
Extracting Parallelism in Simulation Algorithms
for PDP systems

Miguel Á. Mart́ınez-del-Amor, Andrés Doncel-Ramı́rez, David Orellana-Mart́ın,
Ignacio Pérez-Hurtado

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: mdelamor@us.es, andrestp95@gmail.com, dorellana@us.es, perezh@us.es

Summary. Population Dynamics P systems is a modelling framework that have
been used successfully for some important real ecosystems. This model is inherently
probabilistic, and the scheme of rules is very flexible, allowing even cooperation between
membranes. Thus, its simulation has been a challenge in the past years, leading to several
simulation algorithms. The latest one, which has been proved to be the most accurate
so far, is DCBA. The main drawback of DCBA is its complexity, requiring a very large
table to handle all competitions. In this paper, we discuss two strategies to decrease
this table, allowing a more lightweight version of DCBA that can be used in parallel
implementations.

Keywords: Membrane Computing, Population Dynamics, Parallel simulation

1 Introduction

Some very important real ecosystems have been modelled using the formal
framework called Population Dynamics P (PDP) systems [8, 6]. This framework
consists of a multienvironment P system model [11] that contains one single cell-like
P system within the nodes (environments) of a directed graph. Each of the cell-
like P systems have the same skeleton (membrane tree and evolution rules). Thus,
PDP systems have to kinds of rules: evolution (skeleton) and communication rules.
Moreover, PDP systems is a probabilistic model, in the sense that probabilities are
associated with the rules. Skeleton rules may have associated different probabilities
regarded the environment where they are located.

The very flexible pattern of skeleton rules, where object cooperation can
happen even between membranes (the active membrane and its parent), increases
the complexity when designing simulation algorithms. For this reason, several

80 MA Mart́ınez-del-Amor et al.

approaches have been made: BBB (Binomial Block Based), DNDP (Direct Non
Deterministic distribution with Probabilities) and DCBA (Direct distribution
based on Consistent Blocks Algorithm) [13, 3, 5]. These algorithms are designed to
tackled specifically the competition for resources that can happen in the models.
Specifically, different rules having overlapping but different left-hand sides compete
for objects in the multisets.

DCBA is the algorithm that has been demonstrated to show more accurate
results, according to the way the formal framework is employed for ecosystem
modelling [3]. Moreover, it is highly parallelizable, as shown in the GPU
implementation called ABCD-GPU [12, 15]. However, the algorithm has several
drawbacks:

1. it consists of four phases to simulate just one computation step;
2. the first phase uses a distribution table that does not scale well when increasing

the amount of rules and objects in the alphabet;
3. the second phase is inherently sequential;

In this paper, we discuss two different strategies to cope with the second
drawback mentioned above: adaptative DCBA and µ-DCBA (or DCBA with
partitions of rules). The former, already published in [16], is a solution where
the designer provides high-level information of the model, such as rule modules,
so that the simulator knows that DCBA must be applied locally to each module.
The latter is a novel solution, still unpublished, where the rule competition is pre-
computed (before starting the simulation), so that DCBA is applied locally to each
partition. These two methods were first mentioned in [12], but we extend these
ideas here.

The rest of the paper is structured as follows: Section 2 briefly recall the
model of PDP systems and Section 3 its definitions for DCBA; Section 4 describes
the concept of adaptative simulator and how it is applied to DCBA; Section 5
introduces the idea of µ-DCBA; and finally, Section 6 ends the document with
conclusions and future work.

2 Population Dynamics P systems

Next, we recall the formal definition of a PDP system. We also provide some
concepts required for DCBA, and the main loop of the algorithm. More information
than the one provided here can be found in [7, 9, 3].

