, 0 ≤ t ≤ np − 1). Then, configuration C2n+3np yields
configuration C2n+3np+1 by applying the rules:

[ α2n+3np → α2n+3np+1 ]0
[ β2n+3np → β2n+3np+1 ]0
[ γ2n+3np → γ2n+3np+1 ]1
[cj,t −→ cj,t+1]2 , for 1 ≤ j ≤ p, 0 ≤ k ≤ np− 2
[c1,np−1]2 −→ c1[ ]2

Thus, C2n+3np+1(0) = {α2n+3np+1, β2n+3np+1}, and there exist 2n membranes
labelled by 1 containing an object γ2n+3np+1 and m1 − m̃1 objects c1

8; and
2n membranes labelled by 2 containing m̃1 objects c1 and mj objects cj (2 ≤
j ≤ p). Hence, the result holds for k = 1.

- Supposing, by induction, result is true for k (1 ≤ k ≤ np− 1)
- C2n+3np+k(0) = {α2n+3np+k, β2n+3np+k}
- In C2n+3np+k there are 2n membranes labelled by 1 such that each of them

contains
? an object γ2n+3np+k; and
? mj objects cj for 1 ≤ j ≤ l and ml+1 − m̃l+1 objects cl+1.

8 That is, if the truth assignment of variable 1 made true clause 1, then an object c1,0
were created at (2n+ 2np+ 1)-th step, and it is going to be sent to the corresponding
membrane 1. So, m1 − m̃1 can be 0 or 1 in this step.
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- In C2n+3np+k there are 2n membranes labelled by 2 such that each of them
contains m̃l+1 objects cl+1,t ((p− 1)n+ 1 ≤ t ≤ np− 1) and mj objects cj,t
(l + 2 ≤ j ≤ p, ln+ i ≤ t ≤ np− 1).
Then, configuration C2n+3np+k yields configuration C2n+3np+k by applying
the rules:

[ α2n+3np+k → α2n+3np+k+1 ]0
[ β2n+3np+k → β2n+3np+k+1 ]0
[ γ2n+3np+k → γ2n+3np+k+1 ]1
[cj,t −→ cj,t+1]2 , for l + 1 ≤ j ≤ p, 0 ≤ k ≤ np− 2
[cl+1,np−1]2 −→ c1[ ]2

Therefore, the following holds
- C2n+3np+k+1(0) = {α2n+3np+k+1, β2n+3np+k+1}
- In C2n+3np+k+1 there are 2n membranes labelled by 1 such that each of

them contains
? an object γ2n+3np+k+1; and
? mj objects cj for 1 ≤ j ≤ l and ml+1 − m̃l+1 objects cl+1.

- In C2n+3np+k+1 there are 2n membranes labelled by 2 such that each of
them contains m̃l+1 objects cl+1,t+1 ((p − 1)n + 1 ≤ t ≤ np − 1) and mj

objects cj,t+1 (l + 2 ≤ j ≤ p, ln+ i ≤ t ≤ np− 1).
Hence, the result holds for k + 1.

- In order to prove (b) it is enough to notice that, on the one hand, from (a)
configuration C2n+4np−1 holds:
- C2n+4np−1(0) = {α2n+4np−1, β2n+4np−1}
- In C2n+4np−1 there are 2n membranes labelled by 1 such that each of them

contains
? an object γ2n+4np−1; and
? mj objects cj for 1 ≤ j ≤ p− 1 and mp − m̃p

9 objects cp.
- In C2n+4np−1 there are 2n membranes labelled by 2 such that each of them

contains m̃p objects cp,np.
Then, configuration C2n+4np−1 yields configuration C2n+4np by applying the
rules:

[ α2n+4np−1 → α2n+4np ]0
[ β2n+4np−1 → β2n+4np ]0
[ γ2n+4np−1 → γ2n+4np ]1
[cp,np]2 −→ cp[ ]2

Then, we have C2n+4np(0) = {α2n+4np, β2n+4np}, and there exist 2n mem-
branes labelled by 1 containing an object γ2n+4np and m objects cj
(1 ≤ j ≤ p); and there exist 2n empty membranes labelled by 2.

�

When objects cj are within the membranes labelled by 1, we can start to check
if all the clauses of the input formula ϕ are satisfied by any truth assignment. As
we use objects cj to denote that clause Cj has been satisfied by some variable, it

9 In this case, m̃p can only take two values: 0 or 1.
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can be possible that some cj are missing, that is, that for some j, 1 ≤ j ≤ p, cj
does not appear in any membrane labelled by 1 in C2n+4np. Let j̃ be the index j 10

of that clause. It is going to take 2p steps.

Proposition 6. Let C = (C0, C1, . . . , Cq) be a computation of the system Π(s(ϕ))
with input multiset cod(ϕ).

(a0) For each 2k + 1 (0 ≤ k ≤ p − 1) at configuration C2n+4np+2k+1 we have the
following:
- C2n+4np+2k+1(0) = {α2n+4np+2k+1, β2n+4np+2k+1}
- There are 2n membranes labelled by 1 such that each of them contains

? an object γ2n+4np or dj̃−1 (respectively, an object dk) if the correspond-

ing truth assignment does not make true (resp., makes true) the clause
C1 or Cj (2 ≤ j ≤ p) (resp., the first k clauses); and

? mj − 1 objects cj for 1 ≤ j ≤ min(j̃, k + 1) and mj objects cj for

min(j̃, k + 2) ≤ j ≤ p.
- There are 2n membranes labelled by 2 such that each of them contains an

object dk+1 if and only if the truth assignment associated to the branch
makes true the first k + 1 clauses.

(a1) For each 2k (1 ≤ k ≤ p−1) at configuration C2n+4np+2k we have the following:
- C2n+4np+2k(0) = {α2n+4np+2k, β2n+4np+2k}
- There are 2n membranes labelled by 1 such that each of them contains

? an object γ2n+4np or dj̃−1 if the corresponding truth assignment does

not make true the clause C1 or Cj (2 ≤ j ≤ p); and

? mj−1 objects cj for 1 ≤ j ≤ min(j̃, k) and mj objects cj for min(j̃, k+
1) ≤ j ≤ p.

- There are 2n empty membranes labelled by 2.
(b) C2n+4np+2p(0) = {α2n+4np+2p, β2n+4np+2p}, and in C2n+4np+2p there are 2n

membranes labelled by 1, such that each of them contains an object dp if and
only if the corresponding truth assignment makes true the input formula ϕ
(dj̃−1 otherwise), mj − 1 objects cj for 1 ≤ j ≤ min(j̃, p + 1) and mj objects

cj for min(j̃, p+ 1) ≤ j ≤ p; and 2n empty membranes labelled by 2.

Proof. (a) is going to be demonstrated by induction on k

- The base case k = 1 is trivial because:
(a0) at configuration C2n+4np we have: C2n+4np(0) = {α2n+4np, β2n+4np} and

there exist 2n membranes labelled by 1 containing an object γ2n+4np and
m objects cj (1 ≤ j ≤ p); and there exist 2n empty membranes labelled by
2. Then, configuration C2n+4np yields configuration C2n+4np+1 by applying
the rules:

[ α2n+4np → α2n+4np+1 ]0
[ β2n+4np → β2n+4np+1 ]0
γ4np+2n c1[ ]2 −→ [ d1 ]2

10 If j̃ is not defined, we are going to suposse that it is equal to p + 1.
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(a1) at C2n+4np+1(0) = {α2n+4np+1, β2n+4np+1} and there exist 2n membranes
labelled by 1 containing an object γ2n+4np if and only if there were no
objects c1 at configuration C2n+4np, m1 − 1 (respectively, m1) objects c1
if there was any object cj in this membrane in the previous configuration
(resp., m1) and mj objects cj for 2 ≤ j ≤ p; and 2n membranes labelled by 2
containing an object d1 if and only if there was at least one object c1 within
membrane labelled by 1 at configuration C2n+4np. Then, the configuration
C2n+4np+1 yields configuration C2n+4np+2 by applying the rules:

[ α2n+4np+1 → α2n+4np+2 ]0
[ β2n+4np+1 → β2n+4np+2 ]0
[ d1 ]2 −→ d1 [ ]2

Thus, C2n+4np+2(0) = {α2n+4np+2, β2n+4np+2}, and there exist 2n mem-
branes labelled by 1 containing an object d1 (respectively, γ2n+4np) if
the corresponding truth assignment makes true (resp., doesn’t make true)
clause C1, m1 − 1 (resp., m1) objects c1 and mj objects cj for 1 ≤ j ≤ p;
and there exist 2n empty membranes labelled by 2. Hence, the result holds
for k = 1.

- Supposing, by induction, result is true for k (0 ≤ k ≤ p− 1)
- C2n+4np+2k(0) = {α2n+4np+2k, β2n+4np+2k}
- In C2n+4np+2k there are 2n membranes labelled by 1 such that each of them

contains
? an object γ2n+4np or dj̃−1 (respectively, an object dk) if the correspond-

ing truth assignment does not make true (resp., makes true) the clause
C1 or Cj (2 ≤ j ≤ p) (resp., the first k clauses); and

? mj − 1 objects cj for 1 ≤ j ≤ min(j̃, k + 1) and mj objects cj for

min(j̃, k + 2) ≤ j ≤ p.
- In C2n+4np+2k there are 2n empty membranes labelled by 2.

Then, configuration C2n+4np+2k yields configuration C2n+4np+2k+1 by ap-
plying the rules:

[ α2n+4np+2k → α2n+4np+2k+1 ]0
[ β2n+4np+2k → β2n+4np+2k+1 ]0
dk ck+1[ ]2 −→ [ dk+1 ]2

Therefore, the following holds
- C2n+4np+2k+1(0) = {α2n+4np+2k+1, β2n+4np+2k+1}
- In C2n+4np+2k+1 there are 2n membranes labelled by 1 such that each of

them contains
? an object γ2n+4np or dj̃−1 if the corresponding truth assignment does

not make true the clause C1 or Cj (2 ≤ j ≤ p); and

? mj−1 objects cj for 1 ≤ j ≤ min(j̃, k) and mj objects cj for min(j̃, k+
1) ≤ j ≤ p.

- In C2n+4np+2k+1 there are 2n membranes labelled by 2 such that each of
them contains an object dk+1 if and only if the corresponding truth assign-
ment makes true the first k + 1 clauses.
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Then, configuration C2n+4np+2k+1 yields C2n+4np+2k+2 by applying the
rules:

[ α2n+4np+2k+1 → α2n+4np+2k+2 ]0
[ β2n+4np+2k+1 → β2n+4np+2k+2 ]0
[ dk+1 ]2 −→ dk+1 [ ]2

Therefore, the following holds
- C2n+4np+2k+2(0) = {α2n+4np+2k+2, β2n+4np+2k+2}
- In C2n+4np+2k+2 there are 2n membranes labelled by 1 such that each of

them contains
? an object γ2n+4np or dj̃−1 (respectively, an object dk+1) if the corre-

sponding truth assignment does not make true (resp., makes true) the
clause C1 or Cj (2 ≤ j ≤ p) (resp., the first k + 1 clauses); and

? mj − 1 objects cj for 1 ≤ j ≤ min(j̃, k + 2) and mj objects cj for

min(j̃, k + 3) ≤ j ≤ p.
- In C2n+4np+2k+2 there are 2n empty membranes labelled by 2.

Hence, the result holds for k + 1.
- In order to prove (b) it is enough to notice that, on the one han, from (a)

configuration C2n+4np+2p−1 holds:
- C2n+4np+2p−1(0) = {α2n+4np+2p−1, β2n+4np+2p−1}
- In C2n+4np+2p−1 there are 2n membranes labelled by 1 such that each of

them contains
? an object γ2n+4np or dj̃−1 if the corresponding truth assignment does

not make true the clause C1 or Cj (2 ≤ j ≤ p); and

? mj−1 objects cj for 1 ≤ j ≤ min(j̃, p) and mj objects cj for min(j̃, p+
1) ≤ j ≤ p.

- In C2n+4np+2p−1 there are 2n membranes labelled by 2 such that each of
them contains an object dp if and only if the corresponding truth assignment
makes true the input formula ϕ.
Then, configuration C2n+4np+2p−1 yields configuration C2n+4np+2p by ap-
plying the rules:

[ α2n+4np+2p−1 → α2n+4np+2p ]0
[ β2n+4np+2p−1 → β2n+4np+2p ]0
[ dp ]2 −→ dp [ ]2

Then, we have C2n+4np+2p(0) = {α2n+4np+2p, β2n+4np+2p}, and there exist
2n membranes labelled by 1 containing an object γ2n+4np or dj̃−1 (respec-

tively, an object dp) if the corresponding truth assignment does not make
true (resp., makes true) the clause C1 or Cj (2 ≤ j ≤ p) (resp., the input

formula ϕ), mj − 1 objects cj for 1 ≤ j ≤ min(j̃, p+ 1) and mj objects cj
for min(j̃, p+ 1) ≤ j ≤ p; and there exist 2n empty membranes labelled by
2.

�
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5.4 Output stage

The output phase starts at the (2n + 4np + 2p)-th step, and takes exactly four
steps when there is an affirmative answer and five steps when there is a negative
one. Rules from 5.7 are devoted to compute this stage.

- Affirmative answer: In this case, at configuration C2n+4np+2p, in some mem-
brane 1 there is an object dp. By applying the rule [ dp ]1 −→ dp[ ]1 (at
the same time that [ α2n+4np+2p → α2n+4np+2p+1 ]0 and [ β2n+4np+2p →
β2n+4np+2p+1 ]0 are executed), an object dp is produced in membrane 0. Then
by applying the rules α4np+2n+2p+1 dp[ ]1 −→ [ yes ]1 and [ β2n+4np+2p+1 →
β2n+4np+2p+2 ]0, an object yes is produced in some membrane labelled by 1
(only in one such membrane). At the next step, an object yes will appear at
membrane labelled by 0 of the configuration C2n+4np+2p+3 by the application
of the rule [ yes ]1 −→ yes[ ]1. Let us note that object β2n+4np+2p+2 cannot
interact with any object α. Finally, at computation step 2n + 4np + 2p + 4
an object yes is released to environment by the application of the rule
[ yes ]0 −→ yes[ ]0 and the computation halts.

- Negative answer: In this case, at configuration C2n+4np+2p, there are no mem-
branes labelled by 1 that contains an object dp, so the only rules executed are
[ α2n+4np+2p → α2n+4np+2p+1 ]0 and [ β2n+4np+2p → β2n+4np+2p+1 ]0. Rule
[ β2n+4np+2p+1 → β2n+4np+2p+2 ]0 is executed in the next step. Thus, at con-
figuration C2n+4np+2p+2 in membrane labelled by 0 we execute have a copy of
object α2n+4np+2p+1 and a copy of object β2n+4np+2p+2. By applying the rule
α4np+2n+2p+1 β4np+2n+2p+2[ ]1 −→ [ no ]1, an object no is produced in only
one membrane labelled by 1 (nondeterministically chosen). At the next step,
this object no will move into membrane labelled by 0 by the application of the
rule [ no ]1 −→ no[ ]1. Finally, at configuration C2n+4np+2p+5 an object no

is released to the environment when rule [ no ]0 −→ no[ ]0, and then the
computation halts.

