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Summary. P colonies are abstract computing devices modeling communities of very
simple reactive agents living and acting in a joint shared environment which is given with
a multiset of objects. Reaction systems were proposed as a computing device, components
of which represent basic chemical reactions that take place in shared environment given
with a set. Although P colonies operate with multisets of objects and reaction systems
work with sets, the two models can be related. In this paper, we construct a P colony
simulating interactive processes in a reaction system.

P colonies were introduced in [7] as a variant of very simple membrane systems
(P systems), inspired by so-called colonies of formal grammars. (For more infor-
mation on P systems the interested reader is referred to [9], for P colonies to [1],
and for grammatical model colony to [8].) A P colony is formed from agents and
their shared environment. Each agent is represented by a multiset of objects in a
membrane and the environment is given by multiset of objects as well. Agents are
equipped with programs composed from rules, the rules are applied to (multisets
of) objects. The number of objects inside each agent is set by definition and it is
usually a very small number - 1, 2 or 3. The environment of the P colony is used
as communication channel for agents. Through the environment, the agents are
able to affect the behavior of another agent.

The rules of the agents can be rewriting, communication or checking rules;
these three rule types were introduced in [7]. Rewriting rule a→ b allows agent to
rewrite (evolve) one object a to object b. Both objects are placed inside the agent.
Communication rule a ↔ b provides the possibility to exchange object c placed
inside the agent and object d in the environment. A checking rule is formed of two
rules r1, r2 which are of type rewriting or communication. Checking feature sets
some kind of priority between rules r1, r2. The agent tries to apply the first rule
and if it cannot be performed, the agent executes the second rule. The agents of P
colonies work in a maximally parallel manner, i.e., a maximal number of enabled
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agent performs one of its applicable program in parallel. An agent is enabled in
a computation step if it is able to apply one of its programs. If an agent is not
enabled, then its objects remain unchanged. For detailed information on operation
of P colonies, see [1].

Reaction systems (R systems, for short) are computational models of another
type. The model was introduced in [4] as a computing device, components of which
are a simile for basic chemical reactions. Roughly speaking, a reaction system is
composed of a finite set of objects that can be considered as chemicals and a finite
set of reactions. Each reaction is a triplet of sets: reactants, inhibitors and products.
Let T be a set of reactants. A reaction is applied if all reactants are present in
T , and there are no inhibitors; then reactants are replaced by the products. All
enabled reactions are applied in parallel. The final set of products is the union of
all single sets of products of each reaction which is enabled in T . The reader might
notice that a reaction can also be considered as an action of an agent.

It is easy to observe that P colonies and R systems have similarities: both of
them can be seen as multi-agent systems of very simple reactive agents. However,
there are significant differences between them. Namely, P colonies work with finite
multisets of objects and R systems operate with finite sets. Furthermore, in case
of P colonies, those objects that do not take part in any action at a computation
step, remain unchanged, but in case of R systems disappear from the available
objects.

It is an intriguing question whether or not P colonies and R systems can be
related. In this paper, we focus on construction of P colony that can simulate
interactive processes in given reaction system. The paper is structured as follows:
The second section is devoted to definitions and notations used in the paper.
The third section contains construction of P colony and the paper concludes with
possibilities of future work.

1 Definitions

Throughout the paper we assume the reader to be familiar with basics of formal
language theory. We introduce notions and notations used in the sequel.

We use N·RE to denote the family of recursively enumerable sets of natural
numbers and N to denote the set of natural numbers.

Σ is a notation for the alphabet. Let Σ∗ be set of all words over alphabet Σ
(including empty word ε). For the length of the word w ∈ Σ∗ we use notation |w|
and the number of occurrences of symbol a ∈ Σ in w is denoted by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets over the set of objects V
is denoted by V ∗. The set V ′ is called the support of M and denoted by supp(M)
if for all x ∈ V ′ f(x) 6= 0. The cardinality of M , denoted by card(M), is defined
by card(M) =

∑
a∈V f(a). Any multiset of objects M with the set of objects
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V = {ai, . . . an} can be represented as a string w over alphabet V with |w|ai
=

f(ai); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting the letters
can also represent M , and ε represents the empty multiset.

1.1 P Colonies

The original concept of a P colony was introduced in [7] and presented in a devel-
oped form in [6, 2].