Definition 1. A Population Dynamics P system of degree (q,m) with q ≥ 1,
m ≥ 1, and taking T ≥ 1 time units, is a tuple

Π = (G,Γ,Σ, T,RE , µ,R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mij : 1 ≤ i ≤ q, 1 ≤ j ≤ m})

where:

Extracting Parallelism in Simulation Algorithms for PDP systems 81

• G = (V, S) is a directed graph. Let the vertices be V = {e1, . . . , em}, also called
environments;

• Γ is the working alphabet and Σ $ Γ is an alphabet representing the only
objects that can be present in the environments;

• T is a natural number that represents the simulation time of the system;
• RE is a finite set containing the so called communication rules, that send objects

between environments. They are of the form

(x)ej
p−−−→(y1)ej1 · · · (yh)ejh

where x, y1, . . . , yh ∈ Σ, (ej , ejl) ∈ S (1 ≤ l ≤ h) and p is a computable function
from {1, . . . , T} to [0, 1]. By default and for simplicity, we assume p = 1, in
case it is not specified for a rule. Moreover, for each rule of this form, the
following holds: (ej , ejh) ∈ S. These functions verify the following:
– For each ej ∈ V and x ∈ Σ, the sum of functions associated with the rules

whose left-hand side is (x)ej , is exactly 1.
• µ is a membrane structure with q membranes injectively labelled by 1, . . . , q.

The skin membrane is labelled by 1. An electrical charge from the set EC =
{0,+,−} is also associated with each membrane.

• R is a finite set of evolution (skeleton) rules of the form

u[v]αi → u′[v′]α
′

i

where u, v, u′, v′ ∈ Γ ∗, i (1 ≤ i ≤ q), u + v 6= λ and α, α′ ∈ {0,+,−}. The
following restriction must hold:
– If (x)ej is the left-hand side of a rule from RE, then none of the rules of R

has a left-hand side of the form u[v]α1 , for any u, v ∈ Γ ∗ and α ∈ {0,+,−},
having x ∈ u.

• For each r ∈ R and for each j (1 ≤ j ≤ m), the function fr,j : {1, . . . , T} −→
[0, 1] is computable. These functions verify the following:
– For each u, v ∈ Γ ∗, i (1 ≤ i ≤ q), α, α′ ∈ {0,+,−} and j (1 ≤ j ≤ m)

the sum of functions associated with j and the set of rules whose left-hand
side is u[v]αi and whose right-hand side has polarization α′, is the constant
function 1.

• For each j, (1 ≤ j ≤ m), M1j , . . . ,Mqj are strings over Γ , describing the
multisets of objects initially placed within the regions in environment ej (also
known as initial configuration).

In other words, a PDP system consists of m environments e1, . . . , em linked
between them by the edges from the directed graph G. Each environment ej
contains a P system, Πj = (Γ, µ,RΠj

,M0j , . . .Mq,j), of degree q, where every
rule r ∈ R has a computable function fr,j (specific for environment j) associated
with it.

A configuration of the system at an instant t is a tuple of multisets of objects
present in the m environments and at each of the regions of each Πj , together with
the polarizations of the membranes in each P system. At the initial configuration

82 MA Mart́ınez-del-Amor et al.

of the system we assume that all environments are empty and all membranes have
a neutral polarization. As it is usual in cell-like P systems, we also assume that a
global clock exists which synchronizes all environments.

The P system can pass from one configuration to the next one by using the rules
from

⋃m
j=1RΠj ∪RE as follows: at each transition step, the rules to be applied are

selected according to the probabilities assigned to them, and all applicable rules
are simultaneously applied in a maximal way (i.e. no more rules can be further
applicable). For rules in RΠj

, the charge of the (active) membrane will be changed.
In this sense, the consistency of charges must hold: in order to apply several rules
of RΠj simultaneously to the same membrane, all the rules must have the same
electrical charge on their right-hand side.

When a communication rule (x)ej
p−−−→(y1)ej1 . . . (yh)ejh between environ-

ments is applied, object x passes from ej to ej1 , . . . , ejh possibly modified into
objects y1, . . . , yh respectively. At any moment t (1 ≤ t ≤ T) for each object
x in environment ej , if there exist communication rules whose left-hand side is
(x)ej , then one of these rules will be applied. If more than one communication rule
can be applied to an object, the system selects one randomly, according to their
probability which is given by p(t).

