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Summary. In this paper we consider simple P systems with prescribed teams of sets
of rules, with the application of the rule sets in the teams probably depending on some
given condition, as well as, in the general case, the different sets of rules in a prescribed
team working in different derivation modes, whereas in homogeneous systems for all sets
of rules the same derivation mode comes into action.

We prove some general results, for example, how with such simple P systems with
prescribed teams of sets of rules we can simulate label controlled P systems, where only
rules with the same label can be applied, as well as how simple purely catalytic P systems
can be mimicked by simple P systems with prescribed teams of sets of non-cooperative
rules with all sets of rules working in the sequential derivation mode and how simple
catalytic P systems can be mimicked by simple P systems with prescribed teams of sets
of non-cooperative rules with some sets of rules working in the sequential derivation mode
and only one working in the maximally parallel derivation mode.

Computational completeness of these simple P systems with prescribed teams of sets
of non-cooperative rules therefore immediately follows from the well-known results for
simple catalytic and purely catalytic P systems, respectively. On the other hand, homo-
geneous simple P systems with prescribed teams of sets of non-cooperative rules with all
teams working in the maximally parallel derivation mode have the same computational
power as ET0L systems used for multisets.

Keywords: applicability condition, computational completeness, ET0L sys-
tems, P systems, prescribed teams
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1 Introduction

A quarter of a century ago, membrane (P) systems were introduced in [12] as
a multiset-rewriting model of computing inspired by the structure – the hierar-
chical membrane structure – and the functioning of the living cell – with the
molecules/objects evolving in parallel. Since then, this area of biologically moti-
vated computing has emerged in a fascinating way. A lot of interesting theoretical
models have been developed by scientists all over the world, many of them al-
ready documented in two textbooks, see [13] and [14]. For actual information, we
refer to the P systems webpage [16] as well as to the issues of the Bulletin of
the International Membrane Computing Society and of the Journal of Membrane
Computing.

P systems traditionally operate on multisets of objects, hence, the power of
non-cooperative rules (even) when working in the maximally parallel derivation
mode is rather restricted; for example, the multiset language {b2n | n ∈ N} cannot
be obtained with non-cooperative rules by halting computations. Therefore, one
of the fundamental questions which has attracted a lot of attention in the area of
P systems is, how variants of different ways of cooperation of the rules and various
control mechanisms affect the computational power. For example, allowing for
cooperative rules rather easily boosts the power of specific variants of P systems
to computational completeness.

One of the well-known control mechanisms forcing some rules to only be applied
together (in the sequential derivation mode) are matrix grammars, in which the
rules are grouped into sequences, which in the given order must be applied one
after another. A less strict variant where the rules in a set of rules called prescribed
teams can be applied in any order was introduced in [6]. In [4], such prescribed
teams are working on different objects.

In contrast to the original model, in which the rules of a team can be applied
together only sequentially, we here consider a team as a set of sets of rules, where
each set of rules has assigned (i) its own applicability condition and (ii) its own
derivation mode in which the rules in this set have to be applied, and based on
one of these teams a suitable multiset of rules to be applied to the underlying
configuration is constructed.

In the model of (simple, i.e., only one membrane region is considered) P systems
with prescribed teams of sets of rules, the application of a team means applying
each set of rules in the chosen team to be used in the derivation mode assigned
to the set in this team, provided the applicability condition based on the features
of the underlying configuration is fulfilled. In internally homogenous systems, all
sets of rules in a team have assigned the same derivation mode, whereas in globally
homogenous systems all teams have assigned the same derivation mode for all sets
of rules in the teams. In this paper, we mainly focus on the sequential and the
maximally parallel derivation mode; investigations with other derivation modes,
as, for example considered in the formal framework for static P systems, see [9],
or others then defined in [5, 2, 3, 1], we leave for future research.
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One obvious result we are going to prove is that globally homogenous simple P
systems working in the maximally parallel derivation mode for the teams of sets of
non-cooperative rules have the same computational power as ET0L systems, i.e.,
extended tabled Lindenmayer systems. Simple P systems with prescribed teams
of sets of rules can simulate label controlled P systems, where only rules with the
same label can be applied. Moreover, simple purely catalytic P systems can be
mimicked by simple P systems with prescribed teams of sets of non-cooperative
rules with the sets of rules working in the sequential derivation mode. For the
simulation of catalytic P systems, one additional set working in the maximally
parallel derivation mode is needed. Computational completeness of these simple
P systems with prescribed teams of sets of non-cooperative rules therefore can
immediately be inferred from the well-known results for simple catalytic and purely
catalytic P systems, respectively. Furthermore, using sets of symbols as permitting
and forbidden context conditions for the sets of rules in the teams allows for an
easy direct simulation of register machines, either with using non-cooperative rules
or else insertion and deletion rules.

2 Definitions

The cardinality of a set M is denoted by |M |. For further notions and results in
formal language theory we refer to textbooks like [7] and [15].

