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Summary. We introduce new possibilities to control the application of rules based on
the preceding applications, which can be defined in a general way for (hierarchical) P
systems and the main known derivation modes. Computational completeness can be
obtained even for one-membrane P systems with non-cooperative rules and using both
activation and blocking of rules, especially for the set modes of derivation.

When we allow the application of rules to influence the application of rules in previous
derivation steps, applying a non-conservative semantics for what we consider to be a
derivation step, we can even “go beyond Turing”.

1 Introduction

Originally founded by Gheorghe Păun in 1998, see [30], membrane systems, now
known as P systems, are a model of computing based on the abstract notion of a
membrane which can be seen as a container delimiting a region containing objects
which are acted upon by the rewriting rules associated with the membranes. Quite
often, the objects are plain symbols coming from a finite alphabet, i.e., multisets
(for basic results on multiset computing, for example, see [27]), but P systems
operating on more complex objects (e.g., strings, arrays) are often considered,
too, for instance, see [18].

⋆ The work is supported by National Natural Science Foundation of China (61320106005,
61033003, and 61772214) and the Innovation Scientists and Technicians Troop Con-
struction Projects of Henan Province (154200510012).
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A comprehensive overview of different flavors of membrane systems and their
expressive power is given in the handbook which appeared in 2010, see [31]. For
a state of the art snapshot of the domain, we refer the reader to the P systems
website [34] as well as to the Bulletin of the International Membrane Computing
Society [33].

Nearly thirty years ago, the monograph on regulated rewriting by Jürgen Das-
sow and Gheorghe Păun [15] already gave a first comprehensive overview on many
concepts of regulated rewriting, especially for the string case. Yet as it turned
out later, many of the mechanisms considered there for guiding the application
of productions/rules can also be applied to other objects than strings, e.g., to n-
dimensional arrays [16]. As exhibited in [22], for comparing the generating power
of grammars working in the sequential derivation mode, many relations between
various regulating mechanisms can be established in a very general setting without
any reference to the underlying objects the rules are working on, using a general
model for graph-controlled, programmed, random-context, and ordered grammars
of arbitrary type based on the applicability of rules. Also in the field of P systems
[31, 34] where mainly multisets have been considered, such regulating mechanisms
were used, e.g., see [12].

Dynamic evolution of the set of available rules has been considered from the
very beginning of membrane computing. Already in 1999, generalized P systems
were introduced in [17]; in these systems the membranes, alongside the objects,
contain operators which act on these objects, while the P system itself acts on
the operators, thereby modifying the transformations which will be carried out
on the objects in the subsequent steps. Among further ideas on dynamic rules,
one may list rule creation [9], activators [1], inhibiting/deinhibiting rules [14],
andsymport/antiport of rules [13]. One of the more recent developments in this
direction are polymorphic P systems [5, 7, 26], in which rules are defined by pairs of
membranes, whose contents may be modified by moving objects in or out, as well
as P systems with randomized right-hand sides of rules [2, 3], where the right-hand
sides are chosen randomly and in different ways from the given set of rules.

We here follow an approach started to be elaborated in [4], where in the general
framework of sequential systems the applicability of rules is controlled by the
application of rules in the preceding derivation step(s). The application of a rule
in one derivation step may either activate some rules to be applied in the next
derivation step(s) or may block their application. We immediately observe that
the application of a rule requires its activation in a preceding step. A computation
may also take derivation steps without applying a rule as long as there are some
rules activated for future derivation steps. In contrast to the general framework
for control mechanisms as described in [22], we here are not dealing with the
applicability of rules itself but with the possible activation or blocking of rules by
the effective application of rules in preceding steps.
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In the following we will establish computational completeness results for various
kinds of one-membrane P systems (resembling multiset grammars) and several
derivation modes, using activation and blocking of rules to be applied in succeeding
derivation steps. We may even allow the application of rules to influence previous
derivation steps, but using a conservative semantics that considers derivations
to be consistent when such backwards activations or blockings of rules are not
changing the correctness of the derivation, we cannot “go beyond Turing”, which
on the other hand can be achieved by allowing such backwards information to
change past configurations by triggering the applications of newly activated rules
and by using a less conservative semantics looking at infinite computations on
finite multisets as in red-green “P automata” (for instance, see [19]).