5.5 Result

Theorem 1. SAT ∈ PMCDAM0(+es,mcmpin,−d,+n).

Proof. The family Π of P systems previously constructed verifies the following:

(a) The family Π is polynomially uniform by Turing machines because for each
n, p ∈ N, the rules of Π(〈n, p〉) of the family are recursively defined from
n, p ∈ N, and the amount of resources needed to build an element of the family
is of a polynomial order in n and p, as shown below:

– Size of the alphabet: 15n2p2

2 +6n2p+3n2+2np2+ 35np
2 +8n+7p+9 ∈ Θ(n2p2).

– Initial number of membranes: 3 ∈ Θ(1).
– Initial number of objects in membranes: 3np+ n+ 3 ∈ Θ(np).

– Number of rules: 15n2p2

2 + 8n2p+ 4n2 + 41np
2 + 5n+ 5p+ 11 ∈ Θ(n2p2).
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– Maximal number of objects involved in any rule: 3 ∈ Θ(1).
(b) The family Π is polynomially bounded with regard to (SAT, cod, s): indeed for

each instance ϕ of the SAT problem, any computation of the system Π(s(ϕ))
with input multiset cod(ϕ) takes at most 2n+ 4np+ 2p+ 5 computation steps.

(e) The family Π is sound with regard to (SAT, cod, s): indeed for each instance
ϕ of the SAT problem, if the computation of Π(s(ϕ)) + cod(ϕ) is an accepting
computation, then ϕ is satisfiable.

(f) The family Π is complete with regard to (SAT, cod, s): indeed, for each instance
ϕ of the SAT problem such that ϕ is satisfiable, any computation of Π(s(ϕ)) +
cod(ϕ) is an accepting computation.

Therefore, the family Π of P systems previously constructed solves the SAT prob-
lem in polynomial time and in a uniform way.

Corollary 1. NP ∪ co−NP ⊆ PMCDAM0(+es,mcmpin,−d,+n).

Proof. It suffices to notice that SAT problem is a NP-complete prob-
lem, SAT ∈ PMCDAM0(+es,mcmpin,−d,+n), and the complexity class
PMCDAM0(+es,mcmpin,−d,+n) is closed under polynomial-time reduction
and under complement.

6 Conclusions

From a computational complexity point of view and assuming that P 6= NP, dis-
solution rules play a crucial role in classical polarizationless P systems with active
membranes where there is no cooperation, no changing labels neither priorities. In
that framework, PSPACE-complete problems can be solved in polynomial time
when dissolution rules and division for elementary and non-elementary membranes
are permitted. However, dissolution rules and division rules for non-elementary
membranes can be replaced by minimal cooperation (the left-hand side of the
rules has at most two objects) and minimal production (the right-hand side of
the rules has at most two objects) in object evolution rules in order to obtain the
computational efficiency [11].

In this paper, the ingredient of minimal cooperation and minimal production in
object evolution rules is replaced by minimal cooperation and minimal production
in send-in communication rules but we have need to use division for non-elementary
membranes. The new systems considered are able to efficiently solve computational
hard problems even by considering simple object evolution rules, that is, these kind
of rules only produce one object. An analogous result can be obtained if minimal
cooperation and minimal production are considered only for send-out rules, instead
of send-in rules ([12]).

The case where only elementary division is allowed, while keeping the restric-
tion that minimal cooperation and minimal production are used in communication
rules of the same direction (only in or only out) remains as future work, as well
as the case where division rules are replaced by separation rules.
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What about the class SAM0(+es,mcmpin,−d,+n)? That is, what hap-
pens if we revisit the framework studied in this paper but replacing division
rules by separation rules? We can adapt the reasoning used in the proof of
P = PMCSAM0

bmc(−d,−n) (see [10]), and we can prove that by using families
of recognizer membrane systems belonging to this class, only problems in class P
can be solved in polynomial time.
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M.J. Pérez-Jiménez. Reaching efficiency through collaboration in membrane systems:
dissolution, polarization and cooperation. Theoretical Computer Science, in press,
2017.

12. L. Valencia-Cabrera, D. Orellana-Mart́ın, M.A. Mart́ınez-del-Amor, A. Riscos-Núñez,
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Summary. Membrane computing is a computing paradigm providing a class of dis-
tributed parallel computing devices of a biochemical type whose process units represent
biological membranes. In the cell-like basic model, a hierarchical membrane structure
formally described by a rooted tree is considered. It is well known that families of such
systems where the number of membranes can only decrease during a computation (for
instance by dissolving membranes), can only solve in polynomial time problems in class
P. P systems with active membranes is a variant where membranes play a central role in
their dynamics. In the seminal version, membranes have an electrical polarization (posi-
tive, negative, or neutral) associated in any instant, and besides being dissolved, they can
also replicate by using division rules. These systems are computationally universal, that
is, equivalent in power to deterministic Turing machines, and computationally efficient,
that is, able to solve computationally hard problems in polynomial time. If polarizations
in membranes are removed and dissolution rules are forbidden, then only problems in
class P can be solved in polynomial time by these systems (even in the case when divi-
sion rules for non-elementary membranes are permitted). In that framework it has been
shown that by considering minimal cooperation (left-hand side of such rules consists of
at most two symbols) and minimal production (only one object is produced by the appli-
cation of such rules) in object evolution rules, such systems provide efficient solutions to
NP–complete problems. In this paper, minimal cooperation and minimal production in
communication rules instead of object evolution rules is studied, and the computational
efficiency of these systems is obtained in the case where division rules for non-elementary
membranes are permitted.

Key words: Membrane Computing, polarizationless P systems with active mem-
branes, cooperative rules, the P versus NP problem, SAT problem.
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1 Introduction

Membrane Computing is an emergent branch of Natural Computing providing
distributed parallel and non-deterministic computing models whose computational
devices are called membrane systems having units processor called compartments.
This computing paradigm is inspired by some basic biological features, by the
structure and functioning of the living cells, as well as from the cooperation of cells
in tissues, organs, and organisms. Celllike membrane systems use the biological
membranes arranged hierarchically, inspired from the structure of the cell.

In Membrane Computing, some variants capture the fact that membranes are
not at all passive from a biochemistry view, for instance, the passing of a chem-
ical compound through a membrane is often done by a direct interaction with
the membrane itself. Some variants of P systems where the central role in their
dynamics is played by the membranes have been considered. In these models, the
membranes not only directly mediate the evolution and the communication of ob-
jects, but they can replicate themselves by means of a division process. Inspired
by these features, P systems with active membranes [6] were introduced, based
on processing multisets by means of non-cooperative rewriting rules, that is, rules
where its left-hand side has at most only one object. Specifically, objects evolve
inside membranes which can communicate between each other, can dissolve, and
moreover (inspired by cellular mitosis process) can replicate by means of division
rules. It is assumed that each membrane has associated an electrical polarization
in any instant, one of the three possible: positive, negative, or neutral.

P systems with active membranes are computationally complete, that is, any
recursively enumerable set of vectors of natural numbers (in particular, each re-
cursively enumerable set of natural numbers) can be generated by such a system
[6]. Hence, they are equivalent in power to deterministic Turing machines.

What about the computational efficiency of P systems with active membranes?
The key is certainly in the use of division rules, as we can deduce from the so-
called Milano theorem [13]: A deterministic P system with active membranes but
without membrane division can be simulated by a deterministic Turing machine
with a polynomial slowdown.

However, P systems with active membranes which make use of division rules
have the ability to provide efficient solutions to computationally hard problems, by
making use of an exponential workspace created in a polynomial time. Specifically,
NP-complete problems can be solved in polynomial time by families of P systems
with active membranes, without dissolution rules and which use division rules only
for elementary membranes [6]. Moreover, the class of decision problems which can
be solved by families of P systems with active membranes with dissolution rules
and which use division for elementary and non-elementary membranes is equal
to PSPACE [8]. Consequently, the usual framework of P systems with active
membranes and electrical polarizations for solving decision problems seems to be
too powerful from the computational complexity point of view.

With respect to the computational efficiency, in the classical framework of P
system with active membranes, dissolution rules play an “innocent” role as well as
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division for non-elementary membranes. However, if electrical charges are removed
then these kind of rules come to play a relevant role. Specifically, P systems with
active membranes and without electrical charges were initially studied in [1, 2] by
replacing electrical charges by the ability to change the label of the membranes.
In this paper, polarizationless P systems with active membranes where labels of
membranes keep unchanged by the application of rules, are considered. In this
new framework, if dissolution rules are forbidden then only problems in class P
can be solved in an efficient way, even in the case that division for non-elementary
membranes are permitted [5]. Is the class of polarizationless P systems with active
membranes, with dissolution but using only division rules for elementary mem-
branes computationally efficient? If P 6= NP, which is at all expected, then it is
an open question, so-called Păun’s conjecture.

In the seminal paper where P systems with active membranes were intro-
duced, Gh. Păun says that “working with non-cooperative rules is natural from
a mathematical point of view but from a biochemical point of view this is not only
non-necessary, but also non-realistic: most of the chemical reactions involve two
or more than two chemical compounds (and also produce two or more than two
compounds)”. In this context, a restricted cooperation has been considered in the
classical framework of polarizationless P systems with active membranes. Specifi-
cally, minimal cooperation (the left-hand side and the right-hand side of any rules
have, at most, two objects) in object evolution rules, has been previously stud-
ied from a computational complexity point of view. A polynomial-time solution
to the SAT problem by means of families of polarizationless P systems with active
membranes, with minimal cooperation in object evolution rules, has been provided
[9]. Recently, this result has been improved by considering minimal cooperation in
object evolution rules with and additional restriction: the right-hand side of any
rules has only one object (called minimal cooperation and minimal production)
[11]. A relevant fact in these results is the following: dissolution rules and division
rules for non-elementary membranes are not necessary to reach the computational
efficiency.

In this paper the role of minimal cooperation and minimal production in com-
munication rules instead of object evolution rules, is studied from a complexity
point of view. Specifically, by using families of membrane systems which use these
syntactical ingredients, a polynomial-time solution to the SAT problem is provided
but allowing division rules for non-elementary membranes.

The paper is structured as follows. First, some basic notions are recalled and
the terminology and notation to be used in the paper is presented. Then, Section 3
introduces the model that will be investigated in this paper: polarizationless P sys-
tems with active membranes, with minimal cooperation and minimal production
in their communication rules. Section 4 contains the main result of this paper,
showing that these systems are capable of solving an NP-complete problem in an
efficient way. Finally, the paper concludes with some final remarks and ideas for
future work.
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2 Preliminaries

An alphabet Γ is a non-empty set and their elements are called symbols. A string u
over Γ is an ordered finite sequence of symbols, that is, a mapping from a natural
number n ∈ N onto Γ . The number n is called the length of the string u and it is
denoted by |u|. The empty string (with length 0) is denoted by λ. The set of all
strings over an alphabet Γ is denoted by Γ ∗. A language over Γ is a subset of Γ ∗.

A multiset over an alphabet Γ is an ordered pair (Γ, f) where f is a mapping
from Γ onto the set of natural numbers N. The support of a multiset m = (Γ, f) is
defined as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite (respectively, empty)
if its support is a finite (respectively, empty) set. We denote by ∅ the empty
multiset. Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets over Γ , then the union of m1

and m2, denoted by m1 + m2, is the multiset (Γ, g), where g(x) = f1(x) + f2(x)
for each x ∈ Γ . We denote by Mf (Γ ) the set of all multisets over Γ .

2.1 Graphs and trees

Let us recall some notions related with graph theory (see [3] for details). An
undirected graph is an ordered pair (V,E) where V is a set whose elements are
called nodes or vertices and E = {{x, y} | x ∈ V, y ∈ V, x 6= y} whose elements
are called edges. A path of length k ≥ 1 from a node u to a node v in a graph
(V,E) is a finite sequence (x0, x1, . . . , xk) of nodes such that x0 = u, xk = v and
{xi, xi+1} ∈ E. If k ≥ 2 and x0 = xk then we say that the path is a cycle of
the graph. A graph with no cycle is said to be acyclic. An undirected graph is
connected if there exist paths between every pair of nodes.

A rooted tree is a a connected, acyclic, undirected graph in which one of the
vertices (called the root of the tree) is distinguished from the others. Given a node
x (different from the root), if the last edge on the (unique) path from the root of
the tree to the node x is {x, y} (in this case, x 6= y), then y is the parent of node
x and x is a child of node y. The root is the only node in the tree with no parent.
A node with no children is called a leaf.

2.2 The Cantor pairing function

The Cantor pairing function encodes pairs of natural numbers by single natural
numbers, and it is defined as follows: for each n, p ∈ N

〈n, p〉 =
(n+ p)(n+ p+ 1)

2
+ n

The Cantor pairing function is a primitive recursive function and bijective from
N × N onto N. Then, for each t ∈ N there exist unique natural numbers n, p ∈ N
such that t = 〈n, p〉.
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2.3 Decision problems and languages

A decision problem X is an ordered pair (IX , θX), where IX is a language
over a finite alphabet ΣX and θX is a total Boolean function over IX .
The elements of IX are called instances of the problem X. Each decision
problem X has associated a language LX over the alphabet ΣX as follows:
LX = {u ∈ ΣX

∗ | θX(u) = 1}. Conversely, every language L over an alphabet
Σ has associated a decision problem XL = (IXL

, θXL
) as follows: IXL

= Σ∗ and
θXL

(u) = 1 if and only if u ∈ L. Therefore, given a decision problem X we have
XLX

= X, and given a language L over an alphabet Σ we have LXL
= L. Then,

solving a decision problem can be expressed equivalently as the task of recognizing
the language associated with it.

2.4 Recognizer membrane systems

Recognizer membrane systems were introduced in [7] and they provide a natural
framework to solve decision problems. This kind of systems are characterized by
the following features: (a) the working alphabet Γ has two distinguished objects
yes and no; (b) there exists an input membrane and an input alphabet Σ strictly
contained in Γ ; (c) the initial contents of the membranes are multisets over Γ \Σ;
(d) all computations halt; and (e) for each computation, either object yes or object
no (but not both) must have been released into the environment, and only at the
last step of the computation.

Given a recognizer membrane system, Π, for each multiset m over the input
alphabet Σ we denote by Π +m the membrane system Π with input multiset m,
that is in the initial configuration of that system, the multiset m is added to the
initial content of the input membrane. Thus, in a recognizer membrane system,
Π, there exists an initial configuration associated with each multiset m ∈Mf (Σ).

3 Minimal cooperation and minimal production in
communication rules

Definition 1. A polarizationless P system with active membranes, with simple
object evolution rules, without dissolution, with division rules for elementary and
non-elementary membranes, and which makes use of minimal cooperation and
minimal production in send-out communication rules, is a tuple

Π = (Γ,Σ,H, µ,M1, . . . ,Mq,R, iin, iout)

where:

• Γ is a finite alphabet whose elements are called objects and contains two dis-
tinguished objects yes and no.