For an alphabet V , a finite non-empty set of abstract symbols, the free monoid
generated by V under the operation of concatenation, i.e., the set containing all
possible strings over V , is denoted by V ∗. The empty string is denoted by λ, and
V ∗\{λ} is denoted by V +. For an arbitrary alphabet V = {a1, . . . , an}, the number
of occurrences of a symbol ai in a string x is denoted by |x|ai

, while the length
of a string x is denoted by |x| =

∑
ai∈V |x|ai

. The Parikh vector associated with
x with respect to a1, . . . , an is (|x|a1

, . . . , |x|an
). The Parikh image of an arbitrary

language L over {a1, . . . , an} is the set of all Parikh vectors of strings in L, and
is denoted by Ps(L). For a family of languages FL, the family of Parikh images
of languages in FL is denoted by PsFL, while for families of languages over a
one-letter (d-letter) alphabet, the corresponding sets of non-negative integers (d-
vectors with non-negative components) are denoted by NFL ( NdFL ).

A (finite) multiset over an alphabet V = {a1, . . . , an}, is a mapping f : V →
N and can be represented by ⟨af(a1)

1 , . . . , a
f(an)
n ⟩ or by any string x for which

(|x|a1
, . . . , |x|an

) = (f(a1), . . . , f(an)). In the following we will not distinguish
between a vector (m1, . . . ,mn), a multiset ⟨am1

1 , . . . , amn
n ⟩ or a string x having

(|x|a1
, . . . , |x|an

) = (m1, . . . ,mn). Fixing the sequence of symbols a1, . . . , an in an
alphabet V in advance, the representation of the multiset ⟨am1

1 , . . . , amn
n ⟩ by the

string am1
1 . . . amn

n is unique. The set of all finite multisets over an alphabet V is
denoted by V ◦. The cardinality of a set or multiset M is denoted by |M |.

The family of regular, context-free, and recursively enumerable string lan-
guages is denoted by L(REG), L(CF ), and L(RE), respectively. As PsL(REG) =
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PsL(CF ), in the area of multiset rewriting L(CF ) plays no role at all, and in the
area of membrane computing we often only get characterizations of PsL(REG)
and PsL(RE) or else PsL(ET0L), where L(ET0L) denotes the family of lan-
guages generated by extended tabled Lindenmayer systems (ET0L systems).

For further notions and results in formal language theory we refer to textbooks
like [7] and [15].

2.1 Register Machines

Register machines are well-known universal devices for computing on (or generat-
ing or accepting) sets of vectors of natural numbers. The following definitions and
propositions are given as in [1].

Definition 1. A register machine is a construct

M = (m,B, l0, lh, P )

where

• m is the number of registers,
• P is the set of instructions bijectively labeled by elements of B,
• l0 ∈ B is the initial label, and
• lh ∈ B is the final label.

The instructions of M can be of the following forms:

• p : (ADD(r), q, s); p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to in-
struction q or s.

• p : (SUB(r), q, s); p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one
(decrement case) and jump to instruction q, otherwise jump to instruction s
( zero-test case).

• lh : HALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each reg-
ister and by the value of the current label, which indicates the next instruction to
be executed. M is called deterministic if the ADD-instructions all are of the form
p : (ADD(r), q).

Throughout the paper, BADD denotes the set of labels of ADD-instructions
p : (ADD(r), q, s) of arbitrary registers r, and BSUB(r) denotes the set of labels
of all SUB-instructions p : (SUB(r), q, s) of a decrementable register r. Moreover,
for any p ∈ B \ {lh}, Reg(p) denotes the register affected by the ADD- or SUB-
instruction labeled by p; for the sake of completeness, in addition Reg(lh) = 1 is
taken.
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In the accepting case, a computation starts with the input of an l-vector of
natural numbers in its first l registers and by executing the first instruction of P
(labeled by l0); it terminates with reaching the HALT -instruction. Without loss of
generality, we may assume all registers to be empty at the end of the computation.

In the generating case, a computation starts with all registers being empty and
by executing the first instruction of P (labeled by l0); it terminates with reaching
the HALT -instruction and the output of a k-vector of natural numbers in its last
k registers. Without loss of generality, we may assume all registers except the last
k output registers to be empty at the end of the computation.

In the computing case, a computation starts with the input of an l-vector of
natural numbers in its first l registers and by executing the first instruction of P
(labeled by l0); it terminates with reaching the HALT -instruction and the output
of a k-vector of natural numbers in its last k registers. Without loss of generality,
we may assume all registers except the last k output registers to be empty at the
end of the computation.

For useful results on the computational power of register machines, we refer to
[11]; for example, to prove our main theorem, we need the following formulation of
results for register machines generating or accepting recursively enumerable sets
of vectors of natural numbers with k components or computing partial recursive
relations on vectors of natural numbers:

Proposition 1. Deterministic register machines can accept any recursively enu-
merable set of vectors of natural numbers with l components using precisely l + 2
registers. Without loss of generality, we may assume that at the end of an accepting
computation all registers are empty.

Proposition 2. Register machines can generate any recursively enumerable set of
vectors of natural numbers with k components using precisely k+2 registers. With-
out loss of generality, we may assume that at the end of a generating computation
the first two registers are empty, and, moreover, on the output registers, i.e., the
last k registers, no SUB-instruction is ever used.

Proposition 3. Register machines can compute any partial recursive relation on
vectors of natural numbers with l components as input and vectors of natural num-
bers with k components as output using precisely l+2+ k registers, where without
loss of generality, we may assume that at the end of a successful computation the
first l+2 registers are empty, and, moreover, on the output registers, i.e., the last
k registers, no SUB-instruction is ever used.

In all cases it is essential that the output registers never need to be decremented.