Various possibilities of how one may “go beyond Turing” are discussed in [28],
for example, the definitions and results for red-green Turing machines can be found
there. In [8] the notion of red-green automata for register machines with input
strings given on an input tape (often also called counter automata) is introduced
and the concept of red-green P automata for several specific models of membrane
systems is explained. Via red-green counter automata, the results for acceptance
and recognizability of finite strings by red-green Turing machines are carried over
to red-green P automata. The basic idea of red-green automata is to distinguish
between two different sets of states (red and green states) and to consider infinite
runs of the automaton on finite input objects (strings, multisets); allowed to change
between red and green states more than once, red-green automata can recognize
more than the recursively enumerable sets (of strings, multisets), i.e., in that way
one can “go beyond Turing”. In the area of P systems, first attempts to do that
can be found in [11] and [32]. Computations with infinite words by P automata
were investigated in [24].

In [20, 21], infinite runs of P automata are considered, taking into account the
existence/non-existence of a recursive feature of the current sequence of configu-
rations. In that way, infinite sequences over {0, 1}, called “observer languages”,
are obtained where 1 indicates that the specific feature is fulfilled by the current
configuration and 0 indicates that this specific feature is not fulfilled. The recog-
nizing runs of red-green automata then correspond with ω-regular languages over
{0, 1} of a specific form ending with 1ω as observer languages. The special observer
language {0, 1}∗ {1}ω corresponds with the acceptance condition for P automata
called “partial adult halting”. This special acceptance variant for P automata with
infinite runs on finite multisets is motivated by an observation made for the evo-
lution of time lines described by P systems – at some moment, a specific part
(a succession of configurations) of the evolving time lines, for example, the part
describing time 0, shall not change any more.

We now may also consider variants of P systems with activation and blocking
of rules as well as infinite computations on a given finite multiset. Such an infinite
computation is called valid if each prefix of the computation becomes stable, i.e.,
neither the configuration itself nor the set of applicable rules changes any more.
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This less conservative semantics for activating and/or blocking the rules in preced-
ing derivation steps allows us to take the infinite sequence of stable configurations
obtained in this way as the final computation on the given input and – provided
it exists – we may just consider the result of the first computation step and thus
the second configuration to see whether the input has been accepted. Again this
can be seen as looking at a specific part of the evolving time lines, now the part
describing time 1, requiring that it should not change any more, but now also
requesting that the whole computation should converge.

In the following section, we recall some notions from formal language theory
as well as the main definitions of the general framework for P systems working
under different derivation modes, see [25]. Then we define the new concept of
activation and blocking of rules based on the applicability of rules within this
general framework of static P systems. In Section 4 we prove first results only using
activation of rules. Computational completeness results using both activation and
blocking of rules are established in Section 5. Then we extend our systems by
allowing activation and blocking of rules in previous derivation steps in Section 6,
and finally even discuss how to “go beyond Turing” in Section 7. A summary of
the results obtained in this paper and some future research topics extending the
notions and results considered in this paper are given in Section 8.

2 Definitions

After some preliminaries from formal language theory, we define our model for
hierarchical P systems in the general setting of this paper as well as the main
derivation modes considered in the area of membrane systems, see [25]. Then we
define the new variant of controlling rule applications in P systems by activation
and blocking of rules induced by the application of rules in a derivation step.

2.1 Preliminaries

The set of integers is denoted by Z, the set of non-negative integers by N0, and
the set of positive integers (natural numbers) by N. An alphabet V is a finite non-
empty set of abstract symbols. Given V , the free monoid generated by V under
the operation of concatenation is denoted by V ∗; the elements of V ∗ are called
strings, and the empty string is denoted by λ; V ∗ \ {λ} is denoted by V +. Let
{a1, . . . , an} be an arbitrary alphabet; the number of occurrences of a symbol
ai in x is denoted by |x|ai

; the Parikh vector associated with x with respect to

a1, . . . an is
(
|x|a1

, . . . , |x|an

)
. The Parikh image of a language L over {a1, . . . , an}

is the set of all Parikh vectors of strings in L, and we denote it by Ps (L). For a
family of languages FL, the family of Parikh images of languages in FL is denoted
by PsFL. The families of regular and recursively enumerable string languages are
denoted by REG and RE, respectively.
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A (finite) multiset over the (finite) alphabet V , V = {a1, . . . , an}, is a mapping
f : V −→ N0 and can be represented by any string x the Parikh vector of which
with respect to a1, . . . , an is (f (a1) , . . . , f (an)). The set of all finite multisets over
an alphabet V is denoted by V o.