Definition 1. A P colony of capacity k, k ≥ 1, is a construct
Π = (V, e, f, vE , B1, . . . , Bn), where

• V is an alphabet, its elements are called objects;
• e ∈ V is the basic (or environmental) object of the colony;
• f ∈ V is the final object of the colony;
• vE is a finite multiset over A− {e}, called the initial state (or initial content)

of the environment;
• Bi, 1 ≤ i ≤ n, are agents, where each agent Bi = (oi, Pi) is defined as follows:

– oi is a multiset over V consisting of k objects, the initial state (or the initial
content) of the agent;

– Pi = {pi,1, . . . , pi,ki
} is a finite set of programs, where each program consists

of k rules, which are in one of the following forms each:
· a→ b, a, b ∈ V , called an evolution rule;
· c↔ d, c, d ∈ V , called a communication rule;
· r1/r2, called a checking rule; r1, r2 are both evolution rules or both com-

munication rules.

We add some brief explanations to the components of the P colony.
The first type of rules associated to the programs of the agents, the evolution

rules, are of the form a→ b. This means that object a inside the agent is rewritten
to (evolved to be) object b.

The second type of rules, the communication rules, are of the form c ↔ d. If
a communication rule is performed, then object c inside the agent and object d
in the environment swap their location. Thus, after executing the rule, object d
appears inside the agent and object c is located in the environment.

The third type of rules are the checking rules. A checking rule is formed from
two rules of one of the two previous types. If a checking rule r1/r2 is performed,
then the rule r1 has higher priority to be executed over the rule r2. This means that
the agent checks whether or not rule r1 is applicable. If the rule can be executed,
then the agent must use this rule. If rule r1 cannot be applied, then the agent uses
rule r2.

We note that these types of rules are the basic ones; in some variants of P
colonies other types of rules have been also considered.

The program determines the activity of the agent: the agent can change its
state and/or the state of the environment.
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The environment is represented by a finite number (zero included) of copies
of non-environmental objects and a countably infinite copies of the environmental
object e.

In every step, each object inside an agent is affected by the execution of a pro-
gram. Depending on the rules in the program, the program execution may affect
the environment as well. This interaction between the agents and the environment
is the key factor of the functioning of the P colony.

An initial configuration of P colony is (n + 1)-tuple (o1, . . . , on, vE) of the
multisets of objects placed in P colony at the beginning of the computation, where
oi ( 1 ≤ i ≤ n ) is the content of the agent Bi and vE is the multiset of object in
the environment different from e. In general, the configuration of the P colony Π
is defined as (n+ 1)-tuple (w1, . . . , wn, wE), where wi represents all objects inside
of i-th agent, |wi| = c, 1 ≤ i ≤ n, wE ∈ (V − {e})∗ is composed by objects
different from e placed in the environment.

At each step of the (parallel) computation every agent attempts to find one
of its programs to use. If the number of applicable programs is higher than one,
the agent non-deterministically chooses one of them. At one step of computation,
the maximal possible number of agents have to be active, i.e., have to perform a
program.

By applying programs, the P colony passes from one configuration to another
configuration. A sequence of configurations started from the initial configuration is
called a computation. A configuration is halting if the P colony has no applicable
program. With halting computation the result is associated and it is the number
of copies of final object placed in the environment in halting configuration.

N (Π) = {|wE |f | (o1, . . . , on, vE)⇒∗ (w1, . . . , wn, wE)},

where (o1, . . . , on, vE) is the initial configuration, (w1, . . . , wn, wE) is the final con-
figuration, and ⇒∗ denotes reflexive and transitive closure of ⇒.

The number of agents in a given P colony is called the degree of Π; the maximal
number of programs of an agent of Π is called the height of Π and the number
of the objects inside an agent is the capacity of Π. The family of all sets of
numbers N(Π) computed as above by P colonies of capacity at most c ≥ 0,
degree at most n ≥ 0 and height at most h ≥ 0, using checking programs, and
working in the sequential mode is denoted by NPCOLseqK(c, n, h); whereas the
corresponding families of P colonies working in the maximally parallel way are
denoted by NPCOLparK(c, n, h). If one of the parameters n or h is not bounded,
then we replace it with ∗. If only P colonies using programs without checking rules
are considered, then we omit the K. If numerical parameter is unbounded, we
denote it by a ∗.