• Σ ( Γ is the input alphabet.
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• H is a finite alphabet such that H ∩ Γ = ∅ whose elements are called labels.
• q ≥ 1 is the degree of the system.
• µ is a labelled rooted tree (called membrane structure) consisting of q nodes

injectively labelled by elements of H (the root of µ is labelled by rµ).
• M1, . . . ,Mq are multisets over Γ \Σ.
• R is a finite set of rules, of the following forms:

(a0) [ a → b ]h, where h ∈ H, a, b ∈ Γ , u ∈ Mf (Γ ) (simple object evolution
rules).

(b0) a [ ]h → [ b ]h, where h ∈ H \ {rµ}, a, b, c ∈ Γ (send–in communication
rules).

(c0) [ a b ]h → c [ ]h, where h ∈ H, a, b ∈ Γ (send–out communication rules with
minimal cooperation and minimal production).

(d0) [ a ]h → b, where h ∈ H \ {iout, rµ}, a, b ∈ Γ (dissolution rules).

(e0) [ a ]h → [ b ]h [ c ]h, where h ∈ H \ {iout, rµ}, a, b, c ∈ Γ and h is the label of
an elementary membrane µ (division rules for elementary membranes).

(f0) [ [ ]h1 [ ]h2 ]h0 → [ [ ]h1 ]h0 [ [ ]h2 ]h0 , where h0, h1, h2 ∈ H and h0 6= rµ (divi-
sion rules for non-elementary membranes).

• iin ∈ H, iout ∈ H ∪ {env} (if iout ∈ H then iout is the label of a leaf of µ).

In a similar way is defined the concept of “polarizationless P system with active
membranes, with simple object evolution rules, without dissolution, with division
rules for elementary and non-elementary membranes, and which makes use of
minimal cooperation and minimal production in send-in communication rules ”.
The only difference concerns rules of type (b0) and (c0). In this case are, respec-
tively:

(b′0) a b [ ]h → [ c ]h for h ∈ H \ {rµ}, a, b ∈ Γ (send–in communication rules with
minimal cooperation and minimal production).

(c′0) [ a ]h → b [ ]h for h ∈ H, a, b, c ∈ Γ (send–out communication rules).

The semantics of this kind of P systems follows the usual principles of P systems
with active membranes [6].
We denote by DAM0(+es,mcmpout,−d,+n) (respectively,
DAM0(+es,mcmpin,−d,+n)) the class of all recognizer polarizationless P
system with active membranes, with simple object evolution rules, without
dissolution, with division rules for elementary and non-elementary membranes,
which make use of minimal cooperation and minimal production in send-out
(respectively, send-in) communication rules.

4 Solving SAT in DAM0(+es,mcmpout,−d,+n)

In this section, a polynomial-time solution to SAT problem, is explicitly given in
the framework of recognizer polarizationless P systems with active membranes
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with simple object evolution rules, without dissolution and with division rules for
elementary and non-elementary membranes which make use of minimal coopera-
tion and minimal production in send-in communication rules. For that, a family
Π = {Π(t) | t ∈ N} of recognizer P systems from DAM0(+es,mcmpout,−d,+n)
will be presented.

4.1 Description of a solution to SAT problem in
DAM0(+es,mcmpout,−d,+n)

For each n, p ∈ N, we consider the recognizer P system

Π(〈n, p〉) = (Γ,Σ,H, µ,M0,M1,M2,R, iin, iout)

from DAM0(+es,mcmpout,−d,+n), defined as follows:

(1)Working alphabet:
Γ = Σ ∪ {yes , no ,#} ∪ {ai,k | 1 ≤ i ≤ n ∧ 1 ≤ k ≤ 2i− 1}∪

{αk | 0 ≤ k ≤ 4np+ n+ 2p} ∪ {βk | 0 ≤ k ≤ 4np+ n+ 2p+ 1}∪
{γk | 0 ≤ k ≤ 4np+ n}∪
{ti,k, fi,k | 1 ≤ i ≤ n ∧ 2i− 1 ≤ k ≤ 2n+ 2p− 1}∪
{Ti, Fi | 1 ≤ i ≤ n} ∪ {cj | 1 ≤ j ≤ p}∪
{cj,k | 1 ≤ j ≤ p ∧ 0 ≤ k ≤ np− 1} ∪ {dj | 1 ≤ j ≤ p}∪
{xi,j,k, xi,j,k, x∗i,j,k | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ p∧
1 ≤ k ≤ n+ 2np+ n(j − 1) + (i− 1)}

where the input alphabet is Σ = {xi,j,0, xi,j,0, x∗i,j,0 | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ p};
(2)H = {0, 1, 2};
(3)Membrane structure: µ = [ [ [ ]2 ]1 ]0, that is, µ = (V,E) where V = {0, 1, 2}

and E = {(0, 1)(1, 2)}

(4)Initial multisets:M0 = {α0, β0},M1 = ∅,M2 = {γ0} ∪ {ai,1, T pi , F
p
i | 1 ≤ i ≤

n}.

(5)The set of rules R consists of the following rules:

5.1Counters for synchronize the answer of the system.

[ αk −→ αk+1 ]0 , for 0 ≤ k ≤ 4np+ n+ 2p− 1
[ βk −→ βk+1 ]0 , for 0 ≤ k ≤ 4np+ n+ 2p
[ γk −→ γk+1 ]2 , for 0 ≤ k ≤ 4np+ n− 1

5.2Rules to generate 2n membranes labelled by 1 and 2n membranes labelled
by 2 (these encoding all possible truth assignment of n variables of the
input formula).

[ ai,2i−1 ]2 −→ [ ti,i ]2 [ fi,i ]2 , for 1 ≤ i ≤ n
[ ai,j −→ ai,j+1 ]2 , for 2 ≤ i ≤ n, 1 ≤ j ≤ 2i− 2

[ [ ]2 [ ]2 ]1 −→ [ [ ]2 ]1 [ [ ]2 ]1

[ ti,j −→ ti,j+1 ]2
[ fi,j −→ fi,j+1 ]2

}
, for 1 ≤ i ≤ n, i ≤ j ≤ 2n− 1
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5.3Rules to produce exactly p copies of each truth assignment encoded by
membranes labelled by 2.

[ti,2jn Fi]2 −→ ti,2jn+1 [ ]2
[fi,2jn Ti]2 −→ fi,2jn+1 [ ]2
ti,(2j+1)n [ ]2 −→ [ ti,(2j+1)n+1 ]2
fi,(2j+1)n [ ]2 −→ [ fi,(2j+1)n+1 ]2

 , for 1 ≤ i ≤ n, 1 ≤ j ≤ p− 1

[ti,2np Fi]2 −→ # [ ]2
[fi,2np Ti]2 −→ # [ ]2

}
, for 1 ≤ i ≤ n

[ ti,(2j+1)n+k −→ ti,(2j+1)n+k+1 ]2
[ fi,(2j+1)n+k −→ fi,(2j+1)n+k+1 ]2
[ ti,2jn+k −→ ti,2jn+k+1 ]1
[ fi,2jn+k −→ fi,2jn+k+1 ]1

 , for
1 ≤ i ≤ n,
1 ≤ j ≤ p− 1,
1 ≤ k ≤ n− 1

5.4Rules to prepare the input formula for check clauses:

[ xi,j,k −→ xi,j,k+1 ]2
[ xi,j,k −→ xi,j,k+1 ]2
[ x∗i,j,k −→ x∗i,j,k+1 ]2

 , for
1 ≤ i ≤ n,
1 ≤ j ≤ p,
0 ≤ k ≤ 2np+ n+ n(j − 1) + (i− 1)− 1

5.5Rules implementing the first checking stage.

[Ti xi,j,2np+n+n(j−1)+(i−1)]2 −→ cj,0[ ]2
[Ti xi,j,2np+n+n(j−1)+(i−1)]2 −→ #[ ]2
[Ti x

∗
i,j,2np+n+n(j−1)+(i−1)]2 −→ #[ ]2

[Fi xi,j,2np+n+n(j−1)+(i−1)]2 −→ #[ ]2
[Fi xi,j,2np+n+n(j−1)+(i−1)]2 −→ cj,0[ ]2
[Fi x

∗
i,j,2np+n+n(j−1)+(i−1)]2 −→ #[ ]2


, for

1 ≤ i ≤ n,
1 ≤ j ≤ p

5.6Rules implementing the second checking stage.

[ cj,k −→ cj,k+1 ]1 , for 1 ≤ j ≤ p, 0 ≤ k ≤ np− 2
cj,np−1[ ]2 −→ [cj ]2 , for 1 ≤ j ≤ p
[ γ4np+n c1]2 −→ d1[ ]2
[ dj cj+1 ]2 −→ dj+1[ ]2
dj [ ]2 −→ [ dj ]2

}
, for 1 ≤ j ≤ p− 1

5.7Rules to provide the correct answer of the system.

[ dp ]1 −→ dp[ ]1
[ α4np+n+2p dp ]0 −→ yes [ ]0
[ α4np+n+2p β4np+n+2p+1 ]0 −→ no [ ]0

(6)the input membrane is the membrane labelled by 2 (iin = 2) and the output
region is the environment (iout = env).

5 A formal verification

Let ϕ = C1 ∧ . . . ∧ Cp an instance of SAT problem consisting of p clauses
Cj = lj,1 ∨ . . . ∨ lj,rj , 1 ≤ j ≤ p, where V ar(ϕ) = {x1, . . . , xn}, and lj,k ∈
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{xi,¬xi|1 ≤ i ≤ n}, 1 ≤ j ≤ p, 1 ≤ k ≤ rj . Let us asume that the number of
variables, n, and the number of clauses, p, of ϕ, are greater or equal to 2.

We consider the polynomial encoding (cod, s) from SAT in Π defined as follows:
For each ϕ ∈ ISAT with n variables and p clauses, s(ϕ) = 〈n, p〉 and

cod(ϕ) = {xi,j,0|xi ∈ Cj} ∪ {xi,j,0|¬xi ∈ Cj} ∪ {x∗i,j,0|xi 6∈ Cj ,¬xi 6∈ Cj}

For instance, the formula ϕ = (x1 +x2 +x3)(x2 +x4)(x2 +x3 +x4) is encoded
as follows:

cod(ϕ) =

x1,1,0 x2,1,0 x3,1,0 x
∗
4,1,0

x∗1,2,0 x2,2,0 x
∗
3,2,0 x4,2,0

x∗1,3,0 x2,3,0 x3,3,0 x4,3,0


That is, j-th row (1 ≤ j ≤ p) represents the j-th clause Cj of ϕ. We denote
(cod(ϕ))pj the code of the clauses Cj , . . . , Cp, that is, the expression containing
from j-th row to p-th row. For instance,

cod(ϕ)p2 =

(
x∗1,2,0 x2,2,0 x

∗
3,2,0 x4,2,0

x∗1,3,0 x2,3,0 x3,3,0 x4,3,0

)
We denote (codk(ϕ))pj ) the code cod(ϕ)pj when the third index of the variables

equal 3. For instance: row to p-th row. For instance,

cod3(ϕ)p2 =

(
x∗1,2,3 x2,2,3 x

∗
3,2,3 x4,2,3

x∗1,3,3 x2,3,3 x3,3,3 x4,3,3

)
We denote (cod′k(ϕ))pj ) the code cod(ϕ)pj when the third index of the variables

equal 3. For instance: row to p-th row. For instance,

cod′3(ϕ)p2 =

(
x∗′1,2,3 x

′
2,2,3 x

∗′
3,2,3 x

′
4,2,3

x∗′1,3,3 x
′
2,3,3 x′3,3,3 x′4,3,3

)
We denote (cod∗(ϕ))pj ) the code cod(ϕ)pj when the third index does not exist.

For instance: row to p-th row. For instance,

cod∗(ϕ)p2 =

(
x∗1,2 x2,2 x

∗
3,2 x4,2

x∗1,3 x2,3 x3,3 x4,3

)
The Boolean formula ϕ will be processed by the system Π(s(ϕ)) + cod(ϕ).

Next, we informally describe how that system works.
The solution proposed follows a brute force algorithm in the framework of

recognizer P systems with active membranes, minimal cooperation in object evo-
lution rules and division rules only for elementary membranes, and it consists of
the following stages:

• Generation stage: using separation rules, beside other rules that make a
“simulation” of division rules, we get all truth assignments for the variables
{x1, . . . , xn} associated with ϕ are produced. Specifically, 2n membranes la-
belled by 1 and 2n labelled by 2 are generated. Each of the former ones encodes
a truth assignment. This stage takes exactly n+2np steps, being n the number
of variables of ϕ.
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• First Checking stage: checking whether or not each clause of the input formula
ϕ is satisfied by the truth assignments generated in the previous stage, encoded
by each membrane labelled by 2. This stage takes exactly np steps, being n the
number of the variables and p the number of clauses of ϕ.

• Second Checking stage: checking whether or not all clauses of the input formula
ϕ are satisfied by some truth assignment encoded by a membrane labelled by
2. This stage takes exactly np+ 2p steps, being n the number of variables and
p the number of clauses of ϕ.

• Output stage: the system sends to the environment the right answer according
to the results of the previous stage. This stage takes 2 steps if the answer is
yes and 3 steps if the answer is no.

5.1 Generation stage

Through this stage, all the different truth assignments for the variables associated
with the Boolean formula ϕ will be generated within membranes labelled by 2, by
the applications of rules from 5.2 and 5.3. In the first 2n steps, 2n membranes
labelled by 1 and 2n membranes labelled by 2, alternating between the division of
membranes labelled by 2 (in odd steps) and the division of membranes labelled by
1 (in even steps).

Proposition 1. Let C = (C0, C1, . . . , Cq) be a computation of the system Π(s(ϕ))
with input multiset cod(ϕ).

(a0) For each 2k (0 ≤ k ≤ n− 1) at configuration C2k we have the following:
- C2k(0) = {α2k, β2k}
- There are 2k empty membranes labelled by 1.
- There are 2k membranes labelled by 2 such that each of them contains

? the input multiset cod2k(ϕ);
? an object γ2k; and
? p copies of every Ti and Fi, 1 ≤ i ≤ n.
? objects ai,2k+1, k + 1 ≤ i ≤ n; and
? a different subset {r1,j , . . . , rk,j}, k + 1 ≤ j ≤ 2k, being r ∈ {t, f}.

(a1) For each 2k + 1 (0 ≤ j ≤ n− 1) at configuration C2k+1 we have the following:
- C2k+1(0) = {α2k+1, β2k+1}
- There are 2k empty membranes labelled by 1.
- There are 2k+1 membranes labelled by 2 such that each of them contains

? the input multiset cod2k+1(ϕ);
? an object γ2k+1; and
? p copies of every Ti and Fi, 1 ≤ i ≤ n.
? objects ai,2(k+1), k + 1 ≤ i ≤ n; and
? a different subset {r1,j , . . . , rk+1,j}, k+1 ≤ j ≤ 2k+1, being r ∈ {t, f}.