3 Simulation algorithms

The simulation algorithms for PDP systems called BBB and DCBA are based on
the grouping of rules into blocks. These groups are constructed by looking the left-
hand side. Note that rules having the same left-hand side must have associated
probabilities summing 1. Specifically, DCBA works using a refined definition of
block, called consistent block, as shown in Definition 2. DNDP does not use the
concept of blocks, but it selects rules by a random loop instead.

Definition 2. Rules from R and RE are classified into consistent blocks by either
of the following:

a. the rule block associated with (i, α, α′, u, v) is Bi,α,α′,u,v = {r ∈ R : LHS(r) =
(i, α, u, v) ∧ charge(RHS(r)) = α′};

b. the rule block associated with (ej , x) is Bej ,x = {r ∈ RE : LHS(r) = (ej , x)}.

It is important to remark that the selection of rules in BBB and DCBA relies
always first on selecting blocks, calculating a multinomial random variate, and
therefore obtaining a selection of rules within each block. In this sense, we can
say that rules within a block will not compete among objects when using BBB
and DCBA, because they are selected altogether. This, again, does not hold in
DNDP, where rules are selected individually according to the probabilities. Block
competition will be defined later in Definition 3.

DCBA tackles the resource competition issue by performing a proportional
distribution of objects among competing blocks. This is done by using the
distribution table, which is a system-wide time having blocks per columns, and

Extracting Parallelism in Simulation Algorithms for PDP systems 83

pairs (object,region) per rows. Algorithm 1 shows a summary of the algorithm,
which can be depicted in [3]. It can be seen that, as usual, each loop iteration
is made by two stages: selection and execution. Selection stage consists of three
phases: Phase 1 distributes objects to the blocks in a certain proportional way,
Phase 2 ensures maximality by checking the maximal number of applications of
each block, and Phase 3 translates from block to rule applications by calculating
random numbers using a multinomial distribution. Finally, execution stage (or
Phase 4) generates the right-hand side of rules.

Algorithm 1 DCBA MAIN LOOP

Require: A PDP system Π of degree (q,m), T ≥ 1 (time units), A ≥ 1 (accuracy
parameter), and an initial configuration C0.

1: (T) ← INITIALIZATION (Π) . (Initializes the distribution table)
2: for t ← 0 to T − 1 do . (For each transition step)
3: SELECTION: . (Selection of rules, subtracting their left-hand sides)
4: Bsel ← ∅, Rsel ← ∅
5: (T t, C′

t, Bsel) ← PHASE 1 (Π,A,Ct, T) . (Distribution of objects)
6: (C′

t, Bsel) ← PHASE 2 (Π,C′
t, Bsel, T t) . (Ensure Maximality)

7: (Rsel) ← PHASE 3 (Π,Bsel) . (Probabilistic distribution)
8: EXECUTION: . (Execution of rules, adding their right-hand sides)
9: (Ct+1) ← PHASE 4 (Π,C′

t, Rsel)
10: end for

It is important to remark that the stages of DCBA can be performed
independently (and hence, in parallel) to each environment [14, 15]. However,
we need a synchronization point between selection and execution stages, because
communication rules might generate objects in different environments. This way,
the main loop of DCBA can be rewritten to the form in Algorithm 2.

We can finally identify two main bottlenecks in the simulation algorithms. The
first one is tackled by the adaptative

1. All algorithms (DCBA, BBB and DNDP) need to go through every defined
rule in the system at every transition step, in order to check if it is applicable.
Indeed, there is no way to know in advance which rules can be applicable in
each time step.

2. DCBA is specifically designed to cope with block competitions in an accurate
way, but it has to assume that all rules can have cross competitions (rule a
competes with rule b, and rule b with rule c, then rules a, b and c must agree
on the objects to consume).