1.2 Reaction Systems

In the following we briefly summarize the basic notions concerning reaction systems
(R systems), introduced in [4].
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Let S be an alphabet (its elements are called molecules, or only symbols).

Definition 2. A reaction is a triple a = (R, I, P ) such that R, I, P are finite non-
empty sets with R ∩ I = ∅.

R is the reactant set of a,I is the inhibitor set of a, and P is the product set of
a; R, I, P are also denoted as Ra, Ia, Pa, respectively. We denote by rac(S) the set
of all reactions in S. The set S is usually called background set. In some papers
the definition is altered in such a way that set of inhibitors can be empty set.

Definition 3. A reaction system is an ordered pair A = (S,A), where S is a
background set and A is a nonempty finite subset of rac(S).

To describe the effect of a set of reactions on a state, we first define the effect
of a single reaction.

Definition 4. Let S be a background set, let X ⊆ S, and let a ∈ rac(S). Then a
is enabled by X, denoted by ena(X), if Ra ⊆ X and Ia∩X = ∅. The result of a on
X, denoted by resa(X), is defined by resa(X) = Pa if ena(X), and resa(X) = ∅.
otherwise.

The effect of a set of reactions on a state is cumulative, defined as follows.

Definition 5. Let S be a background set, let X ⊆ S, and let A ⊆ rac(S). The set
of reactions enabled by X is denoted by en(A,X) and it is defined by en(A,X) =
{a ∈ A | ena(X)}. The result of A on X, denoted by res(A,X), is defined by
res(A,X) = {resa(X) | a ∈ A}. The set of reactions that can generate X, denoted
by prod(A,X), is defined as prod(A,X) = {a ∈ A | Pa ⊆ X}.

The dynamic behavior of the reaction systems is captured by the notion of an
interactive process.

Definition 6. Let A = (S,A) be a reaction system. An interactive process in
A is a pair π = (γ, ϕ) of finite sequences such that γ = C0, C1, . . . , Cn−1, ϕ =
D1, . . . , Dn with n ≥ 1, where C0, . . . , Cn−1, D1, . . . , Dn ⊆ S, D1 = res(A,C0),
and Di = res(A,Di−1 ∪ Ci−1) for each 2 ≤ i ≤ n.

The sequences C0, . . . , Cn−1 and D1, . . . , Dn are the context and result se-
quences of π, respectively. Context C0 represents the initial state of π (the state
in which the interactive process is initiated), and the contexts C1, . . . , Cn−1 rep-
resent the influence of the environment to the computation. It should be noticed
that the context sequence γ = C0, C1, . . . , Cn−1 is described by a regular expres-
sion over S. The sequence sts(π) = W0, . . . ,Wn denotes the state sequence of π,
where W0 = C0 (the initial state), and Wi = Di ∪ Ci for all 1 ≤ i ≤ n. The
sequence act(π) = E0, . . . , En−1 of subsets of A such that Ei = en(A,Wi) for all
0 ≤ i ≤ n − 1 represents the activity sequence of π. Thus, the evolution can be
written as
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W0
E0−→W1

E1−→ · · · En−1−→ Wn.

If En = en(A,Wn) = ∅ then interactive process terminates.
One step of evolution – the evolution from state Wi to state Wi+1 can be seen

as transition mapping δ : 2S × 2S → 2S defined as

δ(Di, Ci) = Di+1

iff there exists (just one) set Ei ⊆ A such that Ei = en(A,Di ∪ Ci) and Di+1 =
res(Ei). For the first step of an evolution, there is transition mapping defined as
δ(∅, C0) = D1.

In some sources the set of inhibitors can be empty.

2 Dynamical Behavior: P Colonies versus R Systems

Let us examine the dynamical changes of the environment of a P colony in the
course of the computation. From this point of view we can find some similari-
ties between P colonies and R systems. For example, it is easy to see that the
change of the support of the environment (i.e. the support of the finite multiset
of non-enviromental symbols forming the environment), resembles to a reaction or
several reactions performed by a reaction system. The agents of the P colony can
exchange object(s) with the environment in a way similar to actions of reactions
in R systems. The exchange rule of the P colony must be enabled - reactants must
be included in the environment - and then products will occur in the environment
after performing reaction. We can also find some differences in behavior of these
two computing devices. The first difference is in the number of active components.
In R systems, all enabled reactions are executed while in P colonies, the number
of active agents is limited to the number of objects that are placed in the en-
vironment. Furthermore, objects not used in any action of the P colony remain
unchanged and available for further steps, but in case of reaction systems these ob-
jects disappear from the system. One other significant difference between P colony
and R system is that P colony operates with finite multisets and R system with
finite sets of objects.