For more details of formal language theory the reader is referred to the mono-
graphs and handbooks in this area [15, 31].

2.2 Register Machines

As a computationally complete model able to generate (accept) all sets in PsRE
we will use register machines:

A register machine is a construct M = (n,H,RM , p0, h) where n, n ≥ 1, is the
number of registers, H is the set of instruction labels, p0 is the start label, h is
the halting label (only used for the HALT instruction), and RM is a set of (labeled)
instructions being of one of the following forms:

• p : (ADD (r) , q, s) increments the value in register r and in a non-deterministic
way chooses to continue either with the instruction labeled by q or with the
instruction labeled by s,

• p : (SUB (r) , q, s) decrements the value in register r and continues the computa-
tion with the instruction labeled by q if the register was non-empty, otherwise
it continues with the instruction labeled by s;

• h : HALT halts the machine.

M is called deterministic if in all ADD-instructions p : (ADD (r) , q, s), it holds
that q = s; in this case we write p : (ADD (r) , q). Deterministic register machines
can accept all recursively enumerable sets of vectors of natural numbers with k
components using precisely k + 2 registers, see [29].

2.3 A General Model for Hierarchical P Systems

We first recall the main definitions of the general model for hierarchical P systems
and the basic derivation modes as defined, for example, in [25].

A (hierarchical) P system (with rules of type X) working in the derivation
mode δ is a construct

Π = (V, T, µ, w1, . . . , wm, R1, . . . , Rm, f,=⇒Π,δ) where

• V is the alphabet of objects;
• T ⊆ V is the alphabet of terminal objects;
• µ is the hierarchical membrane structure (a rooted tree of membranes) with

the membranes uniquely labeled by the numbers from 1 to m;
• wi ∈ V ∗, 1 ≤ i ≤ m, is the initial multiset in membrane i;
• Ri, 1 ≤ i ≤ m, is a finite set of rules of type X assigned to membrane i;
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• f is the label of the membrane from which the result of a computation has to
be taken from (in the generative case) or into which the initial multiset has to
be given in addition to wf (in the accepting case),

• =⇒Π,δ is the derivation relation under the derivation mode δ.

The symbol X in “rules of type X” may stand for “evolution”, “communication”,
“membrane evolution”, etc.

A configuration is a list of the contents of each cell; a sequence of configurations
C1, . . . , Ck is called a computation in the derivation mode δ if Ci=⇒Π,δCi+1 for
1 ≤ i < k. The derivation relation =⇒Π,δ is defined by the set of rules in Π and
the given derivation mode which determines the multiset of rules to be applied to
the multisets contained in each membrane.

The language generated by Π is the set of all terminal multisets which can
be obtained in the output membrane f starting from the initial configuration
C1 = (w1, . . . , wm) using the derivation mode δ in a halting computation, i.e.,

Lgen,δ (Π) =
{
C(f) ∈ T ◦ | C1

∗
=⇒Π,δ C ∧ ¬∃C ′ : C=⇒Π,δC

′
}
,

where C(f) stands for the multiset contained in the output membrane f of the
configuration C. The configuration C is halting, i.e., no further configuration C ′

can be derived from it.
The family of languages of multisets generated by P systems of type X with

at most n membranes in the derivation mode δ is denoted by Psgen,δOPn (X).

We also consider P systems as accepting mechanisms: in membrane f , we add
the input multiset w0 to wf in the initial configuration C1 = (w1, . . . , wm) thus
obtaining C1[w0] = (w1, . . . , wfw0, . . . , wm); the input multiset w0 is accepted if
there exists a halting computation in the derivation mode δ starting from C1[w0],
i.e.,

Lacc,δ (Π) =
{
w0 ∈ T ◦ | ∃C :

(
C1[w0]

∗
=⇒Π,δ C ∧ ¬∃C ′ : C=⇒Π,δC

′
)}

.

The family of languages of multisets accepted by P systems of type X with at
most n membranes in the derivation mode δ is denoted by Psacc,δOPn (X).