2.2 Extended Tabled Lindenmayer Systems

An extended tabled Lindenmayer system (an ET0L system for short) is a construct

G = (V,Σ, T1, . . . , Tn, A) where
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• V is a set of objects;
• Σ ⊆ V is a set of terminal objects;
• Tj , 1 ≤ i ≤ n, called tables are finite sets of non-cooperative rules over V , i.e.,

of the form a → u with a ∈ V and u ∈ V ∗;
• A ∈ V + is the axiom.

A computation in the ET0L system G starts with the axiom A; then, in each
computation step, a table Tj is chosen and the rules in Tj are applied to the
current configuration in a parallel way. The language generated by G is the set of
all terminal strings in Σ∗ obtained in that way from the axiom A, i.e.,

L(G) = {w ∈ Σ∗ | A =⇒∗ w}.

ET0L systems can also be considered as computing models working on multi-
sets instead of strings, i.e., the axiom A is the initial multiset and the configurations
are multisets on which the non-cooperative rules in the tables work in parallel. In
the following, such ET0L systems working on multisets will be denoted as mET0L
systems. Obviously, we have L(mET0L) = PsL(ET0L).

Remark 1. As a technical detail we mention that many authors require every table
to contain at least one rule for every object in V . We observe that incomplete
tables missing a rule for some x ∈ V can easily be made complete by adding the
unit rules x → x for all x ∈ V for which so far no rule is already present in the
table.

3 Simple P Systems

Taking into account the well-known flattening process, which means that com-
putations in a P system with an arbitrary (static) membrane structure can be
simulated in a P system with only one membrane, e.g., see [8], in this paper we
only consider simple P systems, i.e., with the simplest membrane structure of only
one membrane region:

Definition 2. A simple P system is a construct

Π = (V, C, Σ,w,R, δ)

where

• V is the alphabet of objects;
• C ⊆ V is the alphabet of catalysts;
• Σ ⊆ (V \ C) is the alphabet of terminal objects;
• w ∈ V ◦ is the multiset of objects initially present in the membrane region;
• R is a finite set of evolution rules over V ; these evolution rules are multiset

rewriting rules u → v with u, v ∈ V ◦;
• δ is the derivation mode.
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A catalytic rule is of the form ca → cv, a non-cooperative rule is of the form
a → v, where c is a catalyst, a is an object from V \ C, and v is a string from
(V \C)∗. A simple P system only using catalytic and non-cooperative rules is called
catalytic, and it is called purely catalytic if only catalytic rules are used. The type
of a (simple) P system only using non-cooperative rules is abbreviated by ncoo,
the types of catalytic and purely catalytic P systems are abbreviated by cat and
pcat, respectively.

The multiset in the single membrane region of Π constitutes a configuration of
the P system. The initial configuration is given by the initial multiset w; in case of
accepting or computing P systems the input multiset w0 is assumed to be added
to w, i.e., the initial configuration then is ww0.

A transition between configurations is governed by the application of the evo-
lution rules, which is done in the given derivation mode δ. The application of a
rule u → v to a multiset M results in subtracting from M the multiset identified
by u, and then in adding the multiset identified by v. Observe that each catalyst
can be used (at most) once in every derivation step.

If no catalysts are used, we omit C and simply write Π = (V,Σ,w,R, δ).

3.1 Variants of Derivation Modes

Given a P system Π = (V, C, Σ,w,R, δ), the set of multisets of rules applicable to
a configuration C is denoted by Appl(Π,C).

The set of all multisets of rules applicable to a given configuration can be re-
stricted by imposing specific conditions, thus yielding the following basic derivation
modes (for example, see [9] for formal definitions):

• asynchronous mode (abbreviated asyn): at least one rule is applied;
• sequential mode (sequ): only one rule is applied;
• maximally parallel mode (max): a non-extendable multiset of rules is applied;
• maximally parallel mode with maximal number of rules (maxrules): a non-

extendable multiset of rules of maximal possible cardinality is applied;
• maximally parallel mode with maximal number of objects (maxobjects): a non-

extendable multiset of rules affecting as many objects as possible is applied.

If Appl(Π,C) is not empty, this set equals the set Appl(Π,C, asyn) of multisets
of rules applicable in the asynchronous derivation mode (abbreviated asyn).

In [5], these derivation modes are restricted in such a way that each rule can
be applied at most once, thus yielding the set modes sasyn, smax, smaxrules, and
smaxobjects (the sequential mode is already a set mode by definition).

In this paper we shall restrict ourselves to the derivation modes sequ and max:

The set Appl(Π,C, sequ) denotes the set of multisets of rules applicable in
the sequential derivation mode (abbreviated sequ), where in each derivation step
exactly one rule is applied.
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The standard parallel derivation mode used in P systems is the maximally
parallel derivation mode (max for short), in which only non-extendable multisets
of rules can be applied:

Appl(Π,C,max) ={R ∈ Appl(Π,C) |
there is no R′ ∈ Appl(Π,C)

such that R′ ⊃ R}.

For some new variants of derivation modes we refer to [2, 3].

3.2 Computations in a P System

The P system continues with applying multisets of rules according to the given
derivation mode until there remain no applicable rules in the single region of Π,
i.e., as usual, with all these variants of derivation modes as defined above, we
consider halting computations.