(b) C2n(0) = {α2n, β2n}, and in C2n there are 2n empty membranes labelled by 1;
and 2n membranes labelled by 2, such that each of them contains the input
multiset cod2n(ϕ), p copies of every Ti and Fi (1 ≤ i ≤ n), an object γ2n and
a different subset of objects ri,2n+1−i, 1 ≤ i ≤ n.
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Proof. (a) is going to be demonstrated by induction on k

- The base case k = 0 is trivial because:
(a0) at the initial configuration C0 we have: C0(0) = {α0, β0} and there exists

a single empty membrane labelled by 1 containing ; and a single membrane
labelled by 2 containing the input multiset cod(ϕ), an object γ0, p copies of
Ti and Fi, being 1 ≤ i ≤ n, the objects a1,1, . . . , an,1. Then, configuration
C0 yields configuration C1 by applying the rules:

[ a1,1 ]2 → [ t1,1 ]2 [ f1,1 ]2
[ ai,1 → ai,2 ]2 , for k + 1 ≤ i ≤ n
[ α0 → α1 ]0
[ β0 → β1 ]0
[ γ0 → γ1 ]2
[ xi,j,0 → xi,j,1 ]2
[ xi,j,0 → xi,j,1 ]2
[ x∗i,j,0 → x∗i,j,1 ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

(a1) at C1 we have C1(0) = {α1, β1} and there exists a single empty membrane
labelled by 1; and two membranes labelled by 2 containing the input multi-
set cod1(ϕ), an object γ1, p copies of Ti and Fi, being 1 ≤ i ≤ n, the objects
a2,2, . . . , an,2 and one with the object t1,1 and the other one with the ob-
ject f1,1. Then, the configuration C1 yields configuration C2 by applying the
rules:

[ t1,1 → t1,2 ]2
[ f1,1 → f1,2 ]2
[ [ ]2 [ ]2]1 → [ [ ]2]1 [ [ ]2]1
[ai,2 → ai,3 ]2 , for 2 ≤ i ≤ n
[ α1 → α2 ]0
[ β1 → β2 ]0
[ γ1 → γ2 ]2
[ xi,j,1 → xi,j,2 ]2
[ xi,j,1 → xi,j,2 ]2
[ x∗i,j,1 → x∗i,j,2 ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Thus, C2(0) = {α2, β2}, and there exist two empty membranes labelled by 1;
and two membranes labelled by 2 containing the input multiset cod2(ϕ), an
object γ2, p copies of Ti and Fi, being 1 ≤ i ≤ n, the objects a2,3, . . . , an,3
and one with the object t1,2 and the other one with the object f1,2. Hence,
the result holds for k = 1.

- Supposing, by induction, result is true for k (0 ≤ k ≤ n− 1)
- C2k(0) = {α2k, β2k}
- In C2k there are 2k empty membranes labelled by 1.
- In C2k there are 2k membranes labelled by 2 such that each of them contains

? the input multiset cod2k(ϕ);
? an object γ2k;
? p copies of Ti and Fi, 1 ≤ i ≤ n.
? objects ai,2k+1, k + 1 ≤ i ≤ n; and
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? a different subset {r1,j , . . . , rk,j}, k + 1 ≤ j ≤ 2k, being r ∈ {t, f}.
Then, configuration C2k yields configuration C2k+1 by applying the rules:

[ ak,2k+1 ]2 → [ tk,k ]2 [ fk,k ]2
[ ai,2k+1 → ai,2k+2 ]2 , for k + 1 ≤ i ≤ n
[ ti,j → ti,j+1 ]2
[ fi,j → fi,j+1 ]2

}
for 1 ≤ i ≤ k − 1, k + 1 ≤ j ≤ 2k

[ α2k → α2k+1 ]0
[ β2k → β2k+1 ]0
[ γ2k → γ2k+1 ]2
[ xi,j,2k → xi,j,2k+1 ]2
[ xi,j,1 → xi,j,2k+1 ]2
[ x∗i,j,1 → x∗i,j,2k+1 ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Therefore, the following holds
- C2k+1(0) = {α2k+1, β2k+1}
- In C2k+1 there are 2k empty membranes labelled by 1.
- In C2k+1 there are 2k+1 membranes labelled by 2 such that each of them

contains
? the input multiset cod2k+1(ϕ);
? an object γ2k+1;
? p copies of Ti and Fi, 1 ≤ i ≤ n.
? objects ai,2(k+1), k + 1 ≤ i ≤ n; and
? a different subset {r1,j , . . . , rk+1,j}, k+ 1 ≤ j ≤ 2k+ 1, being r ∈ {t, f}.
Then, configuration C2k+1 yields configuration C2(k+1) by applying the rules:

[ ti,j → ti,j+1 ]2
[ fi,j → fi,j+1 ]2

}
for 1 ≤ i ≤ k + 1, k + 1 ≤ j ≤ 2k + 1

[ [ ]2 [ ]2]1 → [ [ ]2]1 [ [ ]2]1
[ ai,2(k+1) → ai,2(k+1)+1 ]2 , for k + 1 ≤ i ≤ n
[ α2k+1 → α2(k+1) ]0
[ β2k+1 → β2(k+1) ]0
[ γ2k+1 → γ2(k+1) ]2
[ xi,j,2k+1 → xi,j,2k+2 ]2
[ xi,j,2k+1 → xi,j,2k+2 ]2
[ x∗i,j,2k+1 → x∗i,j,2k+2 ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Therefore, the following holds
- C2(k+1)(0) = {α2(k+1), β2(k+1)}
- In C2(k+1) there are 2k+1 empty membranes labelled by 1.

- In C2(k+1) there are 2k+1 membranes labelled by 2 such that each of them
contains
? the input multiset cod2(k+1)(ϕ);
? an object γ2(k+1);
? p copies of Ti and Fi, 1 ≤ i ≤ n.
? objects ai,2(k+1)+1, k + 1 ≤ i ≤ n; and
? a different subset {r1,j , . . . , rk+1,j}, k + 1 ≤ j ≤ 2(k + 1) + 1.
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Hence, the result holds for k + 1.
- In order to prove (b) it is enough to notice that, on the one hand, from (a)

configuration C2n−1 holds:
- C2n−1(0) = {α2n−1, β2n−1}
- In C2n−1 there are 2n−1 empty membranes labelled by 1.
- In C2n−1 there are 2n membranes labelled by 2 such that each of them

contains
? the input multiset cod2n−1p(ϕ);
? an object γ2n−1;
? p copies of Ti and Fi, 1 ≤ i ≤ n; and
? a different subset of objects ri,2n−i, 1 ≤ i ≤ n.
Then, configuration C2n−1 yields C2n by applying the rules:

[ ti,2n−i → ti,2n+1−i ]2
[ fi,2n−i → fi,2n+1−1 ]2

}
for 1 ≤ i ≤ n

[ [ ]2 [ ]2]1 → [ [ ]2]1 [ [ ]2]1
[ α2n−1 → α2n ]0
[ β2n−1 → β2n ]0
[ γ2n−1 → γ2n ]2
[ xi,j,2n−1 → xi,j,2n ]2
[ xi,j,2n−1 → xi,j,2n ]2
[ x∗i,j,2n−1 → x∗i,j,2n ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Then, we have C2n(0) = {α2n, β2n}, and there exist 2n empty membranes
labelled by 1; and 2n membranes labelled by 2 containing the input multiset
cod2n(ϕ), an object γ2n, p copies of Ti and Fi, being 1 ≤ i ≤ n and a
different multiset of objects ri,2n+1−i, being 1 ≤ i ≤ n.

�

When the tree structure is created, we start assigning a truth assignment to each
branch. It is executed in the next 2np−n steps. The last n steps are different from
the previous ones, so they deserve another proposition of the following one.

Proposition 2. Let C = (C0, C1, . . . , Cq) be a computation of the system Π(s(ϕ))
with input multiset cod(ϕ).

(a0) For each k (1 ≤ k ≤ n) and l (0 ≤ l ≤ p − 1) at configuration C2n+2ln+k we
have the following:
- C2n+2ln+k(0) = {α2n+2ln+k, β2n+2ln+k}
- There are 2n membranes labelled by 1 such that each of them contains a

different subset of objects ri,2n+2ln+k−i+1, 1 ≤ i ≤ k, being r ∈ {t, f}.
- There are 2n membranes labelled by 2 such that each of them contains

? the input multiset cod2n+2ln+k(ϕ);
? an object γ2n+2ln+k;
? p copies of every Ti and Fi, 1 ≤ i ≤ n if the truth assignment associated

to the branch contains its corresponding ti or fi object; otherwise, there
are p− l copies if k + 1 ≤ i ≤ n, p− l − 1 otherwise; and
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? objects ri,2n+2ln+k−i+1, k + 1 ≤ i ≤ n, being r ∈ {t, f}.
(a1) For each k (1 ≤ k ≤ n) and l (0 ≤ l ≤ p − 1) at configuration C3n+2ln+k we

have the following:
- C2n+2ln+k(0) = {α2n+2ln+k, β2n+2ln+k}
- There are 2n membranes labelled by 1 such that each of them contains a

different subset of objects ri,3n+ln+k−i+1, k + 1 ≤ i ≤ n, being r ∈ {t, f}.
- There are 2n membranes labelled by 2 such that each of them contains

? the input multiset cod3n+2ln+k(ϕ);
? an object γ3n+2ln+k;
? p copies of every Ti and Fi, 1 ≤ i ≤ n if the truth assignment associated

to the branch contains its corresponding ti or fi object, and p− l copies
otherwise; and

? objects ri,3n+2ln+k−i+1, 1 ≤ i ≤ k, being r ∈ {t, f}.
(b) C2np(0) = {α2np, β2np}, and in C2np there are 2n empty membranes labelled by

1; and 2n membranes labelled by 2 such that each of them contains the input
multiset cod2np(ϕ), an object γ2np, p copies of every Ti and Fi, 1 ≤ i ≤ n
if the truth assignment associated to the branch contains its corresponding ti
or fi object, and 1 object otherwise and objects ri,2np−i+1, 1 ≤ i ≤ n, being
r ∈ {t, f}, that is, the truth assignment associated with the branch.

Proof. (a) is going to be demonstrated by induction on l

- The base case l = 0 is going to be demonstrated by induction on k
(a0) The base case k = 1 is trivial because:

- at configuration C2n we have: C2n(0) = {α2n, β2n} and there exist 2n

empty membranes labelled by 1 containing ; and 2n membranes labelled
by 2 containing the input multiset cod2n(ϕ), an object γ2n, p copies of
Ti and Fi, being 1 ≤ i ≤ n and a different subset of objects ri,2n−i+1,
1 ≤ i ≤ n, being r ∈ {t, f}, the corresponding truth assignment of the
branch. Then, configuration C2n yields configuration C2n+1 by applying
the rules:

[ ti,2n Fi ]2 → ti,2n+1[ ]2
[ fi,2n Ti ]2 → fi,2n+1[ ]2
[ ti,2n+1−i → ti,2n+2−i ]2
[ fi,2n+1−i → fi,2n+2−1 ]2

}
for 2 ≤ i ≤ n

[ α2n → α2n+1 ]0
[ β2n → β2n+1 ]0
[ γ2n → γ2n+1 ]2
[ xi,j,2n → xi,j,2n+1 ]2
[ xi,j,2n → xi,j,2n+1 ]2
[ x∗i,j,2n → x∗i,j,2n+1 ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Thus, C2n+1(0) = {α2n+1, β2n+1}, and there exist 2n membranes la-
belled by 1 containing an object r1,2n+1, being r ∈ {t, f}; and 2n mem-
branes labelled by 2 containing the input multiset cod2n+1(ϕ), an object
γ2n+1, p copies of Ti and Fi, being 2 ≤ i ≤ n, and p − 1 copies of T1
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(respectively, Fi) if object f1,2n (resp., t1,2n) was within membrane la-
belled by 2 at configuration C2n, and p copies of F1 (resp., T1), and a
different subset of objects ri,2n−i+2, 2 ≤ i ≤ n, being r ∈ {t, f}.

- Supposing, by induction, result is true for k (1 ≤ k ≤ n)
- C2n+k(0) = {α2n+k, β2n+k}
- In C2n+k there are 2n membranes labelled by 1 such that each of them

contains objects ri,2n+k−i+1, 1 ≤ i ≤ k, being r ∈ {t, f}.
- In C2n+k there are 2n membranes labelled by 2 such that each of them

contains
? the input multiset cod2n+k(ϕ);
? an object γ2n+k;
? p copies of every Ti and Fi, 1 ≤ i ≤ n if the truth assignment

associated to the branch contains its corresponding ti or fi object,
p− 1 objects Ti and Fi (1 ≤ i ≤ k) otherwise; and

? a different subset of objects ri,2n+k−i+1, k + 1 ≤ i ≤ n, being r ∈
{t, f}.

Then, configuration C2n+k yields configuration C2n+k+1 by applying the
rules:

[ tk+1,2n Fk+1 ]2 → tk+1,2n+1[ ]2
[ fk+1,2n Tk+1 ]2 → fk+1,2n+1[ ]2
[ ti,2n+k−i+1 → ti,2n+k−i+2 ]2
[ fi,2n+k−i+1 → fi,2n+k−i+2 ]2

}
for k + 2 ≤ i ≤ n

[ ti,2n+k−i+1 → ti,2n+k−i+2 ]1
[ fi,2n+k−i+1 → fi,2n+k−i+2 ]1

}
for 1 ≤ i ≤ k

[ α2n+k → α2n+k+1 ]0
[ β2n+k → β2n+k+1 ]0
[ γ2n+k → γ2n+k+1 ]2
[ xi,j,2n+k → xi,j,2n+k+1 ]2
[ xi,j,2n+k → xi,j,2n+k+1 ]2
[ x∗i,j,2n+k → x∗i,j,2n+k+1 ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Therefore, the following holds
- C2n+k+1(0) = {α2n+k+1, β2n+k+1}
- In C2n+k+1 there are 2n membranes labelled by 1 such that each of them

contains objects ri,2n+k−i+2, 1 ≤ i ≤ k + 1, being r ∈ {t, f}.
- In C2n+k+1 there are 2n membranes labelled by 2 such that each of them

contains
? the input multiset cod2n+k+1(ϕ);
? an object γ2n+k+1;
? p copies of every Ti and Fi, 1 ≤ i ≤ n if the truth assignment

associated to the branch contains its corresponding ti or fi object,
p− 1 objects Ti and Fi (1 ≤ i ≤ k + 1) otherwise; and

? a different subset of objects ri,2n+k−i+2, k + 2 ≤ i ≤ n, being r ∈
{t, f}.