In the following we construct a P colony which simulates the behavior of an
R system. Notice that a set as a notion is different from a multiset of objects
where each object appears only in (at most) one copy, however for our purposes
it is enough to define a P colony where objects of certain type appear in the
environment only in at most one copy during operation.

Thus, for given R system A = (S,A) and sequence of inputs i0, i1, . . . , in we
can construct P colony Π = (V, e, f, vE , B1, . . . , Bn) that simulates interactive
processes of A.

Instead of the formal statement and its proof, we provide the description of the
simulation steps and the main parts of the construction. In addition, we develop
an example that helps in the easier understanding.
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One step of an interactive process in A is simulated in five phases in Π:

1. Input Generation
2. Input multiplication
3. Simulation of reactions
4. Consuming phase

For each phase, we construct subset of agents that are responsible of executing
corresponding phase. Let k be the maximum of the number of reactants, l the
maximum of the number of inhibitors, and m the maximum number of products
associated with one reaction of the reactions given by R system A.

1. Generate Input

In this phase the objects (symbols) in the input set are generated. For this phase,
we construct agents called i-agents. They generate input symbols in one step.
Obviously, the number of i-agents is |S|. After generation of current input symbols,
i-agents enter a waiting phase, by generating auxiliary objects to wait for the exact
number of steps until then they generate another input. The set of programs of
i-agent corresponding to symbol aj is formed from following programs:〈

e↔ a′′j / e↔ e; i→ io
〉〈

a′′j → aj ; io → i′
〉

〈e→ aj ; io → i′o〉 if aj ∈ Ci; i ≥ 0
〈e→ e; io → i′o〉 if aj /∈ Ci; i ≥ 0
〈aj ↔ e; i′o → i′〉
〈e↔ e; i′o → i′〉

These programs are for generation of current input; the following programs are
for synchronization of agents.

〈e↔ F ; i′ → i′′〉
〈F → F1; i′′ → i′′〉
〈Fx → Fx+1; i′′ → i′′〉 for 1 ≤ x < 3 + 2k + 2m
〈Fy → D; i′′ → i′′D〉 y = 3 + 2k + 2m
〈D ↔ e; i′′ → iD〉
〈e→ Fy; iD → i′′〉 y = 5 + 2k + 2m+ 1
〈Fz → Fz+1; i′′ → i′′〉 5 + 2k + 2m+ 1 ≤ z < 2 + 2k + 2m+ 4|M |
〈Fu → E; i′′ → iE〉 u = 2 + 2k + 2m+ 4|A|
〈E ↔ e; iE → iE〉
〈e→ e; iE → (i+ 1)〉

To help the easier understanding, we demonstrate the following example.
Let A = (S,A) be reaction system with S = {a1, a2, a3} and

A = {r1 : ({a2}, ∅, {a2}); r2 : ({a1, a3}, {a2}, {a1, a2}); r3 : ({a3}, {a1}, {a1, a2})}.
Let C0 = {a1, a3} be the input. The i-agents are initialized as follows:
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0 : e 0

i-agent 1

e 0

i-agent 2

e 0

i-agent 3

env:

They execute the first program
〈
e↔ a′′j / e↔ e; i→ io

〉
.

1 : e 0o

i-agent 1

e 0o

i-agent 2

e 0o

i-agent 3

env:

In this configuration, the i-agents have applicable programs that can generate
objects corresponding to symbols from C0.

2 : a1 0′o

i-agent 1

e 0′o

i-agent 2

a3 0′o

i-agent 3

env:

After performing programs 〈aj ↔ e; 0′o → 0′〉 (i-agent 1 and 3) or 〈e↔ e; 0′o → 0′〉
(i-agent 2). All symbols in C0 are placed in the environment.