We may generate or accept or even compute functions or relations. The in-
puts/outputs may be multisets or strings, defined in the well-known way. When
the system halts, in case of computing with multisets we consider the number of
objects from Σ contained in the membrane region at the moment when the system
halts as the result of the underlying computation of Π.

We would like to emphasize that as results we only take the objects from the
terminal alphabet Σ, especially the catalysts are not counted to the result of a
computation. On the other hand, with all the proofs given in this paper, except
for the catalysts – if any – no other “garbage” remains in the membrane region at
the end of a halting computation, i.e., we could even omit Σ.

3.3 (Simple) P Systems With Label Control

We may extend the model of a simple P system to the model of a simple P system
with label control

Π = (V, C, Σ,w,B,R, δ)

by labelling each rule in R by an element from a set of labels B. Then in any
derivation step only rules labeled by the same label r ∈ B are allowed to be used
together. Such controlled P systems were investigated in [10].

Example 1. Consider the simple P system of type ncoo without catalysts

Π = (V = {a, b}, Σ = {a}, w = b, B = {1, 2},R = {1 : b → bb, 2 : b → a},max)

with the two labels 1 and 2 in B as well as the labeled rules 1 : b → bb and 2 : b → a
in R.

Applying rule 1 : b → bb n ≥ 0 times we obtain b2
n

; by applying the second rule
2 : b → a we finally obtain the terminal multiset a2

n

. Hence, L(Π) = {a2n | n ≥ 0},
a multiset language which cannot be obtained by a simple P system of type ncoo
without additional control mechanism.
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4 Simple P Systems with Prescribed Teams of Sets of Rules

We now consider a new model of simple P systems, where in one derivation step
specific sets of rules – called teams – are applied in their assigned derivation mode.
As usual, we start with a finite multiset of objects until no such team can be applied
any more.

Definition 3. A simple P system with prescribed teams of sets of rules – a PPT
system for short – is a construct

Π = (V,Σ, P, T1, . . . , Tn, A) where

• V is a set of objects;
• Σ ⊆ V is a set of terminal objects;
• P is a finite set of multiset rules, i.e., each rule is the form u → v with u ∈ V ∗

and v ∈ V +;
• each prescribed team Tj, 1 ≤ i ≤ n, is a finite set of sets of rules from P

together with the associated derivation mode δj and possibly some applicability
condition Kj, i.e., Tj = ({(Kj,i, Rj,i, δj,i) | 1 ≤ i ≤ nj}), where the Rj,i ⊆ P
are finite sets of rules from P ;

• A ∈ V ◦ is a finite multiset of initial objects from V .

As usual, a rule p ∈ P, p = u → v, is called applicable to a configuration, i.e.,
an object x ∈ V ◦, if and only if u is a subset of x. The set of all rules applicable
to x is denoted by Appl(Π,x)

The number n of teams is called the degree of Π. |Tj | is called the size of the
prescribed team Tj . If all prescribed teams have at most size s, then Π is called
a PPT system of size s. If the number of rules in the sets of rules is at most m,
then Π is called a PPT system of rule size m. Π is called a PPT system of type
(n, s,m), if it is of degree n, size s, and rule size m. Moreover, if all rules in the
sets of rules in the teams are of a specific type α (for example ncoo), we call Π a
PPT system of type (α;n, s,m).

The family of sets of multisets generated/accepted by PPT system of type
(α;n, s,m) is denoted by L(PPTgen(α;n, s,m))/L(PPTacc(α;n, s,m)). Any of the
parameters n, s,m can be replaced by ∗, if the number cannot be bounded; α can
also be omitted.

As derivation modes, we will restrict ourselves to the sequential derivation
mode sequ and the maximally parallel derivation mode max.

The conditions Kj,i in the most general case can be any computable/recursive
features of the underlying configuration. Here we essentially will consider random
context conditions, i.e., Kj,i = (Pj,i, Q,j,i ), where Pj,i and Qj,i are finite sets of
multisets over V ; Pj,i is the set of permitting contexts andQj,i is the set of forbidden
contexts. The random context condition Kj,i = (Pj,i, Qj,i) is fulfilled by a multiset
x if and only if x contains each multiset in Pj,i, but none of the multisets in Qj,i.
If no conditions Kj,i are specified, we simply write Tj = {(Rj,i, δj,i) | 1 ≤ i ≤ nj}.
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If different derivation modes appear in a team, the whole PPT system is called
non-homogenous. The system is called locally homogenous, if for all teams, the sets
of rules in the team all are applied in the same derivation mode δj , and we write
Tj = ({Rj,i | 1 ≤ i ≤ nj}, δj), 1 ≤ j ≤ n. Finally, the system is called globally
homogenous if the derivation mode is the same δ for all Tj , and we only write
Tj = {Rj,i | 1 ≤ i ≤ nj} and specify δ by writing Π = (V,Σ, P, T1, . . . , Tn, δ, A).