(a1) The base case k = 1 is trivial because:



268 L. Valencia-Cabrera et al.

- at configuration C3n we have C3n(0) = {α3n, β3n} and there exist 2n

membranes labelled by 1 containing and a different subset of objects
ri,3n+1−i, 1 ≤ i ≤ n, being r ∈ {t, f}, that is, the corresponding truth
assignment of the branch; and 2n membranes labelled by 2 containing
the input multiset cod3n(ϕ), an object γ3n, p copies of Ti and Fi, being
1 ≤ i ≤ n if the truth assignment associated to the branch contains its
corresponding object ti or fi, p−1 objects otherwise. Then, configuration
C3n yields configuration C3n+1 by applying the rules:
t1,3n [ ]2 → [ t1,3n+1 ]2
f1,3n [ ]2 → [ f1,3n+1 ]2
[ ti,3n−i+1 → ti,3n−i+2 ]1
[ fi,3n−i+1 → fi,3n−i+2 ]1

}
for 2 ≤ i ≤ n

[ α3n → α3n+1 ]0
[ β3n → β3n+1 ]0
[ γ3n → γ3n+1 ]2
[ xi,j,3n → xi,j,3n+1 ]2
[ xi,j,3n → xi,j,3n+1 ]2
[ x∗i,j,3n → x∗i,j,3n+1 ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Thus, C3n+1(0) = {α3n+1, β3n+1}, and there exist 2n membranes la-
belled by 1 containing a different subset of objects ri,3n−i+2, 2 ≤ i ≤ n,
being r ∈ {t, f}; and 2n membranes labelled by 2 containing the in-
put multiset cod3n+1(ϕ), an object γ3n+1, p copies of Ti and Fi, being
1 ≤ i ≤ n if the truth assignment associated to the branch contains
its corresponding object ti or fi, p− 1 objects otherwise and an object
r1,3n+1, being r ∈ {t, f}.

- Supposing, by induction, result is true for k (1 ≤ k ≤ n)
- C3n+k(0) = {α3n+k, β3n+k}
- In C3n+k there are 2n membranes labelled by 1 such that each of them

contains objects ri,3n+k−i+1, k + 1 ≤ i ≤ n, being r ∈ {t, f}.
- In C3n+k there are 2n membranes labelled by 2 such that each of them

contains
? the input multiset cod3n+k(ϕ);
? an object γ3n+k;
? p copies of every Ti and Fi for 1 ≤ i ≤ n or their corresponding ti

or fi is assigned to that branch, p− l copies otherwise; and
? a different subset of objects ri,3n+k−i+1, 1 ≤ i ≤ k, being r ∈ {t, f}.
Then, configuration C3n+k yields configuration C3n+k+1 by applying the
rules:
tk+1,3n [ ]2 → [ tk+1,3n+1 ]2
fk+1,3n [ ]2 → [ fk+1,3n+1 ]2
[ ti,3n+k−i+1 → ti,3n+k−i+2 ]1
[ fi,3n+k−i+1 → fi,3n+k−i+2 ]1

}
for k + 2 ≤ i ≤ n

[ ti,3n+k−i+1 → ti,3n+k−i+2 ]2
[ fi,3n+k−i+1 → fi,3n+k−i+2 ]2

}
for 1 ≤ i ≤ k
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[ α3n+k → α3n+k+1 ]0
[ β3n+k → β3n+k+1 ]0
[ γ3n+k → γ3n+k+1 ]2
[ xi,j,3n+k → xi,j,3n+k+1 ]2
[ xi,j,3n+k → xi,j,3n+k+1 ]2
[ x∗i,j,3n+k → x∗i,j,3n+k+1 ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Therefore, the following holds
- C3n+k+1(0) = {α3n+k+1, β3n+k+1}
- In C3n+k+1 there are 2n membranes labelled by 1 such that each of them

contains objects ri,3n+k−i+2, k + 2 ≤ i ≤ n, being r ∈ {t, f}.
- In C3n+k+1 there are 2n membranes labelled by 2 such that each of them

contains
? the input multiset cod3n+k+1(ϕ);
? an object γ3n+k+1;
? p copies of every Ti and Fi for 1 ≤ i ≤ n or the corresponding ti or

fi is assigned to that branch, p− l copies otherwise; and
? a different subset of objects ri,3n+k−i+2, 1 ≤ i ≤ k + 1, being r ∈
{t, f}.

- Supposing, by induction, result is true for l (0 ≤ l ≤ p− 1)

(a0) The base case k = 1 is trivial because:
- at configuration C2n+(l+1)n

1 we have: C2n+(l+1)n(0) = {α2n+(l+1)n,
β2n+(l+1)n} and there exist 2n empty membranes labelled by 1; and 2n

membranes labelled by 2 containing the input multiset cod2n+(l+1)n(ϕ),
an object γ2n+(l+1)n, p copies of Ti and Fi, being 1 ≤ i ≤ n, and p − l
copies for Ti (resp. Fi) objects that are in a branch with an object fi
(resp. ti) and a different subset of objects ri,2n+(l+1)n−i+1, 1 ≤ i ≤ n, be-
ing r ∈ {t, f}, the corresponding truth assignment of the branch. Then,
configuration C2n+(l+1)n yields configuration C2n+(l+1)n+1 by applying
the rules:

[ ti,2n+(l+1)n Fi ]2 → ti,2n+(l+1)n+1[ ]2
[ fi,2n+(l+1)n Ti ]2 → fi,2n+(l+1)n+1[ ]2
[ ti,2n+(l+1)n+1−i → ti,2n+(l+1)n+2−i ]2
[ fi,2n+(l+1)n+1−i → fi,2n+(l+1)n+2−i ]2

}
for 2 ≤ i ≤ n

[ α2n+(l+1)n → α2n+(l+1)n+1 ]0
[ β2n+(l+1)n → β2n+(l+1)n+1 ]0
[ γ2n+(l+1)n → γ2n+(l+1)n+1 ]2
[ xi,j,2n+(l+1)n → xi,j,2n+(l+1)n+1 ]2
[ xi,j,2n+(l+1)n → xi,j,2n+(l+1)n+1 ]2
[ x∗i,j,2n+(l+1)n → x∗i,j,2n+(l+1)n+1 ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Thus, C2n+(l+1)n+1(0) = {α2n+(l+1)n+1, β2n+(l+1)n+1}, and there exist
2n membranes labelled by 1 containing and an object r1,2n+(l+1)n+1,

1 Note that (l + 1)n = ln + n, and it has been demonstrated in the first step of the
induction that it is correct.
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being r ∈ {t, f}; and 2n membranes labelled by 2 containing the input
multiset cod2n+(l+1)n+1(ϕ), an object γ2n+(l+1)n+1, p copies of Ti (resp.
Fi) being 1 ≤ i ≤ n if the corresponding ti (resp. fi) object exists in
that branch, otherwise p− l copies of Fi (resp. Ti) if 2 ≤ i ≤ n, p− l− 1
otherwise and a different subset of objects ri,2n+(l+1)n−i+2, 2 ≤ i ≤ n,
being r ∈ {t, f}.

- Supposing, by induction, result is true for k (1 ≤ k ≤ n)
- C2n+(l+1)n+k(0) = {α2n+(l+1)n+k, β2n+(l+1)n+k}
- In C2n+(l+1)n+k there are 2n membranes labelled by 1 such that each of

them contains objects ri,2n+(l+1)n+k−i+1, 1 ≤ i ≤ k, being r ∈ {t, f}.
- In C2n+(l+1)n+k there are 2n membranes labelled by 2 such that each of

them contains
? the input multiset cod2n+(l+1)n+k(ϕ);
? an object γ2n+(l+1)n+k;
? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if the corresponding ti

(resp. fi) object exists in that branch, otherwise p − l copies of Fi
(resp. Ti) if k + 1 ≤ i ≤ n, p− l − 1 otherwise; and

? a different subset of objects ri,2n+(l+1)n+k−i+1, k+ 1 ≤ i ≤ n, being
r ∈ {t, f}.

Then, configuration C2n+k yields configuration C2n+(l+1)n+k+1 by ap-
plying the rules:

[ tk+1,2n+(l+1)n Fk+1 ]2 → tk+1,2n+(l+1)n+1[ ]2
[ fk+1,2n+(l+1)n Tk+1 ]2 → fk+1,2n+(l+1)n+1[ ]2
[ ti,2n+(l+1)n+k−i+1 → ti,2n+k−i+2 ]2
[ fi,2n+(l+1)n+k−i+1 → fi,2n+k−i+2 ]2

}
for k + 2 ≤ i ≤ n

[ ti,2n+(l+1)n+k−i+1 → ti,2n+(l+1)n+k−i+2 ]1
[ fi,2n+(l+1)n+k−i+1 → fi,2n+(l+1)n+k−i+2 ]1

}
for 1 ≤ i ≤ k

[ α2n+(l+1)n+k → α2n+(l+1)n+k+1 ]0
[ β2n+(l+1)n+k → β2n+(l+1)n+k+1 ]0
[ γ2n+(l+1)n+k → γ2n+(l+1)n+k+1 ]2
[ xi,j,2n+(l+1)n+k → xi,j,2n+(l+1)n+k+1 ]2
[ xi,j,2n+(l+1)n+k → xi,j,2n+(l+1)n+k+1 ]2
[ x∗i,j,2n+(l+1)n+k → x∗i,j,2n+(l+1)n+k+1 ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Therefore, the following holds
- C2n+(l+1)n+k+1(0) = {α2n+(l+1)n+k+1, β2n+(l+1)n+k+1}
- In C2n+(l+1)n+k+1 there are 2n membranes labelled by 1 such that each of

them contains objects ri,2n+(l+1)n+k−i+2, 1 ≤ i ≤ k+1, being r ∈ {t, f}.
- In C2n+(l+1)n+k+1 there are 2n membranes labelled by 2 such that each

of them contains
? the input multiset cod2n+(l+1)n+k+1(ϕ);
? an object γ2n+(l+1)n+k+1;
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? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if the corresponding ti
(resp. fi) object exists in that branch, otherwise p − l copies of Fi
(resp. Ti) if k + 2 ≤ i ≤ n, p− l − 1 otherwise; and

? a different subset of objects ri,2n+(l+1)n+k−i+2, k+ 2 ≤ i ≤ n, being
r ∈ {t, f}.

(a1) The base case k = 1 is trivial because:
- at configuration C3n+(l+1)n we have C3n+(l+1)n(0) = {α3n+(l+1)n,

β3n+(l+1)n} and there exist 2n membranes labelled by 1 containing a
different subset of objects ri,3n+(l+1)n−i+1, 1 ≤ i ≤ n, being r ∈ {t, f},
that is, the corresponding truth assignment of the branch; and 2n mem-
branes labelled by 2 containing the input multiset cod3n+(l+1)n(ϕ), an
object γ3n+(l+1)n and p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if
the corresponding ti (resp. fi) object exists in that branch, and p − l
copies of Fi (resp. Ti). Then, configuration C3n+(l+1)n yields configura-
tion C3n+(l+1)n+1 by applying the rules:

t1,3n+(l+1)n [ ]2 → [ t1,3n+(l+1)n+1 ]2
f1,3n+(l+1)n [ ]2 → [ f1,3n+(l+1)n+1 ]2
[ ti,3n+(l+1)n−i+1 → ti,3n+(l+1)n−i+2 ]1
[ fi,3n+(l+1)n−i+1 → fi,3n+(l+1)n−i+2 ]1

}
for 2 ≤ i ≤ n

[ α3n+(l+1)n → α3n+(l+1)n+1 ]0
[ β3n+(l+1)n → β3n+(l+1)n+1 ]0
[ γ3n+(l+1)n → γ3n+(l+1)n+1 ]2
[ xi,j,3n+(l+1)n → xi,j,3n+(l+1)n+1 ]2
[ xi,j,3n+(l+1)n → xi,j,3n+(l+1)n+1 ]2
[ x∗i,j,3n+(l+1)n → x∗i,j,3n+(l+1)n+1 ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Thus, C3n+(l+1)n+1(0) = {α3n+(l+1)n+1, β3n+(l+1)n+1}, and there exist
2n membranes labelled by 1 containing a different subset of objects
ri,3n+(l+1)n−i+2, 2 ≤ i ≤ n, being r ∈ {t, f}; and 2n membranes la-
belled by 2 containing the input multiset cod3n+(l+1)n+1(ϕ), an object
γ3n+(l+1)n+1, p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if the correspond-
ing ti (resp. fi) object exists in that branch, and p− l copies of Fi (resp.
Ti) and an object r1,3n+(l+1)n+1, being r ∈ {t, f}.

- Supposing, by induction, result is true for k (1 ≤ k ≤ n)
- C3n+(l+1)n+k(0) = {α3n+(l+1)n+k, β3n+(l+1)n+k}
- In C3n+(l+1)n+k there are 2n membranes labelled by 1 such that each of

them contains objects ri,3n+k−i+1, k + 1 ≤ i ≤ n, being r ∈ {t, f}.
- In C3n+(l+1)n+k there are 2n membranes labelled by 2 such that each of

them contains
? the input multiset cod3n+(l+1)n+k(ϕ);
? an object γ3n+(l+1)n+k;
? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if the corresponding ti

(resp. fi) object exists in that branch, and p− l copies of Fi (resp.
Ti)
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? a different subset of objects ri,3n+(l+1)n−i+1, 1 ≤ i ≤ k, being r ∈
{t, f}.

Then, configuration C3n+(l+1)n+k yields configuration C3n+(l+1)n+k+1 by
applying the rules:
tk+1,3n+(l+1)n [ ]2 → [ tk+1,3n+(l+1)n+1 ]2
fk+1,3n+(l+1)n [ ]2 → [ fk+1,3n+(l+1)n+1 ]2
[ ti,3n+(l+1)n+k−i+1 → ti,3n+(l+1)n+k−i+2 ]1
[ fi,3n+(l+1)n+k−i+1 → fi,3n+(l+1)n+k−i+2 ]1

}
for k + 2 ≤ i ≤ n

[ ti,3n+(l+1)n+k−i+1 → ti,3n+(l+1)n+k−i+2 ]2
[ fi,3n+(l+1)n+k−i+1 → fi,3n+(l+1)n+k−i+2 ]2

}
for 1 ≤ i ≤ k

[ α3n+(l+1)n+k → α3n+(l+1)n+k+1 ]0
[ β3n+(l+1)n+k → β3n+(l+1)n+k+1 ]0
[ γ3n+(l+1)n+k → γ3n+(l+1)n+k+1 ]2
[ xi,j,3n+(l+1)n+k → xi,j,3n+(l+1)n+k+1 ]2
[ xi,j,3n+(l+1)n+k → xi,j,3n+(l+1)n+k+1 ]2
[ x∗i,j,3n+(l+1)n+k → x∗i,j,3n+(l+1)n+k+1 ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Therefore, the following holds
- C3n+(l+1)n+k+1(0) = {α3n+(l+1)n+k+1, β3n+(l+1)n+k+1}
- In C3n+(l+1)n+k+1 there are 2n membranes labelled by 1 such that each of

them contains objects ri,3n+(l+1)n+k−i+2, k+2 ≤ i ≤ n, being r ∈ {t, f}.
- In C3n+(l+1)n+k+1 there are 2n membranes labelled by 2 such that each

of them contains
? the input multiset cod3n+(l+1)n+k+1(ϕ);
? an object γ3n+(l+1)n+k+1;
? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if the corresponding ti

(resp. fi) object exists in that branch, and p− l copies of Fi (resp.
Ti)

? a different subset of objects ri,3n+(l+1)n+k−i+2, 1 ≤ i ≤ k+ 1, being
r ∈ {t, f}.