4 Adaptative DCBA

The idea of adaptative simulators was introduced and analysed in [16]. It is inspired
in the way directives work in common programming languages. They are special

84 MA Mart́ınez-del-Amor et al.

Algorithm 2 DCBA MAIN LOOP FOR ENVIRONMENTS

Require: A PDP system Π of degree (q,m), T ≥ 1 (time units), A ≥ 1 (accuracy
parameter), and an initial configuration C0.

1: for j ← 1 to m do . (For each environment j)
2: (Tj) ← INITIALIZATION (j,Π) . (Initializes the table for environment j)
3: end for
4: for t ← 0 to T − 1 do . (For each transition step)
5: for j ← 1 to m do . (For each environment j)
6: SELECTION: . (Selection of rules for environment j)
7: Bj

sel ← ∅, R
j
sel ← ∅

8: (T t
j , C

′
t, B

j
sel) ← PHASE 1 (j,Π,A,Ct, Tj) . (Distribution of objects)

9: (C′
t, B

j
sel) ← PHASE 2 (j,Π,C′

t, B
j
sel, T

t
j) . (Ensure Maximality)

10: (Rj
sel) ← PHASE 3 (j,Π,Bj

sel) . (Probabilistic distribution)
11: end for
12: for j ← 1 to m do . (For each environment j)
13: EXECUTION: . (Execution of rules for environment j)
14: (Ct+1) ← PHASE 4 (j,Π,C′

t, R
j
sel)

15: end for
16: end for

syntactic elements that tell extra information to the compiler, allowing to better
adapt the code for some purposes if the compiler accepts it (e.g. in OpenMP, one
call easily ask to parallelize the iterations of a loop), or just processing the code
dismissing that information (the code is still valid without the directives). This
way, a P system model designer can also provide very useful information to the
simulator, rather than just the syntactic and/or semantic elements of the P system
to simulate. For instance, P system models are usually designed bearing in mind a
global algorithmic scheme, where the computation of the P system is subdivided
into stages of specific purposes (e.g. in SAT solutions for active membranes, there
are stages for generating membranes, other stages for check-in solutions, etc.).

Specifically in PDP systems, ecosystem modellers often use algorithmic schemes
for their models [7]. This is done by first defining a cycle, which corresponds to a
certain time in the simulated ecosystem (e.g. one year). A cycle in the model is
a fixed amount of transition steps where a sequence of modules take place. These
modules reproduces certain processes such as reproduction of species, feeding,
migration, etc. Moreover, these modules consist of certain rules that are carefully
designed to model the corresponding process. Therefore, we can say that somehow,
the model designer already knows which rules can be executed in each time step.
Thus, if they are able to provide that information in form of a directive-like syntax,
the simulator can take advantage of this to dismiss rules automatically at each step.

In [16], the ABCD-GPU simulator was turned into adaptative. First, the model
designer is able to provide the information of the modules they are defining by
using the new P-Lingua 5 software [17]. This new version now includes new syntax
elements called features. They are written as @featureName = featureValue, and

Extracting Parallelism in Simulation Algorithms for PDP systems 85

can be defined globally (for the whole system) or locally (for individual rules).
ABCD-GPU takes this information to organize the rules by modules. Of course, if
the simulator does not recognize the information provided by the features, it can
proceed and simulate the system without problems.

The simulator also pre-computes which modules are active in each step within
the cycle, so that it can easily access the rules that might be applicable at each
transition step. Furthermore, a parallel implementation can harness this to reach
more parallelism, specifically between parallel modules that can be active at certain
steps. This design helped to improve the performance by 2.5x extra when using a
P100 GPU [16].

As for environments, DCBA’s stages can be performed independently per active
module, but it requires a synchronization point. Algorithm 3 shows how it can be
re-defined to handle modules and environments. There two variables for steps: t is
the global time step of the simulation, and s is the step within a cycle. After reading
the information provided by the model designer along with the PDP system (e.g.
with P-Lingua 5), we get a map to associate rules to each module, and another to
know which modules are active in each step of the cycle. Finally, we also provide
the total amount of modules d.