3 :

env: a1 a3

e 0′

i-agent 1

e 0′

i-agent 2

e 0′

i-agent 3

All three agents wait until object F appears in the environment.

2. Multiply Input

This phase is to multiply the input symbols to be ”accessible” for every agent that
simulates enabled reaction. Notice that in case of reaction systems all enabled
reactions should be performed in parallel. We construct a-agents that generate |A|
symbols that appear in the environment after the first phase. The programs for
this phase are:

〈aj ↔ aj / aj →W ; 1→ 1′〉
〈aj → aj ; 1′ → 2〉
〈aj ↔ e; i→ i′〉 〈W →W ; i→ i′〉 1 ≤ i ≤ |A| − 1
〈e→ aj ; i

′ → (i+ 1)〉 〈W →W ; i′ → (i+ 1)〉 1 ≤ i < |A| − 1
〈e→ aj ; i

′ → F 〉 〈W →W ; i′ → F 〉 i = |A| − 1
〈aj ↔ e; F ↔ e〉 〈W →W ; F ↔ e〉
〈e→ aj ; e→ 1〉 〈W → aj ; e→ 1〉
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The number of a-agents is |S|. In the previously given example the second
phase of simulation can be depicted as follows:

0 : a1 1

a-agent 1

a2 1

a-agent 2

a3 1

a-agent 3

env: a1 a3

1 : a1 1′

a-agent 1

W 1′

a-agent 2

a3 1′

a-agent 3

env: a1 a3

2 : a1 2

a-agent 1

W 2

a-agent 2

a3 2

a-agent 3

env: a1 a3

3 : e 2′

a-agent 1

W 2′

a-agent 2

e 2′

a-agent 3

env: a21 a
2
3

4 : a1 F

a-agent 1

W F

a-agent 2

a3 F

a-agent 3

env: a21 a
2
3

5 : e e

a-agent 1

W e

a-agent 2

e e

a-agent 3

env: a31 a
3
3 F

3

After generation of 3 copies of each kind of objects that appears in C0 all a-agents
stop working until object aj appears in the environment. When the copies of F
appear in the environment, i-agents consume them, i.e. import them from the
environment. From this step on, they rewrite their content y = 4 + 2k+ 2m times.
After y steps they are prepared to produce the next input.

3. Simulation of reactions

The task of the agents in this phase is to simulate the execution of reactions per-
formed in the same step of the interactive process of the R system. The agents
executing this task are called r-agents. Because they need some timing, there is
another group of agents called t-agents. In certain steps, these t-agents gener-
ate objects that trigger the action of r-agents. The r-agents look for inhibitors,
reactants and generate ”semi-products” (a′j) of reactions. After preparation, the
search for inhibitors can be done in one step. If there is at least one inhibitor in
the environment, then the reaction is not enabled. The r-agents have a program
for each inhibitor that allows the agent to consume this inhibitor. If there is no
inhibitor in the environment, then the agent has no applicable program. The num-
ber of r-agents is the same as the number of t-agents and it equals to |A|. Let
r : (Rr, Ir, Pr) is a reaction in A. The programs for search for inhibitors are:
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r-agents
a) search for inhibitors
〈e→ e; e↔ I〉
〈e↔ aj ; I → C〉 aj ∈ Ir
〈aj → e; C → e〉
〈C → C; e↔ T 〉
〈C → e; T → e〉
〈e↔ T ; I → R〉
〈T → e; R→ R′0〉

t-agents
a) activation of r-agents
〈e→ e; i→ (i+ 1)〉 0 ≤ i < 2|A|+ 1
〈e→ e; (2|A|+ 1)→ I〉
〈e→ T ′; I ↔ e〉
〈T ′ → T ; e↔ e〉
〈T ↔ e; e→ 0′〉
〈e→ e; i′ → (i+ 1)′〉 0 ≤ i′ ≤ 2k + 2m
〈e→ e; (2k + 2m)→ 0〉

Let us return to the previous example. A has three reactions:

r1 = ({a2}, ∅, {a2})
r2 = ({a1, a3}, {a2}, {a1, a2})
r3 = ({a3}, {a1}, {a1, a2})

and C0 = {a1, a3}. Then k = 2, m = 2 and there are three copies of a1 and three
copies of a3 in the environment of the P colony. The first configuration of this
phase is:

0 : e e

r-agent 1

e e

r-agent 2

e e

r-agent 3

e 7

t-agent 1

e 7

t-agent 2

e 7

t-agent 3

env: a31 a
3
3 F

3

1 : e e

r-agent 1

e e

r-agent 2

e e

r-agent 3

e I

t-agent 1

e I

t-agent 2

e I

t-agent 3

env: a31 a
3
3

The copies of object F were consumed by i-agents (see the third program of i-
agents in the first phase).