- In order to prove (b) it is enough to notice that, on the one hand, from (a)
configuration C2np−12 holds:
- C2np−1(0) = {α2np−1, β2np−1}
- In C2np−1 there are 2n membranes labelled by 1 such that each of them

contains an object rn,2np, being r ∈ {t, f}.
- In Cn+2np−1 there are 2n membranes labelled by 2 such that each of them

contains
? the input multiset cod2np−1(ϕ);
? an object γ2np−1;
? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if the corresponding ti (resp.

fi) object exists in that branch, and 1 copy otherwise; and
? a different subset of objects ri,2np−i, 1 ≤ i ≤ n− 1.

2 Note that 2np− 1 = n + 2n(p− 1) + (n− 1)



P Systems with Active Membranes: Minimal Cooperation Only Outwards 273

Then, configuration Cn+2np−1 yields Cn+2np by applying the rules:
tn,2np[ ]2 → [ tn,2np+1 ]2
fn,2np[ ]2 → [ fn,2np+1 ]2
[ ti,n+2np−i → ti,n+2np−i+1 ]2
[ fi,n+2np−i → fi,n+2np−i ]2

}
for 1 ≤ i ≤ n− 1

[ αn+2np−1 → αn+2np ]0
[ βn+2np−1 → βn+2np ]0
[ γn+2np−1 → γn+2np ]2
[ xi,j,n+2np−1 → xi,j,n+2np ]2
[ xi,j,n+2np−1 → xi,j,n+2np ]2
[ x∗i,j,n+2np−1 → x∗i,j,n+2np ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Then, we have C2np(0) = {α2np, β2np}, and there exist 2n empty membranes
labelled by 1; and 2n membranes labelled by 2 containing containing the
input multiset cod2np(ϕ), an object γ2np, p copies of Ti (resp. Fi) being
1 ≤ i ≤ n if the corresponding ti (resp. fi) object exists in that branch, and
1 copy otherwise and a different multiset of objects ri,2np−i+1, 1 ≤ i ≤ n,
being r ∈ {t, f}, that is, the truth assignment associated with the branch.

�

Proposition 3. Let C = (C0, C1, . . . , Cq) be a computation of the system Π(s(ϕ))
with input multiset cod(ϕ).

(a) For each k (1 ≤ k ≤ n− 1) at configuration C2np+k we have the following:
- C2np+k(0) = {α2np+k, β2np+k}
- There are 2n membranes labelled by 1 such that each of them contains k

objects #.
- there are 2n membranes labelled by 2 such that each of them contains

? the input multiset cod2np+k(ϕ);
? an object γ2np+k;
? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if the corresponding ti (resp. fi)

object exists in that branch, and 1 copy of Fi (resp. Ti) if k+1 ≤ i ≤ n;
and

? objects ri,2np+k−i+1, k + 1 ≤ i ≤ n.
(b) Cn+2np(0) = {αn+2np, βn+2np}, and in Cn+2np there are 2n membranes labelled

by 1, such that each of them contains n objects #; and 2n membranes labelled
by 2, such that each of them contains the input multiset codn+2np(ϕ), an ob-
ject γn+2np, p copies of every Ti and Fi, 1 ≤ i ≤ n if the truth assignment
associated to the branch contains its corresponding ti or fi object.

Proof. (a) is going to be demonstrated by induction on k

- the base case k = 1 is trivial because:
- at C2np we have C2np(0) = {α2np, β2np} and there exist 2n empty membranes

labelled by 1; and 2n membranes labelled by 2 containing the input multiset
cod2np(ϕ), an object γ2np p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if
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the corresponding ti (resp. fi) object exists in that branch, and 1 copy
otherwise and a different multiset of objects ri,2np−i+1, 1 ≤ i ≤ n, being
r ∈ {t, f}, that is, the truth assignment associated with the branch. Then,
configuration C2np yields C2np+1 by applying the rules.

[ t1,2np F1 ]2 → #[ ]2
[ f1,2np T1 ]2 → #[ ]2
[ ti,2np−i+1 → ti,2np−i+2 ]2
[ fi,2np−i+1 → fi,2np−i+2 ]2

}
for 2 ≤ i ≤ n

[ α2np → α2np+1 ]0
[ β2np → β2np+1 ]0
[ γ2np → γ2np+1 ]2
[ xi,j,2np → xi,j,2np+1 ]2
[ xi,j,2np → xi,j,2np+1 ]2
[ x∗i,j,2np → x∗i,j,2np+1 ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Thus, C2np+1(0) = {α2np+1, β2np+1}, and there exist 2n membranes labelled
by 1 containing an object #; and 2n membranes labelled by 2 containing
the input multiset cod2np+1(ϕ), an object γ2np+1, p copies of Ti (resp. Fi)
being 1 ≤ i ≤ n if their corresponding ti (resp. fi) object exists in that
branch, and 1 copy of Fi (resp. Ti) if k + 2 ≤ i ≤ n and objects ri,2np−i+2,
k + 2 ≤ i ≤ n, being r ∈ {t, f}.

- Supposing, by induction, result is true for k (1 ≤ k ≤ n− 1)
- C2np+k(0) = {α2np+k, β2np+k}
- In C2np+k there are 2n membranes labelled by 1 such that each of them

contains k objects #.
- In C2np+k there are 2n membranes labelled by 2 such that each of them

contains
? the input multiset cod2np+k(ϕ);
? an object γ2np+k;
? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if their corresponding ti

(resp. fi) object exists in that branch, and 1 copy of Fi (resp. Ti) if
k + 1 ≤ i ≤ n; and

? objects ri,2np+k−i+1, k + 1 ≤ i ≤ n, being r ∈ {t, f}.
Then, configuration C2np+k yields configuration C2np+k+1 by applying the
rules:

[ tk+1,2np F1 ]2 → #[ ]2
[ fk+1,2np T1 ]2 → #[ ]2
[ ti,2np+k−i+1 → ti,2np+k−i+2 ]2
[ fi,2np+k−i+1 → fi,2np+k−i+2 ]2

}
for 2 ≤ i ≤ n

[ α2np+k → α2np+k+1 ]0
[ β2np+k → β2np+k+1 ]0
[ γ2np+k → γ2np+k+1 ]2
[ xi,j,2np+k → xi,j,2np+k+1 ]2
[ xi,j,2np+k → xi,j,2np+k+1 ]2
[ x∗i,j,2np+k → x∗i,j,2np+k+1 ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p
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Therefore, the following holds
- C2np+k+1(0) = {α2np+k+1, β2np+k+1}
- In C2np+k+1 there are 2n membranes labelled by 1 such that each of them

contains k + 1 objects #.
- In C2np+k+1 there are 2n membranes labelled by 2 such that each of them

contains
? the input multiset cod2np+k+1(ϕ);
? an object γ2np+k+1;
? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if their corresponding ti

(resp. fi) object exists in that branch, and 1 copy of Fi (resp. Ti) if
k + 2 ≤ i ≤ n; and

? objects ri,2np+k−i+2, k + 2 ≤ i ≤ n, being r ∈ {t, f}.
- In order to prove (b) it is enough to notice that, on the one hand, from (a)

configuration Cn+2np−1
3 holds:

- Cn+2np−1(0) = {αn+2np−1, βn+2np−1}
- In Cn+2np−1 there are 2n membranes labelled by 1 such that each of them

contains n− 1 objects #.
- In Cn+2np−1 there are 2n membranes labelled by 2 such that each of them

contains
? the input multiset codn+2np−1(ϕ);
? an object γn+2np−1;
? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if the corresponding ti (resp.

fi) object exists in that branch, and 1 copy of Fn (resp. Tn); and
? an object rn,2np, being r ∈ {t, f}.
Then, configuration Cn+2np−1 yields configuration Cn+2np by applying the
rules:

[ tn,2np F1 ]2 → #[ ]2
[ fn,2np T1 ]2 → #[ ]2
[ αn+2np−1 → αn+2np ]0
[ βn+2np−1 → βn+2np ]0
[ γn+2np−1 → γn+2np ]2
[ xi,j,n+2np−1 → xi,j,n+2np ]2
[ xi,j,n+2np−1 → xi,j,n+2np ]2
[ x∗i,j,n+2np−1 → x∗i,j,n+2np ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Therefore, the following holds
- Cn+2np(0) = {αn+2np, βn+2np}
- In Cn+2np there are 2n membranes labelled by 1 such that each of them

contains n objects #.
- In Cn+2np there are 2n membranes labelled by 2 such that each of them

contains
? the input multiset codn+2np(ϕ);
? an object γn+2np; and

3 Note that n + 2np− 1 = 2np + (n− 1)
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? p copies of Ti (resp. Fi) being 1 ≤ i ≤ n if their corresponding ti (resp.
fi) object exists in that branch.

�

5.2 First checking stage

At this stage, we try to determine the clauses satisfied for the truth assignment
encoded by each branch. For that, rules from 5.5 will be applied in such manner
that in the m-th step, being m = ln+k (1 ≤ k ≤ n, 0 ≤ l ≤ p−1), clause Cl+1 will
be evaluated with the k-th variable of the formula. This stage will take exactly np
steps.

Proposition 4. Let C = (C0, C1, . . . , Cq) be a computation of the system Π(s(ϕ))
with input multiset cod(ϕ).

(a) For each k (1 ≤ k ≤ n) and l (0 ≤ l ≤ p− 1) at configuration Cn+2np+ln+k we
have the following:
- Cn+2np+ln+k(0) = {αn+2np+ln+k, βn+2np+ln+k}
- There are 2n membranes labelled by 1 such that each of them contains

? m objects cj,t (1 ≤ j ≤ l + 1, 0 ≤ t ≤ ln + k − 1), that is, clauses that
have been satisfied by any variable; and

? n+ ln+ k −m objects #.
- There are 2n membranes labelled by 2 such that each of them contains

? the (n− k)-th last elements of codn+2np+ln+k(ϕ)l+1
l+1;

? the input multiset codn+2np+ln+k(ϕ)pl+2;
? an object γn+2np+ln+k; and
? p− l copies of objects Ti or Fi, k+1 ≤ i ≤ n, p− l−1 copies otherwise,

corresponding to the truth assignment assigned to the branch.
(b) Cn+3np(0) = {αn+3np, βn+3np}, and in Cn+3np there are 2n membranes labelled

by 1, such that each of them contains m objects cj,t (1 ≤ j ≤ p, 0 ≤ t ≤ np−1),
that is, the clauses satisfied by any variable and n+np−m objects #; and 2n

membranes labelled by 2 such that each of them contains an object γn+3np.

Proof. (a) is going to be demonstrated by induction on l

- The base case l = 0 is goig to be demonstrated by induction on k
- The base case k = 1 is trivial because:

- at configuration Cn+2np we have: Cn+2np(0) = {αn+2np, βn+2np} and
there exist 2n membranes labelled by 1, such that each of them con-
tains; and 2n membranes labelled by 2 such that each of them contains
n objects # the input multiset codn+2np(ϕ), an object γn+2np and p
copies of objects Ti and Fi, 1 ≤ i ≤ n, representing the correspon-
dent truth assignment to the branch. Then, configuration Cn+2np yields
configuration Cn+2np+1 by applying the rules:
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[ T1 x1,1,n+2np ]2 −→ c1,0[ ]2
[ T1 x1,1,n+2np ]2 −→ #[ ]2
[ T1 x

∗
1,1,n+2np ]2 −→ #[ ]2

[ F1 x1,1,n+2np ]2 −→ #[ ]2
[ F1 x1,1,n+2np ]2 −→ c1,0[ ]2
[ F1 x

∗
1,1,n+2np ]2 −→ #[ ]2

4

[ αn+2np → αn+2np+1 ]0
[ βn+2np → βn+2np+1 ]0
[ γn+2np → γn+2np+1 ]2
[ xi,j,n+2np → xi,j,n+2np+1 ]2
[ xi,j,n+2np → xi,j,n+2np+1 ]2
[ x∗i,j,n+2np → x∗i,j,n+2np+1 ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

Thus, Cn+2np+1(0) = {αn+2np+1, βn+2np+1}, and there exist 2n membranes
labelled by 1 containing n objects # and an object c1,0 if the corresponding
truth assignment makes true clause 1 with variable 1, another object #
otherwise; and 2n membranes labelled by 2 containing the last n−1 elements
of codn+2np+1(ϕ)11, the input multiset codn+2np+1(ϕ)p2, p copies of Ti or Fi,
being 2 ≤ i ≤ n, and p− 1 copies of T1 or F1.

- Supposing, by induction, result is true for k (1 ≤ k ≤ n)
- Cn+2np+k(0) = {αn+2np+k, βn+2np+k}
- In Cn+2np+k there are 2n membranes labelled by 1 such that each of

them contains
? m objects c1,t (0 ≤ t ≤ k − 1), that is, the number of variables

with the corresponding truth assignment that makes true the input
formula ϕ; and

? n+ k −m objects #.
- In Cn+2np+k there are 2n membranes labelled by 2 such that each of

them contains
? the (n− k)-th last elements of codn+2np+k(ϕ)11;
? the input multiset codn+2np+k(ϕ)p2;
? an object γn+2np+k; and
? p copies of objects Ti or Fi, k+ 1 ≤ i ≤ n, p− 1 copies if 1 ≤ i ≤ k,

corresponding to the truth assignment assigned to the branch.
Then, configuration Cn+2np+k yields configuration Cn+2np+k+1 by ap-
plying the rules:

[ Tk x1,1,n+2np+k ]2 −→ c1,0[ ]2
[ Tk x1,1,n+2np+k ]2 −→ #[ ]2
[ Tk x

∗
1,1,n+2np+k ]2 −→ #[ ]2

[ Fk x1,1,n+2np+k ]2 −→ #[ ]2
[ Fk x1,1,n+2np+k ]2 −→ c1,0[ ]2
[ Fk x

∗
1,1,n+2np+k ]2 −→ #[ ]2

5

4 If k = 1, l = 0, then i = 1, j = 1, so 2np + n + n(j − 1) + (i− 1) = n + 2np
5 If l = 0, then i = k + 1, j = 1, so 2np + 2n + n(j − 1) + (i− 1) = 2n + 2np + k
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[ αn+2np+k → αn+2np+k+1 ]0
[ βn+2np+k → βn+2np+k+1 ]0
[ γn+2np+k → γn+2np+k+1 ]2
[ xi,j,n+2np+k → xi,j,n+2np+k+1 ]2
[ xi,j,n+2np+k → xi,j,n+2np+k+1 ]2
[ x∗i,j,n+2np+k → x∗i,j,n+2np+k+1 ]2

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[ c1,t → c1,t+1 ]1 for 0 ≤ t ≤ k − 1
Therefore, the following holds
- Cn+2np+k+1 = {αn+2np+k+1, βn+2np+k+1}
- In Cn+2np+k+1 there are 2n membranes labelled by 1 such that each of

them contains
? m objects c1,t (0 ≤ t ≤ k), that is, the number of variables with the

corresponding truth assignment that makes true the clause C1; and
? n+ k + 1−m objects #.