5 DCBA with partitions of rules

As mentioned above, DCBA assumes that all blocks can compete for objects.
These competitions can make dependencies between blocks that are encoded in
the transition table, which takes care of distributing the resources (objects) to
the blocks that can be applied. Later on, rules within blocks will compute its
applications using a multinomial random variate. In order to decrease the size of
the distribution table, we can pre-calculate which blocks are actually competing
for resources one each other. This kind of problems have been already tackled in
the literature [1, 19]. Thus, in this paper we propose a similar concept, but adapted
for PDP systems, where rules have a more flexible pattern. If we focus in DCBA,
we can formally define the condition of block competition as shown in Definition
3.

Definition 3. Two consistent blocks B1
i1,α1,α′

1,u1,v1
and B2

i2,α2,α′
2,u2,v2

compete for

objects when both the following holds:

(a) The two blocks are mutually consistent. That is, if i1 = i2 ∧ α1 = α2 then
α′1 = α′2;

(b) Their left-hand sides overlap. That is, either of the following conditions hold:
• If i1 = i2 and α1 = α2 then u1 ∩ u2 6= ∅ or v1 ∩ v2 6= ∅;
• If i1 6= i2 but i1 is the parent membrane of i2, then v2 ∩ u1 6= ∅, or i2 is

the parent membrane of i1, then u2 ∩ v1 6= ∅.

It is important to remark that blocks from communication rules do not compete
with each other, nor with blocks from evolution rules (see the definition in

86 MA Mart́ınez-del-Amor et al.

Algorithm 3 DCBA MAIN LOOP FOR ENVIRONMENTS AND MODULES

Require: A PDP system Π of degree (q,m), T ≥ 1 (time units), A ≥ 1 (accuracy
parameter), an initial configuration C0, the number of time units per cycle c, the
amount of modules d, a structure mapping the rules and blocks per module MR, and
another structure mapping which module is active at each step in the cycle MS.

1: for j ← 1 to m do . (For each environment j)
2: for k ← 1 to d do . (For each module k)
3: (Tj,k) ← INITIALIZATION (j,Π,k,MR) . (Creates the table for

environment j and module k)
4: end for
5: end for
6: t ← 0
7: while t < T do . (For each transition step)
8: for t ← t to t+ c− 1 do . (Looping the transition steps inside a cycle)
9: s ← t mod c . (The step within the cycle)

10: for j ← 1 to m do . (For each environment j)
11: for k ← 1 to d do . (For each module k)
12: SELECTION: . (Selection for environment j and module k)
13: if MS[k, s] then . (If module k is active in step s)
14: Bj,k

sel ← ∅, R
j,k
sel ← ∅

15: (T t
j,k, C

′
t, B

j,k
sel) ← PHASE 1 (j,Π,A,Ct, Tj,k, k,MR)

16: (C′
t, B

j,k
sel) ← PHASE 2 (j,Π,C′

t, B
j,k
sel , T

t
j,k, k,MR)

17: (Rj,k
sel) ← PHASE 3 (j,Π,Bj,k

sel , k,MR)
18: end if
19: end for
20: end for
21: for j ← 1 to m do . (For each environment j)
22: for k ← 1 to d do . (For each module k)
23: EXECUTION: . (Execution for environment j and module k)
24: if MS[k, s] then . (If module k is active in step s)
25: (Ct+1) ← PHASE 4 (j,Π,C′

t, R
j,k
sel, k,MR)

26: end if
27: end for
28: end for
29: end for
30: end while

Section 2). Let us represent the competition relationship as an undirected graph
Gc = (Vc, Ec), where Vc is the set of all rule blocks and E is the set of edges
connecting the blocks that directly compete one with each other. We will therefore
say that two blocks will compete, directly or indirectly, if there exists a path
between them. Thus, we can calculate partitions of competitions from the set of
rule blocks as depicted in Definition 4.