Computations in a PPT system

Given a prescribed team of sets of rules

Tj = ({(Kj,i, Rj,i, δj,i) | 1 ≤ i ≤ nj})

with the derivation modes {δj,i | 1 ≤ i ≤ nj} ⊆ {sequ,max}, a derivation step
with Tj on the configuration x can be carried out in the following way:

1. we choose a multiset of rules R ∈ Appl(Π,x); the multiset of objects binded
by R is denoted by Bind(R, x), the multiset of objects in x \ Bind(R, x) is
denoted by Idle(R, x);

2. we now for all 1 ≤ i ≤ nj check whether x fulfills the applicability conditions
Kj,i;

3. each rule in R must be assigned to one of the sets Rj,i for which the applica-
bility condition Kj,i is fulfilled, yielding the multiset of rules R′

j,i; the multiset
of objects binded by the rules in R′

j,i is denoted by Bind(R,R′
j,i,K);

4. for δj,i = max we now check that R′
j,i cannot be extended by using an addi-

tional rule from Rj,i on objects from Idle(R, x);
5. for δj,i = sequ we check whether |R′

j,i| = 1; if not, then we have to check that
no rule from Rj,i can be applied to objects from Idle(R, x);

6. if all checks from above have been passed correctly, the multiset of rules R can
be applied to the current configuration x.

We emphasize that the rule sets in a team compete for the objects available in
the underlying configuration, but at the end each set of rules for itself makes its
part of the transition from the underlying configuration to the next configuration
in a correct way according to its assigned derivation mode, as no idle object could
be binded by an additional rule. Moreover, we observe that a set of rules Rj,i from
Tj can only be chosen if the applicability condition Kj,i is fulfilled by x. Finally,
a team Tj can only be applied if the multiset of rules obtained by the procedure
described above is not empty.

As some variant of the general model we may also consider prescribed teams
of sets of rules for which the applicability conditions Kj,i are the same for all
1 ≤ i ≤ nj , i.e., just one condition Kj , and then we write

Tj = (Kj , {(Rj,i, δj,i) | 1 ≤ i ≤ nj})

and can simplify the procedure for applying Tj by first checking that the current
configuration fulfills Kj .
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As a first example we show how label control can easily be simulated by teams
of sets of rules:

Example 2. Consider the globally homogenous PPT system of type ncoo

Π = (V = {a, b}, Σ = {a}, P, T1, T2,max, b) where

P = {b → bb, b → a}, T1 = {{b → bb}}, and T2 = {{b → a}}. Π is a globally
homogenous PPT system of type (ncoo; 2, 1, 1).

Applying team T1, i.e., the rule b → bb, in the maximally parallel way n ≥ 0
times we obtain b2

n

; by applying the second team T2, i.e., the rule b → a, in the
maximally parallel way once, we finally obtain the terminal multiset a2

n

as in
Example 1. Hence, we conclude L(Π) = {a2n | n ≥ 0} as well as

{a2
n

| n ≥ 0} ∈ L(gh(max)PPTgen(ncoo; 2, 1, 1)),

with the prefix gh(max) indicating that we consider globally homogenous PPT
systems working in the derivation mode max.

5 PPT Systems Simulating P Systems With Label Control

As can already be guessed by looking at Example 2, PPT systems can easily
simulate P systems with label control – without catalysts – which are working in
the derivation mode max by putting the rules with the same labels into one team:

Theorem 1. Every P systems with label control Π, without catalysts, and working
in the derivation mode max, can be simulated by a PPT system of type (n, 1, ∗),
where n is the number of different labels for the rules in Π.

Proof. Given a simple P system with label control, without catalysts,

Π = (V,Σ,w,B,R,max)

where each rule in R is labelled by an element from a set of labels B, B = {lj |
1 ≤ j ≤ n}, we construct a globally homogenous PPT system Ψ of degree n and
size 1, simulating (the computations of) Π:

Ψ = (V,Σ, P, T1, . . . , Tn,max,w)

where we define
P = {p | lj : p ∈ R, 1 ≤ j ≤ n}

as well as the teams Tj , 1 ≤ j ≤ n, as follows:

Tj = {{p | lj : p ∈ R}}

By definition, the size of Tj is 1, whereas the number of rules in the single set of
rules in a team can be arbitrarily large.

We observe that applying the set of rules in in the team Tj in Ψ in the maximally
parallel way has the same effect as applying exactly the rules with label lj in Π
in the maximally parallel way. ⊓⊔
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6 PPT Systems Simulating mET0L Systems

We now show that the computational power of mET0L systems equals the com-
putational power of globally homogenous PPT systems of type ncoo without ap-
plicability conditions working in the derivation mode max.

Theorem 2. Every mET0L system with n tables can be simulated by a globally
homogenous PPT system of type ncoo, degree n, and size 1 without applicability
conditions working in the derivation mode max.

Proof. The mET0L system G = (V,Σ, T ′
1, . . . , T

′
n, A) can be simulated by the

globally homogenous PPT system of type ncoo, degree n, and size 1 without ap-
plicability conditions working in the derivation mode max

Π = (V,Σ, P, T1, . . . , Tn,max,A)

where we simply take

Tj = {T ′
j \ {a → a | a ∈ Σ}}, 1 ≤ j ≤ n,

i.e., the work of the table T ′
j is simulated by the single set of rules in the team Tj

of the PPT system Π.
We observe that we have to exclude the unit rules a → a for the terminal

symbols a ∈ Σ, from the sets of rules T ′
j , 1 ≤ j ≤ n, in order to ensure that

Π halts as soon as a terminal configuration (i.e., a configuration only containing
terminal symbols) has been reached. Finally, we mention that every (useless) team
Tj of the form {∅} is to be omitted. ⊓⊔

In order to show the inverse inclusion, we need the following lemma:

Lemma 1. Every globally homogenous PPT system of degree n and size k without
applicability conditions working in the derivation mode max can be simulated by
a globally homogenous PPT system of degree n and size 1 without applicability
conditions working in the derivation mode max.