2 : e e

r-agent 1

e e

r-agent 2

e e

r-agent 3

T ′ e

t-agent 1

T ′ e

t-agent 2

T ′ e

t-agent 3

env: a31 a
3
3 I

3

3 : e I

r-agent 1

e I

r-agent 2

e I

r-agent 3

T e

t-agent 1

T e

t-agent 2

T e

t-agent 3

env: a31 a
3
3
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4 : e I

r-agent 1

e I

r-agent 2

a1 C

r-agent 3

e 0′

t-agent 1

e 0′

t-agent 2

e 0′

t-agent 3

env: a21 a
3
3 T

3

Reaction r1 has empty inhibitor set, so the corresponding r-agent has no program
to apply in this configuration. There is one inhibitor, a2, in inhibitor set of reaction
r2 and because a2 is not present in the environment, therefore r-agent 2 has no
applicable program in current configuration. Due to the presence of a1 in C0, the
third reaction is not enabled by C0 and r-agent 3 has one program to execute. The
agent consumes object a1 from the environment.

5 : T R

r-agent 1

T R

r-agent 2

e C

r-agent 3

e 1′

t-agent 1

e 1′

t-agent 2

e 1′

t-agent 3

env: a21 a
3
3 T

6 : e R′0

r-agent 1

e R′0

r-agent 2

C T

r-agent 3

e 2′

t-agent 1

e 2′

t-agent 2

e 2′

t-agent 3

env: a21 a
3
3

Those agents which have object R inside can continue the simulation of executing
reaction by search for reactants. All reactants must be present in the environment
to enable reaction. For every reaction we make a sequence of reactants (aj)

k
j=1 in

random order. Then we can construct programs for search for reactants phase:
r-agents
b) search for reactants〈
e↔ aj / e→ F ; R′j−1 → Rj

〉
aj ∈ Rr; 1 ≤ j ≤ |Rr|〈

aj → e; Rj → R′j
〉

aj ∈ Rr; 1 ≤ j ≤ |Rr|〈
F → F ; R′j−1 → Rj

〉
1 < j ≤ k〈

F → F ; Rj → R′j
〉

1 ≤ j ≤ k〈
e→ e; R′j−1 → Rj

〉
|Rr| < j ≤ k〈

e→ e; Rj → R′j
〉

|Rr| < j ≤ k
〈F → e; R′k → e〉
In the example P colony, we develop, the search for reactants is performed as

follows:
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0 : e R′0

r-agent 1

e R′0

r-agent 2

C T

r-agent 3

env: a21 a
3
3

1 : F R1

r-agent 1

a1 R1

r-agent 2

e e

r-agent 3

env: a1 a
3
3

2 : F R′1

r-agent 1

e R′1

r-agent 2

e e

r-agent 3

env: a1 a
3
3

3 : F R2

r-agent 1

a3 R2

r-agent 2

e e

r-agent 3

env: a1 a
2
3

4 : F R′2

r-agent 1

e R′2

r-agent 2

e e

r-agent 3

env: a1 a
2
3

Only r-agents in state (e,R′k) can continue the simulation. They consumed all
the reactants and because they pass the phase a) the corresponding reaction is
enabled by Wi. In phase of products generation the r-agents will generate and put
into environment ”semi-products”, i.e. objects corresponding to products. For this
purpose, we also need a sequence of products for each reaction.