Definition 4. Given a set of rule blocks V = {B1, . . . , Bk}, a partition of
competition is a partition of the set V , P = {P1, . . . , Pl}, where the following holds:

Extracting Parallelism in Simulation Algorithms for PDP systems 87

a block Bi belongs to the set Pi if and only if it competes, directly or indirectly,
with the rest of blocks in Ci, and do not compete with any of the rule blocks form
the rest of sets in P . The union of the sets in P is V.

Specifically, communication rule blocks form partitions with just one element.
It is easy to compute the partitions of competitions from the set of rule blocks by
calculating the connected components in the graph Gc. After having this, we can
redefine the DCBA algorithm to be executed locally to each partition, if it contains
more than one elements (also known as µ-DCBA). Generally, we can re-structure
the algorithm as shown in Algorithm 4.

Algorithm 4 DCBA MAIN LOOP FOR ENVIRONMENTS AND PARTITIONS

Require: A PDP system Π of degree (q,m), T ≥ 1 (time units), A ≥ 1 (accuracy
parameter), and an initial configuration C0.

1: (p, P) ← PARTITIONS (Π) . (Compute the p partitions of rules in the map P)
2: for j ← 1 to m do . (For each environment j)
3: for i ← 1 to p do . (For each partition i)
4: (Tj,i) ← INITIALIZATION (j,Π,i,P) . (The table for environment j and

partition i)
5: end for
6: end for
7: for t ← 0 to T − 1 do . (For each transition step)
8: for j ← 1 to m do . (For each environment j)
9: for i ← 1 to p do . (For each partition i)

10: SELECTION: . (Selection for environment j and partition i)
11: Bj,i

sel ← ∅, R
j,i
sel ← ∅

12: (T t
j,i, C

′
t, B

j,i
sel) ← PHASE 1 (j,Π,A,Ct, Tj,i, i, P)

13: (C′
t, B

j,i
sel) ← PHASE 2 (j,Π,C′

t, B
j,i
sel, T

t
j,i, i, P)

14: (Rj,i
sel) ← PHASE 3 (j,Π,Bj,i

sel, i, P)
15: end for
16: end for
17: for j ← 1 to m do . (For each environment j)
18: for i ← 1 to p do . (For each partition i)
19: EXECUTION: . (Execution for environment j and partition i)
20: (Ct+1) ← PHASE 4 (j,Π,C′

t, R
j,i
sel, i, P)

21: end for
22: end for
23: end for

Preliminary results show an improvement of around 2x of extra speedup when
using the partitions to find more parallelism on a K40c GPU with a model
of the Bearded Vulture in the Pyrenees [10, 4]. This means that the µ-DCBA
implementations usually runs twice faster than the GPU baseline simulator [15].

88 MA Mart́ınez-del-Amor et al.

6 Conclusions and Future Work

PDP systems are a formal framework for ecosystem modelling, whose applications
require efficient software simulators. In this concern, GPU-accelerated simulators
have been developed so far. However, the designed algorithms for PDP systems,
specially DCBA, have several bottlenecks. On the one hand, DCBA assumes that
all rules in the system will depend on each other when consuming the left-hand
sides. However, this is not always the case, and we can pre-compute partitions
of rules actually competing for objects. On the hand, the model designer knows
which rules will be applied at each step. An adaptative simulator should be able
to use this information to dismiss rules that are known to be non applicable in a
certain step.

We have shown how to modify DCBA main loop when implementing these
two ideas (adaptative DCBA and DCBA with partitions). These strategies lead to
extra speedups (compared with the GPU baseline simulator) of around 2x-2.5x.
Let us remark that a simulator implementing these two modes should be used
carefully:

• An adaptative simulator of PDP system should be used when deploying a
validated model. That is, when the model is already refined and validated by
the designer, and the behaviour is already known and proved to work. For
example, when using the simulator in virtual experimentation environments.

• A simulator with partitions of PDP systems (e.g. µ-DCBA) can be used
not only in virtual experimentation environments, but also in the validation
of the model. That is, when the designer is still debugging the model, this
strategy can help since it works automatically from the set of rules. However,
the performance is not as good as with adaptative simulators (according to
our preliminary results), and would require some initial pre-computation for
partitions.