Proof. The globally homogenous PPT system of degree n and size k without ap-
plicability conditions working in the derivation mode max

Π = (V,Σ, P, T1, . . . , Tn,max,A)

with Tj = {Rj,i | 1 ≤ j ≤ nj}, 1 ≤ j ≤ n, can be simulated by the corresponding
globally homogenous PPT system of degree n and only size 1 without applicability
conditions working in the derivation mode max

Π ′ = (V,Σ, P, T ′
1, . . . , T

′
n,max,A)

where we take T ′
j = {{y | y ∈ Rj,i, 1 ≤ i ≤ nj}}. We observe that by definition the

rules in the Rj,i work in parallel on the underlying configurations in the same way
if they are grouped in the Rj,i or just in one set of rules {y | y ∈ Rj,i, 1 ≤ i ≤ nj}.
We observe that Π ′ again is of degree n, but only of size 1. ⊓⊔



Simple P Systems with Prescribed Teams of Sets of Rules 13

Based on this lemma, we now can show how a globally homogenous PPT system
of type ncoo, degree n without applicability conditions working in the derivation
mode max can be simulated by an mET0L system with n tables:

Theorem 3. Every globally homogenous PPT system of type ncoo, degree n, and
size k without applicability conditions working in the derivation mode max can be
simulated by an mET0L system with n tables.

Proof. According to Lemma 1, without loss of generality we may assume that the
size k is only one. Hence, we may start with a globally homogenous PPT system
of type ncoo, degree n, and size 1 without applicability conditions working in the
derivation mode max

Π = (V,Σ, P, T1, . . . , Tn,max,A)

where for the teams Tj we have Tj = {T ′
j}, 1 ≤ j ≤ n, with T ′

j being a set of
non-cooperative rules.

Then the mET0L system

G = (V,Σ, T ′
1, . . . , T

′
n, A)

simulates the (computations of the) PPT system Π, as the work of the table T ′
j

simulates the application of the team Tj of the PPT system Π with the single set
of rules T ′

j .
As a technical detail we mention that the tables T ′

j have to be extended by
unit rules x → x for every x ∈ V for which no rule is already present in it, in order
to fulfill the requirement for ET0L systems as already discussed in Remark 1. ⊓⊔

In sum, we have shown the following result (where gh(max)PPT (ncoo) denotes
the globally homogenous PPT systems of type ncoo working in the derivation mode
max):

Theorem 4. L(mET0L) = L(gh(max)PPT (ncoo)).

7 PPT Systems Simulating [Purely] Catalytic P Systems

We first consider purely catalytic P systems, which correspond to PPT systems
where all sets of non-cooperative rules in the unique team work in the sequential
derivation mode.

Theorem 5. Every purely catalytic P system with n catalysts can be simulated
by a corresponding globally homogenous PPT system of type ncoo, degree 1, and
size n without applicability conditions working in the derivation mode sequ.
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Proof. The purely catalytic P system with n catalysts

Π = (V, C, Σ,w,R,max),

i.e., C = {ck | 1 ≤ k ≤ n}, can be simulated by the globally homogenous PPT
system of type ncoo, degree 1, and size n without applicability conditions working
in the sequential derivation mode

Π = (V,Σ, P, T1, sequ, w)

with T1 = {R1,k | 1 ≤ k ≤ n} and

P = {a → u | cka → cku ∈ R for some 1 ≤ k ≤ n}

as well as
R1,k = {a → u | cka → cku ∈ R}, 1 ≤ k ≤ n.

The applicability of the unique team works by applying (at most) one rule a → u
from each R1,k, 1 ≤ k ≤ n, which corresponds to applying the corresponding rule
cka → cku in Π. ⊓⊔

Simple catalytic P systems with n catalysts can be mimicked by simple P
systems with prescribed teams of sets of rules, where as in the case of purely
catalytic P systems the work of the n catalysts is simulated by n sets of non-
cooperative rules in the team working in the sequential mode and one additional
set of non-cooperative rules simulates the set of non-catalytic rules with working
in the maximally parallel derivation mode.

Theorem 6. Every catalytic P system with n catalysts can be simulated by a cor-
responding PPT system of type ncoo, degree 1, and size n+1 without applicability
conditions with n components of the unique team working in the derivation mode
sequ and one working in the derivation mode max.

Proof. The catalytic P system with n catalysts

Π = (V, C, Σ,w,R,max),

i.e., C = {ck | 1 ≤ k ≤ n}, can be simulated by the PPT system of type ncoo,
degree 1, and size n+ 1 without applicability conditions

Π = (V,Σ, P, T1, w)

with T1 = {R1,k | 1 ≤ k ≤ n+ 1} and

P = {a → u | cka → cku ∈ R for some 1 ≤ k ≤ n} ∪ {a → u | a → u ∈ R}

as well as
R1,k = ({a → u | cka → cku ∈ R}, sequ), 1 ≤ k ≤ n,
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and
R1,n+1 = ({a → u | a → u ∈ R},max),

The application of the unique team works by applying (at most) one rule a → u
from each R1,k, 1 ≤ k ≤ n, which corresponds to applying the corresponding rule
cka → cku in Π, as well as the rules in R1,n+1 in the maximally parallel way.