The set of all multisets of rules applicable in each membrane to a given configu-
ration can be restricted by imposing specific conditions, thus yielding the following
basic derivation modes (for example, see [25] for formal definitions):

• asynchronous mode (abbreviated asyn): at least one rule is applied;
• sequential mode (sequ): only one rule is applied;
• maximally parallel mode (max): a non-extendable multiset of rules is applied;
• maximally parallel mode with maximal number of rules (maxrules): a non-

extendable multiset of rules of maximal possible cardinality is applied;
• maximally parallel mode with maximal number of objects (maxobjects): a non-

extendable multiset of rules affecting as many objects as possible is applied.
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In [6], these derivation modes are restricted in such a way that each rule can
be applied at most once, thus yielding the set modes sasyn, smax, smaxrules, and
smaxobjects (the sequential mode is already a set mode by definition).

As many variants of P systems can be flattened to only one membrane, see
[23], throughout the paper we will assume the simplest membrane structure of
only one membrane which in effect reduces the P system to a multiset processing
mechanism, and, observing that f = 1, in what follows we will use the reduced
notation

Π = (V, T, w,R,=⇒Π,δ) .

For a one-membrane system, the definitions for the language generated by Π
and the language accepted by Π can be written in an easier way, i.e.,

Lgen,δ (Π) =
{
v ∈ T ◦ | w ∗

=⇒Π,δ v ∧ ¬∃z : v=⇒Π,δz
}

and

Lacc,δ (Π) =
{
w0 ∈ T ◦ | ∃v :

(
ww0

∗
=⇒Π,δ v ∧ ¬∃z : v=⇒Π,δz

)}
.

The family of languages of multisets generated by one-membrane P systems of
type X in the derivation mode δ is denoted by Psgen,δOP (X).

The family of languages of multisets accepted by one-membrane P systems of
type X in the derivation mode δ is denoted by Psacc,δOP (X).

3 P Systems with Activation and Blocking of Rules

We now define our new concept of regulating the application of rules at a specific
moment by activation and blocking relations for (generating) P systems. The def-
initions are only given for one-membrane P systems, as all the results proved later
are shown for such systems. On the other hand, the reader will notice that all the
definitions given below can easily be extended to any hierarchical P system with
an arbitrary membrane structure or to a tissue P system by using such a P system
as the underlying system Π.

A P system with activation and blocking of rules (an AB-P system for short)
of type X working in the derivation mode δ is a construct

ΠAB = (Π,L, fL, A,B, L1,=⇒ΠAB ,δ)

where Π = (V, T, w,R,=⇒Π,δ) is a P system of type X, L is a finite set of labels
with each label having assigned one rule from R by the function fL, A,B are finite
subsets of L×L× 2N, and L1 ⊆ L describes the set of rules which may be used in
the first derivation step. The elements of A and B are of the form (p, q, T ) with
p, q ∈ L and T being a finite subset of N; the elements of T indicate how many
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steps in the future the application of p activates (for A) or blocks (for B) the
application of the rule q.

Now let =⇒Π/P,δ, for any set of rules P , P ⊆ R, denote the derivation relation
obtained from =⇒Π,δ by reducing the set of available rules from R to P . Then a
sequence of multisets wi ∈ O, 0 ≤ i ≤ n, with w0 = w is called a valid derivation
of z = wn – we also write w0 =⇒ΠAB ,δ w1 =⇒ΠAB ,δ . . . wn – if and only if, with
Rk denoting the set of rules applied to wk in the k-th derivation step, for every i,
0 ≤ i < n, the following conditions hold true:

• either wi =⇒Π/Pi,δ wi+1, where Pi is the set of all rules r (identified by their
labels) such that there is a relation (rj , r, T ) ∈ A with i− j ∈ T , which means
that the application of a rule rj in the j-th derivation step has activated rule r
probably to be applied in the i-th derivation step, and there is no rule relation
(rj , r, T ) ∈ B such that i − j ∈ T , which means that the application of the
rule rj in the j-th derivation step would block rule r to be applied in the i-th
derivation step, or

• Pi is empty, i.e., no rule r is activated to be applied i-th derivation step or
every activated rule is blocked, too; in this case we take wi = wi−1 provided
there is still some rule activated to be applied later.

With this interpretation we see that A can be called the set of activating
rule relations and B the set of blocking rule relations. The role of L1 is to get a
derivation started by defining the rules to be applied in the first derivation step.