- In Cn+2np+k+1 there are 2n membranes labelled by 2 such that each of
them contains
? the (n− k + 1)-th last elements of codn+2np+k+1(ϕ)11;
? the input multiset codn+2np+k+1(ϕ)p2,
? an object γn+2np+k+1; and
? p copies of objects Ti or Fi, k+2 ≤ i ≤ n, p−1 copies if 1 ≤ i ≤ k+1,

corresponding to the truth assignment assigned to the branch.
- Supposing, by induction, result is true for l (0 ≤ l ≤ p− 1)

- The base case k = 1 is trivial because:
- at configuration Cn+2np+(l+1)n we have: Cn+2np+(l+1)n(0) =
{αn+2np+(l+1)n, βn+2np+(l+1)n} and there exist 2n membranes labelled
by 1 containing m objects cj,t (1 ≤ j ≤ l, 0 ≤ t ≤ ln − 1), that
is, the number of variables with the corresponding truth assignment
that makes true the clauses from C1 to Cl and n + (l + 1)n − m ob-
jects #; and 2n membranes labelled by 2 containing the input multiset
codn+2np+(l+1)n(ϕ)pl+1, an object γn+2np+(l+1)n and p − l copies of ob-
jects Ti or Fi, 1 ≤ i ≤ n. Then, configuration Cn+2np+(l+1)n yields
configuration Cn+2np+(l+1)n+1 by applying the rules:

[ T1 x1,1,n+2np+(l+1)n ]2 −→ cl+1,0[ ]2
[ T1 x1,1,n+2np+(l+1)n ]2 −→ #[ ]2
[ T1 x

∗
1,1,n+2np+(l+1)n ]2 −→ #[ ]2

[ F1 x1,1,n+2np+(l+1)n ]2 −→ cl+1,0[ ]2
[ F1 x1,1,n+2np+(l+1)n ]2 −→ #[ ]2
[ F1 x

∗
1,1,n+2np+(l+1)n ]2 −→ #[ ]2

[ αn+2np+(l+1)n → αn+2np+(l+1)n+1 ]0
[ βn+2np+(l+1)n → βn+2np+(l+1)n+1 ]0
[ γn+2np+(l+1)n → γn+2np+(l+1)n+1 ]2
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[ xi,j,n+2np+(l+1)n → xi,j,n+2np+(l+1)n+1 ]2
[ xi,j,n+2np+(l+1)n → xi,j,n+2np+(l+1)n+1 ]2
[ x∗i,j,n+2np+(l+1)n → x∗i,j,n+2np+(l+1)n+1 ]2

 for
1 ≤ i ≤ n
1 ≤ j ≤ p

[ cj,t → c1,t+1 ]1 for 1 ≤ j ≤ l + 1, 0 ≤ t ≤ ln− 1
Thus, Cn+2np+(l+1)n+1(0) = {αn+2np+(l+1)n+1, βn+2np+(l+1)n+1}, and there
exist 2n membranes labelled by 1 containing m objects cj,t (1 ≤ j ≤ l + 1,
0 ≤ t ≤ ln), that is, the number of variables with the correspond-
ing truth assignment that makes true the clauses from C1 to Cl+1 and
n + (l + 1)n + 1 −m objects #; and 2n membranes labelled by 2 contain-
ing the last n − 1 elements of codn+2np+(l+1)n+1(ϕ)l+1

l+1, the input multiset
codn+2np+(l+1)n+1(ϕ)pl+2, p − l copies of Ti or Fi, being 2 ≤ i ≤ n, and
p− l − 1 copies of T1 or F1.

- Supposing, by induction, result is true for k (1 ≤ k ≤ n)
- Cn+2np+(l+1)n+k(0) = {αn+2np+(l+1)n+k, βn+2np+(l+1)n+k}
- In Cn+2np+(l+1)n+k there are 2n membranes labelled by 1 such that each

of them contains
? m objects cj,t (1 ≤ j ≤ l + 1, 0 ≤ t ≤ ln + k − 1), that is, the

number of variables with the corresponding truth assignment that
makes true clauses from C1 to Cl+1; and

? n+ (l + 1)n+ k + 1−m objects #.
- In Cn+2np+(l+1)n+k there are 2n membranes labelled by 2 such that each

of them contains
? the (n− k)-th last elements of codn+2np+(l+1)n+k(ϕ)l+1

l+1;
? the input multiset codn+2np+(l+1)n+k(ϕ)pl+2,
? an object γn+2np+(l+1)n+k; and
? p − l copies of objects Ti or Fi, k + 1 ≤ i ≤ n, p − l − 1 copies if

1 ≤ i ≤ k, corresponding to the truth assignment assigned to the
branch.

Then, configuration Cn+2np+(l+1)n+k yields configuration
Cn+2np+(l+1)n+k+1 by applying the rules:

[ Tk x1,1,n+2np+(l+1)n+k ]2 −→ cl+1[ ]2
[ Tk x1,1,n+2np+(l+1)n+k ]2 −→ #[ ]2
[ Tk x

∗
1,1,n+2np+(l+1)n+k ]2 −→ #[ ]2

[ Fk x1,1,n+2np+(l+1)n+k ]2 −→ #[ ]2
[ Fk x1,1,n+2np+(l+1)n+k ]2 −→ cl+1[ ]2
[ Fk x

∗
1,1,n+2np+(l+1)n+k ]2 −→ #[ ]2

[ αn+2np+(l+1)n+k → αn+2np+(l+1)n+k+1 ]0
[ βn+2np+(l+1)n+k → βn+2np+(l+1)n+k+1 ]0
[ γn+2np+(l+1)n+k → γn+2np+(l+1)n+k+1 ]2
[ xi,j,n+2np+(l+1)n+k → xi,j,n+2np+(l+1)n+k+1 ]2
[ xi,j,n+2np+(l+1)n+k → xi,j,n+2np+(l+1)n+k+1 ]2
[ x∗i,j,n+2np+(l+1)n+k → x∗i,j,n+2np+(l+1)n+k+1 ]2

 for
1 ≤ i ≤ n

1 ≤ j ≤ p

[ cj,t → cj,t+1 ]1 for 1 ≤ j ≤ l + 1, 0 ≤ t ≤ ln+ k − 1
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Therefore, the following holds
- Cn+2np+(l+1)n+k+1(0) = {αn+2np+(l+1)n+k+1, βn+2np+(l+1)n+k+1}
- In Cn+2np+(l+1)n+k+1 there are 2n membranes labelled by 1 such that

each of them contains
? m objects cj,t (1 ≤ j ≤ l+ 1, 0 ≤ t ≤ ln+ k), that is, the number of

variables with the corresponding truth assignment that makes true
clauses from C1 to Cl+1; and

? n+ (l + 1)n+ k + 1−m objects #.
- In Cn+2np+(l+1)n+k+1 there are 2n membranes labelled by 2 such that

each of them contains
? the (n− (k + 1))-th last elements of codn+2np+(l+1)n+k+1(ϕ)l+1

l+1,
? the input multiset codn+2np+(l+1)n+k+1(ϕ)pl+1,
? an object γn+2np+(l+1)n+k+1;
? p − l copies of objects Ti or Fi, k + 2 ≤ i ≤ n, p − l − 1 copies if

1 ≤ i ≤ k + 1, corresponding to the truth assignment assigned to
the branch.

- In order to prove (b) it is enough to notice that, on the one hand, from (a)
configuration Cn+3np−1

6 holds:
- Cn+3np−1(0) = {αn+3np−1, βn+3np−1}
- In Cn+3np−1 there are 2n membranes labelled by 1 such that each of them

contains
? m objects cj,t (1 ≤ j ≤ p, 0 ≤ t ≤ np−2), that is, the number of variables

with the corresponding truth assignment that makes true clauses from
C1 to Cp; and

? n+ np− 1−m objects #.
- In Cn+3np−1 there are 2n membranes labelled by 2 such that each of them

contains
? the last element of codn+3np−1(ϕ)pp;
? an object γn+3np−1; and
? an object Tn or Fn corresponding to the truth assignment assigned to

the branch.
Then, configuration Cn+3np−1 yields Cn+3np by applying the rules:

[ Tn xn,p,n+3np−1 ]2 −→ cp,0[ ]2
[ Tn xn,p,n+3np−1 ]2 −→ #[ ]2
[ Tn x

∗
n,p,n+3np−1 ]2 −→ #[ ]2

[ Fn xn,p,n+3np−1 ]2 −→ #[ ]2
[ Fn xn,p,n+3np−1 ]2 −→ cp,0[ ]2
[ Fn x

∗
n,p,n+3np−1 ]2 −→ #[ ]2

[ αn+2np+(l+1)n+k → αn+2np+(l+1)n+k+1 ]0
[ βn+2np+(l+1)n+k → βn+2np+(l+1)n+k+1 ]0
[ γn+2np+(l+1)n+k → γn+2np+(l+1)n+k+1 ]2

6 Note that n + 3np− 1 = n + 3n(p− 1) + (n− 1)
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[ xi,j,n+2np+(l+1)n+k → xi,j,n+2np+(l+1)n+k+1 ]2
[ xi,j,n+2np+(l+1)n+k → xi,j,n+2np+(l+1)n+k+1 ]2
[ x∗i,j,n+2np+(l+1)n+k → x∗i,j,n+2np+(l+1)n+k+1 ]2

 for
1 ≤ i ≤ n

1 ≤ j ≤ p

[ cj,t → cj,t+1 ]2 for 1 ≤ j ≤ l + 1, 0 ≤ t ≤ ln+ k − 1
Therefore, the following holds
- Cn+3np(0) = {αn+3np, βn+3np}
- In Cn+3np there are 2n membranes labelled by 1 such that each of them

contains
? m objects cj,t (1 ≤ j ≤ p, 0 ≤ t ≤ np − 1), that is, the number of

variables with the corresponding truth assignment that makes true
clauses from C1 to Cp; and

? n+ np−m objects #.
- In Cn+3np there are 2n membranes labelled by 2 such that each of them

contains an object γn+3np.

�

5.3 Second checking stage

At this stage, started at configuration Cn+3np, we try to determine the truth as-
signments that make true the input formula ϕ, using rules from 5.6. We are going
to divide this stage in two phases. The first one will be devoted to send in all the
objects cj , for 1 ≤ j ≤ p in order to get them ready for the next phase.

Let k = ln + i (0 ≤ l ≤ p − 1, 1 ≤ i ≤ n), so we can refer to each clause

(l − 1) when we are doing the verification. Let m =
p∑
j=1

mj , being mj the number

of objects cj,k in each membrane 1 at step Cn+3np. In this stage, we cannot be
sure of how many objects cl+1,k are present at each membrane when i 6= 0 7, so if
we cannot be sure of that, we are going to say that there are m̃j (remember that
m̃j is always less than or equal to mj) objects within membrane 1. We will ignore
objects # since they have no effect from here.

Proposition 5. Let C = (C0, C1, . . . , Cq) be a computation of the system Π(s(ϕ))
with input multiset cod(ϕ).

(a) For each k (1 ≤ k ≤ np− 1) at configuration Cn+3np+k we have the following:
- Cn+3np+k(0) = {αn+3np+k, βn+3np+k}
- There are 2n membranes labelled by 1 such that each of them contains m̃l+1

objects cl+1,t ((p− 1)n+ 1 ≤ t ≤ np− 1) and mj objects cj,t (l + 2 ≤ j ≤
p, ln+ i ≤ t ≤ np− 1)

- There are 2n membranes labelled by 2 such that each of them contains
? an object γn+3np+k; and
? mj objects cj for 1 ≤ j ≤ l and ml+1 − m̃l+1 objects cl+1

7 That is because objects cj,k do not have to be created consecutively.
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(b) Cn+4np(0) = {αn+4np, βn+4np}, there are 2n empty membranes labelled by 1;
and 2n membranes labelled by 2, such that each of them contains m objects cj
(1 ≤ j ≤ p) and an object γn+4np.

Proof. (a) is going to be demonstrated by induction on k

- The base case k = 1 is trivial because: At configuration Cn+3np we have:
Cn+3np(0) = {αn+3np, βn+3np} and there exist 2n membranes labelled by 1
containing m objects cj,t (1 ≤ j ≤ k, 0 ≤ t ≤ np − 1); and 2n membranes
labelled by 2 containing an object γn+3np. Then, configuration Cn+3np yields
configuration Cn+3np+1 by applying the rules:

[ αn+3np → αn+3np+1 ]0
[ βn+3np → βn+3np+1 ]0
[ γn+3np → γn+3np+1 ]2
[cj,t −→ cj,t+1]1 , for 1 ≤ j ≤ p, 0 ≤ k ≤ np− 2
c1,np−1[ ]2 −→ [c1]2

Thus, Cn+3np+1(0) = {αn+3np+1, βn+3np+1}, and there exist 2n membranes
labelled by 2 containing m̃1 objects c1 and mj objects cj (2 ≤ j ≤ p); and 2n

membranes labelled by 1 containing an object γn+3np+1 and m1 − m̃1 objects
c1

8. Hence, the result holds for k = 1.
- Supposing, by induction, result is true for k (1 ≤ k ≤ np− 1)

- Cn+3np+k(0) = {αn+3np+k, βn+3np+k}
- In Cn+3np+k there are 2n membranes labelled by 1 such that each of them

contains m̃l+1 objects cl+1,t ((p− 1)n+ 1 ≤ t ≤ np− 1) and mj objects cj,t
(l + 2 ≤ j ≤ p, ln+ i ≤ t ≤ np− 1).

- In Cn+3np+k there are 2n membranes labelled by 2 such that each of them
contains
? an object γn+3np+k; and
? mj objects cj for 1 ≤ j ≤ l and ml+1 − m̃l+1 objects cl+1.
Then, configuration Cn+3np+k yields configuration Cn+3np+k by applying
the rules:

[ αn+3np+k → αn+3np+k+1 ]0
[ βn+3np+k → βn+3np+k+1 ]0
[ γn+3np+k → γn+3np+k+1 ]2
[cj,t −→ cj,t+1]1 , for l + 1 ≤ j ≤ p, 0 ≤ k ≤ np− 2
cl+1,np−1[ ]2 −→ [cl+1]2

Therefore, the following holds
- Cn+3np+k+1(0) = {αn+3np+k+1, βn+3np+k+1}
- In Cn+3np+k+1 there are 2n membranes labelled by 1 such that each of them

contains m̃l+1 objects cl+1,t+1 ((p− 1)n+ 1 ≤ t ≤ np− 1) and mj objects
cj,t+1 (l + 2 ≤ j ≤ p, ln+ i ≤ t ≤ np− 1).

8 That is, if the truth assignment of variable 1 made true clause 1, then an object c1,0
were created at (2n+ 2np+ 1)-th step, and it is going to be sent to the corresponding
membrane 2. So, m1 − m̃1 can be 0 or 1 in this step.
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- In Cn+3np+k+1 there are 2n membranes labelled by 2 such that each of them
contains
? an object γn+3np+k+1; and
? mj objects cj for 1 ≤ j ≤ l and ml+1 − m̃l+1 objects cl+1.
Hence, the result holds for k + 1.