Observe that in contrast to the globally homogenous PPT systems for simu-
lating purely catalytic P systems, we now have non-homogenous PPT systems, as
we have to use both derivation modes sequ and max in the unique team. ⊓⊔

According to Propositions 2 and 1, from Theorems 5 and 6 we immediately
infer the following results:

Corollary 1. For any d ≥ 1, we have

1. NdL(RE) = L(PPTgen(ncoo; 1, 3, ∗)) and
2. NdL(RE) = L(PPTacc(ncoo; 1, d+ 3, ∗));

moreover,
PsL(RE) = L(PPTgen(ncoo; 1, ∗, ∗)) = L(PPTacc(ncoo; 1, ∗, ∗)).
In all cases, the degree of the PPT systems is only 1.

8 PPT Systems Directly Simulating Register Machines

In this section we show how register machines can directly be simulated by PPT
systems in an easy way when using applicability conditions represented by sets of
permitting and forbidden contexts, see the defintion on page 9.

Theorem 7. The computations of a register machine can be simulated by a globally
homogenous PPT system of type ncoo and size 2 using permitting and forbidden
contexts as applicability conditions in the sequential derivation mode.

Proof. Consider the register machine

M = (m,B, l0, lh, R)

with BADD denoting the set of labels of ADD-instructions p : (ADD(r), q, s) of
arbitrary registers r, and BSUB(r) denoting the set of labels of all SUB-instructions
p : (SUB(r), q, s) of a decrementable register r. Moreover, for any p ∈ B \ {lh},
Reg(p) denotes the register affected by the ADD- or SUB-instruction labeled by p.

We now construct the globally homogenous PPT system of size 2 working in
the sequential derivation mode using permitting and forbidden contexts as appli-
cability conditions

Π = (V,Σ, P, T1, . . . , Tn, sequ, w).

Throughout the computation of Π, one symbol p ∈ B represents the instruction
from the register machine to be simulated next, and the number of symbols ar



16 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

represents the contents of register r, 1 ≤ r ≤ m. Hence, we start with the axiom
w = l0w0, where w0 represents the initial contents of the registers. If the final label
lh appears, we know that the computation in M has been successful and finally
can erase lh, so that a multiset over Σ remains as the result of the computation.

Moreover, the set of symbols V only consists of the labels in B and the symbols
ar representing the registers:

V = B ∪ {ar | 1 ≤ r ≤ m}.

The set of terminal symbols Σ consists of only those symbols from the set {ar |
1 ≤ r ≤ m} which represent output registers.

We need the following simple non-cooperative rules in P for the simulation of
the instructions of M :

P = {p → qar, p → sar | p : (ADD(r), q, s) ∈ R}
∪ {p → q, p → s | p : (SUB(r), q, s) ∈ R}
∪ {ar → λ | 1 ≤ r ≤ m and r is a decrementable register}
∪ {lh → λ}

The teams of sets of rules with applicability conditions for simulating the in-
structions of the register machine defined below form the teams T1, . . . , Tn.

• p : (ADD(r), q, s), p ∈ BADD, is simulated by the team

Rp = {(({p}, ∅), {p → qar, p → sar})}
which can also be written in a simpler way as
Rp = {{p → qar, p → sar}}, because the rules in this set of rules in this team
can anyway only be applied if p is present.

• p : (SUB(r), q, s); p ∈ BSUB(r), is simulated by the team of sets of rules

Rp,1 = (({p, ar}, ∅), {{p → q}, {ar → λ}})

(both the presence of p and ar have to be checked in order to guarantee that
both rules p → q and ar → λ are applied) as well as by the team of sets of
rules

Rp,2 = {(({p}, {ar}), {p → s})}

(both the presence of p and the absence of ar have to be checked to guarantee
that we only proceed to label s if no symbol ar is present).

• lh : HALT is simulated by the team
Rh = {(({lh}, ∅), {lh → λ})},
which can also be written in a simpler way as
Rh = {{lh → λ}}.
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Only in the case of applying a team Rp,1 two rules are applied in one step,
otherwise only one rule is applied.

The application of a team is only possible if the current label symbol p appears
in the underlying configuration, and in the case of a SUB-instruction also the
presence/absence of aReg(p) is correctly given. Throughout the computation in Π
exactly one of the teams of sets of rules is applicable before finally a configuration
only containing terminal symbols is reached. ⊓⊔

9 Computational Completeness

According to Subsection 2.1, register machines are a model being computationally
complete for multisets. Hence, from Theorem 7 we immediately infer the following
result:

Theorem 8. PPT systems of type ncoo and size 2 when using applicability con-
ditions represented by sets of permitting and forbidden contexts in the sequential
derivation mode are computationally complete for multisets.

Instead of non-cooperative rules we can also use the simple rules of insertion
and deletion:

• I(a) inserts an object a in the underlying multiset (and can be interpreted as
the rule λ → a).

• D(a) deletes an object a from the underlying multiset, if at least one a is
present (and can be interpreted as the rule a → λ).