In the same way as for the original model of P systems we can define the
language generated/accepted by the AB-P system ΠAB , now using the derivation
relation =⇒ΠAB ,δ instead of =⇒Π,δ.

The families of languages of multisets generated/accepted by AB-P systems
of type X in the derivation mode δ (in only one membrane) is denoted by
Psγ,δOP (X,AB), γ ∈ {gen, acc}.

If the set B of blocking rules is empty, then the AB-P system is said to be a
P system with activation of rules (an A-P system for short) of type X; the cor-
responding sets of multisets generated/accepted as well as the respective families
of languages of multisets are denoted in the same way as for AB-P system by just
omitting the B. In this case we will usually not allow the second case in a deriva-
tion of the A-P system that in a derivation step no rule is activated to be applied.
Moreover, an A-P system is called an A1-P system if for all (p, q, T ) ∈ A we have
T = {1}, which means that the rules applied in one derivation step activate only
the rules which can be applied in the next step; in this case we only write (p, q)
instead of (p, q, T ).

4 Results Below PsRE

It is folklore that sequential P systems with non-cooperative rules (i.e., rules with
exactly one symbol in their left-hand side) can only generate semilinear sets, i.e.,
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PsREG. Our first example shows that using sequential A1-P systems with non-
cooperative rules we can generate non-semilinear sets.

Example 1. The non-semilinear set {anbm | 1 ≤ n, 1 ≤ m ≤ 2n} can be generated
by a sequential A1-P systems with non-cooperative rules (this type of rules is
abbreviated ncoo):

Π = (V = {a, b, A,B} , T = {a, b} , w = Ab,R,=⇒Π,sequ) ,

R = {A → a, b → BB,A → AA,B → b} ,
ΠAB = (Π,L, fL, A,B = ∅, L1,=⇒ΠAB ,sequ) ,

L = {pa, pb, pA, pB} ,
L1 = {pa, pA, pB} ,
fL = {(pa, A → a) , (pb, b → BB) , (pA, A → AA) , (pB , B → b)} ,
A = {(pa, pa) , (pb, pa) , (pb, pb) , (pb, pA) , (pA, pB) , (pB , pb) , (pB , pB)} .

The set A of activating rule relations is graphically illustrated in the following
figure which shows that this construction is rather similar to using graph control:

With every adding of one symbol A we may at most double the current number of
symbols b using the rules labeled pB and pb. At some moment instead of activating
pA by pb we may switch to pa whereafter only pa can be applied any more, yielding a
terminal multiset provided all symbols B have been derived to the terminal symbol
b before switching from pb to pa. ⊓⊔

In the following proofs we will simplify the notation for AB-P systems by
writing labeled rules as p : r instead of first listing all rules r in the underlying
P system Π and then in ΠAB listing the labels p as well as finally defining the
function fL by listing all pairs (p, r). In a shorter way, the whole AB-P system
then can be written as ΠAB = (V, T, w,R,A,B,L1,=⇒ΠAB ,δ) with R already
containing the labeled rules.

Corollary 1. PsREG ⊊ Psgen,sequOP (ncoo,A1)

Using the maximally parallel derivation mode, we can at least simulate ET0L-
systems:

Theorem 1. PsET0L ⊆ Psgen,maxOP (ncoo,A1)

Proof. (Sketch) Like in P systems with states, see [5], we can use new symbols
tk representing the n tables Tk of the extended tabled Lindenmayer system to
be simulated. Using a rule ti,j : ti → tj then indicates that after the application
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of table Ti the table Tj is to be used; hence, all rules in Tj as well as all rules
tj,k : tj → tk for all k and tj,e : tj → λ are activated by corresponding rule
relations in A. The rules tj,e : tj → λ do not activate any rule, which means that
after having applied this rule the computation in the A1-P system ends.

In order to start correctly, we use an initial symbol t0 and define L1 =
{t0,k : t0 → tk | 1 ≤ k ≤ n} which allows us to activate the rules for simulating
any table Tk. ⊓⊔

5 Computational Completeness Results

In this section we show that several simple variants of (one-membrane) P sys-
tems become computationally complete when using the control of activation and
blocking of rules.

5.1 Sequential P Systems With Non-Cooperative Rules

Theorem 2. PsRE = Psγ,sequOP (ncoo,AB) for γ ∈ {gen, acc}.