Future work includes the development of a µ-DCBA in a stable simulator along
with the already existing adaptative simulator. Moreover, we plan to use these
improvements to go to the next step and implement parallel parameter calibration
methods for the models. We are also working on an automatic inclusion of the
GPU simulators inside generic simulation tools such as MeCoSim and P-Lingua,
since the only way to use these tools is by a manual protocol [18]. Finally, we are
looking into further improvements of the GPU adaptative simulators by including
features such as for object counters [2].

Acknowledgements

This work was supported by the research project TIN2017-89842-P (MABICAP),
co-financed by Ministerio de Economı́a, Industria y Competitividad (MINECO) of
Spain, through the Agencia Estatal de Investigación (AEI), and by Fondo Europeo
de Desarrollo Regional (FEDER) of the European Union.

Extracting Parallelism in Simulation Algorithms for PDP systems 89

References

1. Alhazov, A.: Maximally parallel multiset-rewriting systems: Browsing the configura-
tions. In: Proceedings of the Third Brainstorming Week on Membrane Computing.
pp. 1–10. Fénix Editora, Seville, Spain (February 2005), http://www.gcn.us.es/

3BWMC/bravolpdf/bravol1.pdf

2. Mart́ınez-del Amor, M.Á., Orellana-Mart́ın, D., Pérez-Hurtado, I., Valencia-Cabrera,
L., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Design of specific P systems simulators
on GPUs. In: Hinze, T., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane
Computing. pp. 202–207. Springer International Publishing, Cham (2019)

3. Mart́ınez-del Amor, M.A., Pérez-Hurtado, I., Garćıa-Quismondo, M., Maćıas-Ramos,
L.F., Valencia-Cabrera, L., Romero-Jiménez, Á., Graciani, C., Riscos-Núñez, A.,
Colomer, M.A., Pérez-Jiménez, M.J.: DCBA: Simulating Population Dynamics P
Systems with Proportional Object Distribution. In: Csuhaj-Varjú, E., Gheorghe, M.,
Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) Membrane Computing. Lecture Notes
in Computer Science, vol. 7762, pp. 257–276. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013)

4. Cardona, M., Colomer, M.A., Pérez-Jiménez, M.J., Sanuy, D., Margalida, A.:
Modeling ecosystems using P systems: the bearded vulture, a case study. In:
Corne, D., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Membrane
Computing, Lecture Notes in Computer Science, vol. 5391, pp. 137–156. Springer
Berlin Heidelberg (2009)

5. Colomer, M., Pérez-Hurtado, I., Pérez-Jiménez, M., Riscos-Núñez, A.: Comparing
simulation algorithms for multienvironment probabilistic P systems over a standard
virtual ecosystem. Natural Computing 11(3), 369–379 (2012)

6. Colomer, M.A., Margalida, A., Valencia-Cabrera, L., Palau, A.: Application of a
computational model for complex fluvial ecosystems: The population dynamics of
zebra mussel Dreissena polymorpha as a case study. Ecological Complexity 20, 116
– 126 (2014)

7. Colomer, M., Margalida, A., Pérez-Jiménez, M.: Population Dynamics P System
(PDP) Models: A Standardized Protocol for Describing and Applying Novel Bio-
Inspired Computing Tools 8(5), e60698 (2013)

8. Colomer, M., Margalida, A., Sanuy, D., Pérez-Jiménez, M.J.: A bio-inspired
computing model as a new tool for modeling ecosystems: The avian scavengers as a
case study. Ecological Modelling 222(1), 33–47 (2011)

9. Colomer-Cugat, M.A., Garćıa-Quismondo, M., Maćıas-Ramos, L.F., Mart́ınez-del
Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A., Valencia-
Cabrera, L.: Membrane System-Based Models for Specifying Dynamical Population
Systems, pp. 97–132. Springer International Publishing, Cham (2014)