r-agents
c) generation of products
〈e→ a′1; R′k → P1〉〈
e→ a′j ; P

′
j−1 → Pj

〉
aj ∈ Pr; 1 < j ≤ |Pr|〈

e↔ a′j ; Pj → P ′j
〉

aj ∈ Pr; 1 ≤ j ≤ |Pr|〈
e→ e; P ′j−1 → Pj

〉
|Pr| < j ≤ m〈

e→ e; Pj → P ′j
〉

|Pr| < j ≤ m
〈e→ e; P ′m → e〉

0 : F R′2

r-agent 1

e R′2

r-agent 2

e e

r-agent 3

env: a1 a
2
3

1 : e e

r-agent 1

a′1 P1

r-agent 2

e e

r-agent 3

env: a1 a
2
3
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2 : e e

r-agent 1

e P ′1

r-agent 2

e e

r-agent 3

env: a′1 a1 a
2
3

3 : e e

r-agent 1

a′2 P2

r-agent 2

e e

r-agent 3

env: a′1 a1 a
2
3

4 : e e

r-agent 1

e P ′2

r-agent 2

e e

r-agent 3

env: a′1 a
′
2 a1 a

2
3

3 : e e

r-agent 1

e e

r-agent 2

e e

r-agent 3

env: a′1 a
′
2 a1 a

2
3

4. Consuming phase

In this phase all unused over-lined objects are consumed by c-agents as well as
copies of ”semi-products”. Only one copy of semi-product stays in the environment.
The number of c-agents is |S| and this phase takes at most 4|A| steps.
〈e↔ D; e→ e〉

〈
e↔ aj / e↔ a′j ; D → a′′j

〉〈
aj → e; a′′j → a′′j

〉 〈
e↔ aj / e↔ a′j ; a

′′
j → a′′j

〉〈
a′j → a′j ; a

′′
j ↔ e

〉 〈
e↔ a′j / e↔ e; a′j → e

〉
〈e↔ E; e→ e〉 〈D → e; e↔ E〉〈
a′′j → e; e↔ E

〉
〈E → e; e→ e〉

0 : e e

c-agent 1

e e

c-agent 2

e e

c-agent 3

e 0D

i-agent 1

e 0D

i-agent 2

e 0D

i-agent 3

env: a′1 a
′
2 a1 a

2
3 D

3

1 : D e

c-agent 1

D e

c-agent 2

D e

c-agent 3

F13 0′′

i-agent 1

F13 0′′

i-agent 2

F13 0′′

i-agent 3

env: a′1 a
′
2 a1 a

2
3

2 : a1 a
′′
1

c-agent 1

a′2 a
′′
2

c-agent 2

a3 a
′′
3

c-agent 3

env: a′1 a3

3 : e a′′1

c-agent 1

a′2 e

c-agent 2

e a′′3

c-agent 3

env: a′1 a
′′
2 a3
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4 : a′1 a
′′
1

c-agent 1

e e

c-agent 2

a3 a
′′
3

c-agent 3

env: a′′2

5 : a′1 e

c-agent 1

e e

c-agent 2

e a′′3

c-agent 3

env: a′′1 a
′′
2

6 : e e

c-agent 1

e e

c-agent 2

e a′′3

c-agent 3

env: a′′1 a
′′
2

· · · 9 : e e

c-agent 1

e e

c-agent 2

e a′′3

c-agent 3

env: a′′1 a
′′
2

10 : e e

c-agent 1

e e

c-agent 2

e a′′3

c-agent 3

F22 0′′

i-agent 1

F22 0′′

i-agent 2

F22 0′′

i-agent 3

env: a′′1 a
′′
2

11 : e e

c-agent 1

e e

c-agent 2

e a′′3

c-agent 3

E 0E

i-agent 1

E 0E

i-agent 2

E 0E

i-agent 3

env: a′′1 a
′′
2

12 : e e

c-agent 1

e e

c-agent 2

e a′′3

c-agent 3

e 0E

i-agent 1

e 0E

i-agent 2

e 0E

i-agent 3

env: a′′1 a
′′
2 E

3

13 : E e

c-agent 1

E e

c-agent 2

E a′′3

c-agent 3

e 1

i-agent 1

e 1

i-agent 2

e 1

i-agent 3

env: a′′1 a
′′
2

In this configuration, c-agents rewrite all objects inside them to environmental
objects. Simulation can continue with the first phase - generation of input. The
i-agents can consume objects of a type a′′j and they put into the environment
objects aj and objects of the next input (if they are not included in products of
previous step).
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3 Conclusions

In this paper we presented the result obtained by examining P colonies with con-
nection to R systems. In future research we plan further investigation of P colonies
that resemble reaction systems in terms of shared environment and computation.
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