Proof. The proof idea is to show how to simulate register machines. For a given
register machine M = (n,H,RM , p0, h) we construct an equivalent AB-P system

ΠAB = (V, T, w,R,A,B,L1,=⇒ΠAB ,sequ)

in the following way:

For every label p ∈ H \ {h} we use labels
{
lp, l̂p, l̃p

}
for an ADD-instruction

and labels
{
lp, l

′
p, l

′′
p , l̂p, l̃p, l̄p,

}
for a SUB-instruction.

For the final instruction h : HALT we only use the rule lh : h → λ.

For any p, we also use the symbols p, p′, and for each register r its contents
is described by the number of symbols ar in (the configurations of) ΠAB . The
starting rule is given by L1 = {lp0

}.

An ADD-instruction p : (ADD (r) , q, s) is simulated by the following labeled
rules in R and rule relations in A:

1. lp : p → p′ar and (lp, l̄p), (lp, l̃p) ∈ A;

2. l̄p : p′ → q, l̃p : p′ → s and (l̄p, lq), (l̃p, ls) ∈ A.

A SUB-instruction p : (SUB (r) , q, s) is simulated by the following labeled rules
in R and rule relations in A and B:

1. lp : p → p′ and (lp, l̂p), (lp, l̃p, 3) ∈ A;

2. l̂p : ar → ar,p and (l̂p, l
′′
p ), (l̂p, l̄p, 2) ∈ A, (l̂p, l̃p, 2) ∈ B;

3. l′′p : ar,p → λ;

4. l̄p : p′ → q, l̃p : p′ → s and (l̄p, lq), (l̃p, ls) ∈ A.
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If the rule l̂p : ar → ar,p can be applied in the second step, two steps afterwards it

activates l̄p and at the same time blocks l̃p, which has been activated in the first

simulation step and thus will be applied if the register is empty, i.e., if l̂p cannot
be applied. ⊓⊔

5.2 P Systems Working in the smax-Mode

Theorem 3. PsRE = Psγ,δOP (ncoo,AB) for γ ∈ {gen, acc} and any set deriva-
tion mode δ from {smax, smaxrules, smaxobjects}.
Proof. Again we show how to simulate a register machine M = (n,H,RM , p0, h).
The equivalent AB-P system ΠAB = (V, T, w,R,A,B,L1,=⇒ΠAB ,δ) contains sim-
ilar ingredients as the one constructed in the proof of Theorem 2; yet the simulation
of SUB-instructions now allows us to only use activation and blocking of rules for
the next step using the possibility of having several rules applied in parallel:

1. lp : p → p̄ and (lp, l
′
p), (lp, l̂p) ∈ A;

2. l′p : p̄ → p′, l̂p : ar → ar,p and (l′p, l̃p), (l̂p, l̄p), (l̂p, l
′′
p ) ∈ A; (l̂p, l̃p) ∈ B;

3. l′′p : ar,p → λ, l̄p : p′ → q, l̃p : p′ → s and (l̄p, lq), (l̃p, ls) ∈ A.

If register r is empty, in the second step only l̃p is activated to be applied in the

third step; otherwise, the application of l̂p activates l̄p and at the same time blocks

l̃p. ⊓⊔

5.3 (Purely) Catalytic P Systems Working in the max-Mode

A typical variant of rules in P systems are so-called catalytic rules of the form
ca → cv, where c is a catalyst, a symbol which never evolves itself, but helps
another symbol a to evolve into a multiset v. The type of P systems using only
catalytic rules is called purely catalytic (abbreviated pcat); if both catalytic rules
and non-cooperative rules are allowed, we speak of a catalytic P system (abbrevi-
ated cat). In the description of the families of sets of multisets generated/accepted
by such (purely) catalytic P systems the maximal number of catalysts to be used
is indicated as a subscript, i.e., we write pcatn and catn.

The following result then is a consequence of the preceding proofs:

Corollary 2. For γ ∈ {gen, acc} and δ ∈ {max,maxrules,maxobjects},
PsRE = Psγ,δOP (pcat2, AB) and
PsRE = Psγ,δOP (cat1, AB).

Proof. Looking carefully into the proof of Theorem 3, we see that the only rules
where the set mode is needed are those of the form l̂p : ar → ar,p. Using one

catalyst c1, we can use the rules l̂p : c1ar → c1ar,p instead. The remaining details
of the proof of Theorem 3 can remain as they are for the catalytic case.