10. Doncel-Ramı́rez, A.: Simulación Acelerada de Sistemas P de Dinámica de Poblaciones
con GPU. Master thesis (Universidad de Sevilla), july 2018

11. Garćıa-Quismondo, Manuel and Mart́ınez-del-Amor, M.A., Pérez-Jiménez, M.J.:
Probabilistic Guarded P Systems, A New Formal Modelling Framework. In:
Gheorghe, M., Rozenberg, G., Salomaa, A., Sośık, P., Zandron, C. (eds.) Membrane
Computing. pp. 194–214. Lecture Notes in computer Science, Springer International
Publishing, Cham (2014)

12. Mart́ınez-del-Amor, M., Maćıas-Ramos, L., Valencia-Cabrera, L., Pérez-Jiménez, M.:
Parallel simulation of Population Dynamics P systems: updates and roadmap 15(4),
565–573 (2015)

http://www.gcn.us.es/3BWMC/bravolpdf/bravol1.pdf
http://www.gcn.us.es/3BWMC/bravolpdf/bravol1.pdf

90 MA Mart́ınez-del-Amor et al.

13. Mart́ınez-del-Amor, M., Pérez-Hurtado, I., Pérez-Jiménez, M., Riscos-Núñez, A.,
Colomer, M.: A new simulation algorithm for multienvironment probabilistic P
systems. In: IEEE Fifth International Conference on Bio-Inspired Computing:
Theories and Applications (BIC-TA 2010). vol. 1, pp. 59–68 (September 2010)

14. Mart́ınez-del-Amor, M.A., Karlin, I., Jensen, R.E., Pérez-Jiménez, M.J., Elster,
A.C.: Parallel simulation of probabilistic P systems on multicore platforms. In:
Proceedings of the Tenth Brainstorming Week on Membrane Computing. vol. II,
pp. 17–26. Fénix Editora, Seville, Spain (February 2012), http://www.gcn.us.es/
10BWMC/10BWMCvolII/papers/parallel-dcba.pdf

15. Mart́ınez-del-Amor, M.A., Pérez-Hurtado, I., Gastalver-Rubio, A., Elster, A.C.,
Pérez-Jiménez, M.J.: Population Dynamics P Systems on CUDA. In: Gilbert, D.,
Heiner, M. (eds.) Computational Methods in Systems Biology, pp. 247–266. Lecture
Notes in Computer Science, Springer Berlin Heidelberg (2012)

16. Mart́ınez-del-Amor, M.A., Pérez-Hurtado, I., Orellana-Mart́ın, D., Pérez-Jiménez,
M.J.: Adaptative parallel simulators for bioinspired computing models. Future
Generation Computer Systems 107, 469 – 484 (2020)

17. Pérez-Hurtado, I., Orellana-Mart́ın, D., Zhang, G., Pérez-Jiménez, M.J.: P-lingua in
two steps: flexibility and efficiency. Journal of Membrane Computing 1(2), 93–102
(Jun 2019)

18. Valencia-Cabrera, L., Mart́ınez-del Amor, M.Á., Pérez-Hurtado, I.: A Simulation
Workflow for Membrane Computing: From MeCoSim to PMCGPU Through P-
Lingua, pp. 291–303. Springer International Publishing, Cham (2018)

19. Zhang, G., Shang, Z., Verlan, S., Mart́ınez-del-Amor, M.A., Yuan, C., Valencia-
Cabrera, L., Pérez-Jiménez, M.J.: An overview of hardware implementation of
membrane computing models. ACM Comput. Surv. 53(4) (Aug 2020)

http://www.gcn.us.es/10BWMC/10BWMCvolII/papers/parallel-dcba.pdf
http://www.gcn.us.es/10BWMC/10BWMCvolII/papers/parallel-dcba.pdf

	Extracting Parallelism in Simulation Algorithms for PDP systems
	Miguel Á. Martínez-del-Amor, Andrés Doncel-Ramírez, David Orellana-Martín, Ignacio Pérez-Hurtado