- In order to prove (b) it is enough to notice that, on the one hand, from (a)
configuration Cn+4np−1 holds:
- Cn+4np−1(0) = {αn+4np−1, βn+4np−1}
- In Cn+4np−1 there are 2n membranes labelled by 1 such that each of them

contains
- In Cn+4np−1 there are 2n membranes labelled by 2 such that each of them

contains m̃p objects cp,np.
? an object γn+4np−1; and
? mj objects cj for 1 ≤ j ≤ p− 1 and mp − m̃p

9 objects cp.
Then, configuration Cn+4np−1 yields configuration Cn+4np by applying the
rules:

[ αn+4np−1 → αn+4np ]0
[ βn+4np−1 → βn+4np ]0
[ γn+4np−1 → γn+4np ]2
cp,np[ ]2 −→ [cp]2

Then, we have Cn+4np(0) = {αn+4np, βn+4np}, and there exist 2n empty
membranes labelled by 1; and there exist 2n membranes labelled by 2 con-
taining an object γn+4np and m objects cj (1 ≤ j ≤ p).

�

When objects cj are within the membranes labelled by 2, we can start to check
if all the clauses of the input formula ϕ are satisfied by any truth assignment. As
we use objects cj to denote that clause Cj has been satisfied by some variable, it
can be possible that some cj are missing, that is, that for some j, 1 ≤ j ≤ p, cj
does not appear in any membrane labelled by 2 in C2n+4np. Let j̃ be the index j 10

of that clause. It is going to take 2p steps.

Proposition 6. Let C = (C0, C1, . . . , Cq) be a computation of the system Π(s(ϕ))
with input multiset cod(ϕ).

(a0) For each 2k + 1 (0 ≤ k ≤ p − 1) at configuration Cn+4np+2k+1 we have the
following:
- Cn+4np+2k+1(0) = {αn+4np+2k+1, βn+4np+2k+1}
- There are 2n membranes labelled by 1 such that each of them contains an

object dk+1 if and only if the truth assignment associated to the branch
makes true the first k + 1 clauses.

- There are 2n membranes labelled by 2 such that each of them contains

9 In this case, m̃p can only take two values: 0 or 1.
10 If j̃ is not defined, we are going to suposse that it is equal to p + 1.
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? an object γn+4np or dj̃−1 (respectively, an object dk) if the corresponding

truth assignment does not make true (resp., makes true) the clause C1

or Cj (2 ≤ j ≤ p) (resp., the first k clauses); and

? mj − 1 objects cj for 1 ≤ j ≤ min(j̃, k + 1) and mj objects cj for

min(j̃, k + 2) ≤ j ≤ p.
(a1) For each 2k (1 ≤ k ≤ p− 2) at configuration Cn+4np+2k we have the following:

- Cn+4np+2k(0) = {αn+4np+2k, βn+4np+2k}
- There are 2n empty membranes labelled by 1.
- There are 2n empty membranes labelled by 2 such that each of them contains

? an object γn+4np or dj̃−1 if the corresponding truth assignment does not

make true the clause C1 or Cj (2 ≤ j ≤ p); and

? mj−1 objects cj for 1 ≤ j ≤ min(j̃, k) and mj objects cj for min(j̃, k+
1) ≤ j ≤ p.

(b) Cn+4np+2p−1(0) = {αn+4np+2p−1, βn+4np+2p−1}, and in Cn+4np+2p−1 there are
2n membranes labelled by 1, such that each of them contains an object dp if
and only if the corresponding truth assignment makes true the input formula
ϕ (dj̃−1 otherwise); and 2n membranes labelled by 2, such that each of them

contains mj−1 objects cj for 1 ≤ j ≤ min(j̃, p+1), mj objects cj for min(j̃, p+
1) ≤ j ≤ p and an object γn+4np (respectively, dj̃) if clause C1 (resp., Cj) is
not satisfied by the corresponding truth assignment.

Proof. (a) is going to be demonstrated by induction on k

- The base case k = 1 is trivial because:
(a0) at configuration Cn+4np we have: Cn+4np(0) = {αn+4np, βn+4np} and there

exist 2n empty membranes labelled by 1; and there exist 2n membranes
labelled by 2 containing an object γn+4np and m objects cj (1 ≤ j ≤ p).
Then, configuration Cn+4np yields configuration Cn+4np+1 by applying the
rules:

[ αn+4np → αn+4np+1 ]0
[ βn+4np → βn+4np+1 ]0
[ γ4np+2n c1 ]2 −→ d1[ ]2

(a1) at Cn+4np+1(0) = {αn+4np+1, βn+4np+1} and there exist 2n membranes la-
belled by 1 containing an object d1 if and only if there was at least one
object c1 within membrane labelled by 1 at configuration Cn+4np; and 2n

membranes labelled by 2 containing an object γn+4np if and only if there
were no objects c1 at configuration Cn+4np, m1−1 (respectively, m1) objects
c1 if there was any object cj in this membrane in the previous configura-
tion (resp., m1) and mj objects cj for 2 ≤ j ≤ p. Then, the configuration
Cn+4np+1 yields configuration Cn+4np+2 by applying the rules:

[ αn+4np+1 → αn+4np+2 ]0
[ βn+4np+1 → βn+4np+2 ]0
d1 [ ]2 −→ [ d1 ]2

Thus, Cn+4np+2(0) = {αn+4np+2, βn+4np+2}, and there exist 2n empty
membranes labelled by 1; and there exist 2n membranes labelled by 2
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containing an object d1 (respectively, γn+4np) if the corresponding truth
assignment makes true (resp., doesn’t make true) clause C1, m1 − 1 (resp.,
m1) objects c1 and mj objects cj for 1 ≤ j ≤ p. Hence, the result holds for
k = 1.

- Supposing, by induction, result is true for k (0 ≤ k ≤ p− 1)
- Cn+4np+2k(0) = {αn+4np+2k, βn+4np+2k}
- In Cn+4np+2k there are 2n empty membranes labelled by 1.
- In Cn+4np+2k there are 2n membranes labelled by 2 such that each of them

contains
? an object γn+4np or dj̃−1 (respectively, an object dk) if the corresponding

truth assignment does not make true (resp., makes true) the clause C1

or Cj (2 ≤ j ≤ p) (resp., the first k clauses); and

? mj − 1 objects cj for 1 ≤ j ≤ min(j̃, k + 1) and mj objects cj for

min(j̃, k + 2) ≤ j ≤ p.
Then, configuration Cn+4np+2k yields configuration Cn+4np+2k+1 by apply-
ing the rules:

[ αn+4np+2k → αn+4np+2k+1 ]0
[ βn+4np+2k → βn+4np+2k+1 ]0
[ dk ck+1 ]2 −→ dk+1[ ]2

Therefore, the following holds
- Cn+4np+2k+1(0) = {αn+4np+2k+1, βn+4np+2k+1}
- In Cn+4np+2k+1 there are 2n membranes labelled by 1 such that each of them

contains an object dk+1 if and only if the corresponding truth assignment
makes true the first k + 1 clauses.

- In Cn+4np+2k+1 there are 2n membranes labelled by 2 such that each of
them contains
? an object γn+4np or dj̃−1 if the corresponding truth assignment does not

make true the clause C1 or Cj (2 ≤ j ≤ p); and

? mj−1 objects cj for 1 ≤ j ≤ min(j̃, k) and mj objects cj for min(j̃, k+
1) ≤ j ≤ p.

Then, configuration Cn+4np+2k+1 yields Cn+4np+2k+2 by applying the rules:
[ αn+4np+2k+1 → αn+4np+2k+2 ]0
[ βn+4np+2k+1 → βn+4np+2k+2 ]0
dk+1[ ]2 −→ [ dk+1 ]2

Therefore, the following holds
- Cn+4np+2k+2(0) = {αn+4np+2k+2, βn+4np+2k+2}
- In Cn+4np+2k+2 there are 2n empty membranes labelled by 1.
- In Cn+4np+2k+2 there are 2n membranes labelled by 2 such that each of

them contains
? an object γn+4np or dj̃−1 (respectively, an object dk+1) if the corre-

sponding truth assignment does not make true (resp., makes true) the
clause C1 or Cj (2 ≤ j ≤ p) (resp., the first k + 1 clauses); and
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? mj − 1 objects cj for 1 ≤ j ≤ min(j̃, k + 2) and mj objects cj for

min(j̃, k + 3) ≤ j ≤ p.
Hence, the result holds for k + 1.

- In order to prove (b) it is enough to notice that, on the one han, from (a)
configuration Cn+4np+2p−2 holds:
- Cn+4np+2p−2(0) = {αn+4np+2p−2, βn+4np+2p−2}
- In Cn+4np+2p−2 there are 2n empty membranes labelled by 1.
- In Cn+4np+2p−2 there are 2n membranes labelled by 2 such that each of

them contains
- an object γn+4np or dj̃−1 (respectively, dp−1) if the corresponding truth

assignment does not make true the clause C1 or Cj (2 ≤ j ≤ p − 1)
(resp., makes true clauses Cj (1 ≤ j ≤ p− 1)); and

- mj − 1 objects cj for 1 ≤ j ≤ min(j̃, p − 1) and mj objects cj for

min(j̃, p) ≤ j ≤ p
Then, configuration Cn+4np+2p−2 yields configuration Cn+4np+2p−1 by ap-
plying the rules:

[ αn+4np+2p−2 → αn+4np+2p−1 ]0
[ βn+4np+2p−2 → βn+4np+2p−1 ]0
[ dp−1 cp ]2 −→ dp [ ]2

Then, we have Cn+4np+2p−1(0) = {αn+4np+2p−1, βn+4np+2p−1}, and in
Cn+4np+2p−1 there are 2n membranes labelled by 1, such that each of
them contains an object dp if and only if the corresponding truth as-
signment makes true the input formula ϕ (dj̃−1 otherwise); and 2n mem-
branes labelled by 2, such that each of them contains mj − 1 objects cj for

1 ≤ j ≤ min(j̃, p + 1), mj objects cj for min(j̃, p + 1) ≤ j ≤ p and an
object γn+4np (respectively, dj̃) if clause C1 (resp., Cj) is not satisfied by
the corresponding truth assignment.

�

5.4 Output stage

The output phase starts at configuration Cn+4np+2p−1, and takes exactly two steps
when there is an affirmative answer and three steps when there is a negative one.
Rules from 5.7 are devoted to compute this stage.

- Affirmative answer: In this case, at configuration Cn+4np+2p−1, in some mem-
brane 1 there is an object dp. By applying the rule [ dp ]1 −→ dp[ ]1 (at
the same time that [ αn+4np+2p−1 → αn+4np+2p ]0 and [ βn+4np+2p−1 →
βn+4np+2p ]0 are executed), an object dp is produced in membrane 0. Then
by applying the rules [ α4np+n+2p dp ]0 −→ yes[ ]0 and [ βn+4np+2p →
βn+4np+2p+1 ]0, an object yes is released to environment and the computa-
tion halts.
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- Negative answer: In this case, at configuration Cn+4np+2p−1, there are no mem-
branes labelled by 1 that contains an object dp, so the only rules executed
are [ αn+4np+2p−1 → αn+4np+2p ]0 and [ βn+4np+2p−1 → βn+4np+2p ]0. Rule
[ βn+4np+2p → βn+4np+2p+1 ]0 is executed in the next step. Thus, at con-
figuration Cn+4np+2p+1 in membrane labelled by 0 we execute have a copy
of object αn+4np+2p and a copy of object βn+4np+2p+1. By applying the rule
[ α4np+n+2p β4np+n+2p+1]0 −→ no[ ]0 an object no is released to the environ-
ment and then the computation halts.

5.5 Result

Theorem 1. SAT ∈ PMCDAM0(+es,mcmpout,−d,+n).

Proof. The family Π of P systems previously constructed verifies the following:

(a) The family Π is polynomially uniform by Turing machines because for each
n, p ∈ N, the rules of Π(〈n, p〉) of the family are recursively defined from
n, p ∈ N, and the amount of resources needed to build an element of the family
is of a polynomial order in n and p, as shown below:

– Size of the alphabet: 15n2p2

2 +3n2p+3n2+np2+ 35np
2 +5n+6p+6 ∈ Θ(n2p2).

– Initial number of membranes: 3 ∈ Θ(1).
– Initial number of objects in membranes: 3np+ n+ 3 ∈ Θ(np).

– Number of rules: 15n2p2

2 + 7n2p+ np2 + 33np
2 + 4n+ 6p+ 4 ∈ Θ(n2p2).

– Maximal number of objects involved in any rule: 3 ∈ Θ(1).
(b) The family Π is polynomially bounded with regard to (SAT, cod, s): indeed for

each instance ϕ of the SAT problem, any computation of the system Π(s(ϕ))
with input multiset cod(ϕ) takes at most 2n+ 4np+ 2p+ 5 computation steps.

(e) The family Π is sound with regard to (SAT, cod, s): indeed for each instance
ϕ of the SAT problem, if the computation of Π(s(ϕ)) + cod(ϕ) is an accepting
computation, then ϕ is satisfiable.

(f) The family Π is complete with regard to (SAT, cod, s): indeed, for each instance
ϕ of the SAT problem such that ϕ is satisfiable, any computation of Π(s(ϕ)) +
cod(ϕ) is an accepting computation.

Therefore, the family Π of P systems previously constructed solves the SAT prob-
lem in polynomial time and in a uniform way.

Corollary 1. NP ∪ co−NP ⊆ PMCDAM0(+es,mcmpout,−d,+n).

Proof. It suffices to notice that SAT problem is a NP-complete prob-
lem, SAT ∈ PMCDAM0(+es,mcmpout,−d,+n), and the complexity class
PMCDAM0(+es,mcmpout,−d,+n) is closed under polynomial-time reduction and un-
der complement.
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6 Conclusions

From a computational complexity point of view and assuming that P 6= NP, dis-
solution rules play a crucial role in classical polarizationless P systems with active
membranes where there is no cooperation, no changing labels neither priorities. In
that framework, PSPACE-complete problems can be solved in polynomial time
when dissolution rules and division for elementary and non-elementary membranes
are permitted. However, dissolution rules and division rules for non-elementary
membranes can be replaced by minimal cooperation (the left-hand side of the
rules has at most two objects) and minimal production (the right-hand side of
the rules has at most two objects) in object evolution rules in order to obtain the
computational efficiency [11].

In this paper, the ingredient of minimal cooperation and minimal production
in object evolution rules is replaced by minimal cooperation and minimal pro-
duction in send-out communication rules but we have need to use division for
non-elementary membranes. The new systems considered are able to efficiently
solve computational hard problems even by considering simple object evolution
rules, that is, these kind of rules only produce one object. An analogous result can
be obtained if minimal cooperation and minimal production are considered only
for send-in rules, instead of send-out rules ([12]).

The case where only elementary division is allowed, while keeping the restric-
tion that minimal cooperation and minimal production are used in communication
rules of the same direction (only out or only in) remains as future work, as well
as the case where division rules are replaced by separation rules.

What about the class SAM0(+es,mcmpout,−d,+n)? That is, what hap-
pens if we revisit the framework studied in this paper but replacing division
rules by separation rules? We can adapt the reasoning used in the proof of
P = PMCSAM0

bmc(−d,−n) (see [10]), and we can prove that by using families
of recognizer membrane systems belonging to this class, only problems in class P
can be solved in polynomial time.
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Cabarle, Francis George C., 161
Cienciala, Luděk, 95
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Maćıas-Ramos, Luis Felipe, 129, 147
Manzoni, Luca, 115
Mart́ınez-del-Amor, Miguel Á., 161, 215, 253
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