For the purely catalytic case, we need a second catalyst c2 for all the other rules,
e.g., we take lp : c2p → c2p

′ instead of lp : p → p′. These observations complete
the proof. ⊓⊔
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6 P Systems Using Backwards Activation and Blocking of
Rules

The definition of AB-P systems given in Section 3 can be extended by allowing the
relations in A and B to be of the form (rj , r, T ) with the finite set T also containing
negative integers. In that way rules can be activated or blocked in previous steps.

A conservative semantics for this extension is calling a derivation w0 =⇒ΠAB ,δ

w1 =⇒ΠAB ,δ . . . wn to be consistent if and only if the available sets of rules for
previous steps are not changed by having rules activated or blocked backwards in
time.

In that way, at least for computationally complete AB-P systems, no increase
in the computational power is obtained.

7 Going Beyond Turing

We are now discussing how to “go beyond Turing” by using a less conservative
semantics for activating and/or blocking the rules in preceding derivation steps.

The main idea is to consider infinite computations on given finite multisets –
compare this with the idea of red-green Turing machines, see [28], and of red-
green register machines, see [8] – and call such an infinite computation valid if
each prefix of the computation becomes stable, i.e., neither the configuration itself
nor the set of applicable rules changes any more. We consider the infinite sequence
of stable configurations obtained in this way as the final computation on the given
input; then – provided it exists – we just consider the stable first configuration
to see whether the input has been accepted. This idea can be used for all the
computationally complete variants of P systems with activation and blocking of
rules considered in this paper.

There are several ways to look at these infinite computations and the devel-
opment of the configurations, yet we have in mind the following, based on the
ideas elaborated in [20]: we consider the time line of evolutions of the configura-
tions where in each step every configuration evolves again according to the actual
activations and blockings of rules including the backwards signals.

One interesting construction principle which may be applied for simulating
red-green P systems/automata (starting in red) in all these variants can be the
following:

• in order to even capture sequential P systems with activation and blocking of
rules, we expand the times in the rule relations by a factor of two, hence, the
original computations will happen in each odd derivation step;

• we use two new symbols YES and NO; in the initial configuration we add the
new symbol NO;
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• each rule p changing the color from red to green activates the rule pY : NO →
Y ES by the backwards activation (p, pY ,−1) (no such rule is allowed to be
activated in L1);

• each rule p changing the color from green to red activates the rule pN : Y ES →
NO by the backwards activation (p, pN ,−1) (no such rule is allowed to be
activated in L1);

• the mind change (change of color) is propagated backwards by using the back-
wards activation relations (pN , pN ,−2) and (pY , pY ,−2), respectively;

• these rules pN and pY then are used “backwards” in every even derivation
step; the backwards propagation stops when one of these rules is applied in
the second derivation step (as a convention, backwards activation rules have
no effect any more if they activate a rule before time 1);

• if the computation of a red-green P automaton stabilizes in green, i.e., no
mind (color) change from green to red takes place any more, then, of course,
no changes in the second configuration occur any more, i.e., it has become
stable and therefore available for “reading out” the result of the computation.

We conclude that with every kind of P systems with activation and blocking
of rules which allows for the deterministic simulation of register machines we can
simulate the corresponding variant of red-green P automata which characterize
the Σ2-sets in the Arithmetical Hierarchy (see [10]), i.e., with such systems we at
least get Σ2; compare this with the results obtained in [20, 21].

It is interesting to mention that only “backwards” rule activations are used in
the algorithm described above, but no “backwards” rule blockings.

8 Conclusion

We have considered the concept of regulating the applicability of rules based on
the application of rules in the preceding step(s) within a very general model for
hierarchical P systems and for the main derivation modes. These concepts of ac-
tivation and blocking of rules can also be extended in a natural way to the many
variants of tissue P systems, i.e., networks of cells where a rule to be applied can
affect multiple cells at the same time.

Especially for the set modes of derivation, the resulting computational power
already reaches computational completeness even with non-cooperative rules and
using both activation and blocking of rules. Using a special semantics for activating
and/or blocking the rules in preceding derivation steps, we could even show how
to “go beyond Turing” with activating rules in preceding derivation steps. An
interesting topic for future research is to investigate how powerful such AB-P
systems are in generating ω-strings.
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