Based on the proof of Theorem 7, we easily get the following result for PPT
systems using insertion and deletion rules (called PPT systems of type InsDel for
short):

Corollary 2. PPT systems of type InsDel and size 3 when using applicability
conditions represented by sets of permitting and forbidden contexts in the sequential
derivation mode are computationally complete for multisets.

Proof. Consider the register machine

M = (m,B, l0, lh, R)

with BADD denoting the set of labels of ADD-instructions p : (ADD(r), q, s) of
arbitrary registers r, and BSUB(r) denoting the set of labels of all SUB-instructions
p : (SUB(r), q, s) of a decrementable register r. Moreover, for any p ∈ B \ {lh},
Reg(p) denotes the register affected by the ADD- or SUB-instruction labeled by p.

We now construct the globally homogenous PPT system of type InsDel and
size 3 working in the sequential derivation mode using permitting and forbidden
contexts as applicability conditions

Π = (V,Σ, P, T1, . . . , Tn, sequ, w).
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Throughout the computation of Π, one symbol p ∈ B represents the instruction
from the register machine to be simulated next, and the number of symbols ar
represents the contents of register r, 1 ≤ r ≤ m. Hence, we start with the axiom
w = l0w0, where w0 represents the initial contents of the registers. If the final label
lh appears, we know that the computation in M has been successful and finally
can erase lh, so that a multiset over Σ remains as the result of the computation.

Moreover, the set of symbols V only consists of the labels in B and the symbols
ar representing the registers:

V = B ∪ {ar | 1 ≤ r ≤ m}.

The set of terminal symbols Σ consists of only those symbols from the set {ar |
1 ≤ r ≤ m} which represent output registers.

We need the following simple insertion and deletion rules in P for the simulation
of the instructions of M :

P = {I(p), D(p) | p ∈ B}
∪ {I(ar) | 1 ≤ r ≤ m}
∪ {D(ar) | 1 ≤ r ≤ m and r is a decrementable register}

The teams of sets of rules with applicability conditions for simulating the in-
structions of the register machine defined below form the teams T1, . . . , Tn.

• p : (ADD(r), q, s), p ∈ BADD, is simulated by the team

Rp = {(({p}, ∅), {D(p)}),
(({p}, ∅), {I(q), I(s)}),
(({p}, ∅), {I(ar)})},

which in a shorter way could be written as

Rp = (({p}, ∅), {{D(p)}, {I(q), I(s)}, {I(ar)}})

as the applicability condition ({p}, ∅) is required for all sets of rules in the
team. Observe that the size of these teams now is 3!

• p : (SUB(r), q, s); p ∈ BSUB(r), is simulated by the team

Rp,1 = (({p, ar}, ∅), {{D(p)}, {I(q)}, {D(ar)}})

(again the size of these teams now is 3)

as well as by the team

Rp,2 = (({p}, {ar}), {{D(p)}, {I(s)}})
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• lh : HALT is simulated by the team

Rh = {{D(lh)}}.

Throughout the computation in Π exactly one of the teams of sets of rules
is applicable before finally a configuration only containing terminal symbols is
reached. ⊓⊔

As is well-known, catalytic and purely catalytic P systems are computationally
complete (for multisets), too. Therefore, based on the results shown in Section 7
we get the following results (compare with Corollary 1):

Corollary 3. Globally homogenous PPT systems of type ncoo and degree 1 without
applicability conditions working in the sequential derivation mode are computation-
ally complete for multisets.

Corollary 4. PPT systems of type ncoo and degree 1 without applicability condi-
tions with one set of rules in the unique team working in the maximally parallel
derivation mode and all the other sets of rules working in the sequential derivation
mode are computationally complete for multisets.

10 Conclusion

In this paper we have considered the concept of using prescribed teams of sets of
rules being applied in different derivation modes, with the applicability of a team
possibly depending on a given condition. Among other general results, we have
shown that simple purely catalytic P systems with n catalysts can be simulated
by simple P systems with one prescribed team of sets of rules with all n sets of
non-cooperative rules in this team working in the sequential derivation mode thus
simulating the work of the n catalysts, as well as that simple catalytic P systems
with n catalysts can be simulated by simple P systems with one prescribed team
of sets of non-cooperative rules, where one set of this team works in the maxi-
mally parallel derivation mode and the other n sets of rules in this team work in
the sequential mode thus again simulating the work of the n catalysts. From the
results known for simple (purely) catalytic P systems, we immediately infer the
corresponding computational completeness results for the new variants of simple
P systems, with on one hand only using non-cooperative rules and no applicability
conditions. On the other hand, we can show computational completeness for differ-
ent variants of simple P systems with prescribed teams of sets of non-cooperative
rules by directly simulating register machines, thereby using applicability condi-
tions given as sets of (atomic) promoters and inhibitors.

Throughout this paper, we have restricted ourselves to the two basic derivation
modes, i.e., the sequential one and the maximally parallel derivation mode. A
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thorough investigation of simple P systems with prescribed teams of sets of rules
using other derivation modes remains for future research. Moreover, other kinds of
rules might be used, too; for example, insertion and deletion rules instead of non-
cooperative rules as already used for simulating register machines in Corollary 2.
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6. Csuhaj-Varjú, E., Dassow, J., Kelemen, J.: Grammar Systems: A Grammatical Ap-
proach to Distribution and Cooperation. Topics in computer mathematics, Gordon
and Breach (1994)
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