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1Vladimir Andrunachievici Institute of Mathematics and Computer Science,
The State University of Moldova, Academiei 5, Chis, inău, MD-2028, Moldova
artiom@math.md
2Faculty of Informatics, TU Wien
Favoritenstraße 9–11, 1040 Wien, Austria
rudi@emcc.at
3IBISC Laboratory, Université Paris-Saclay, Univ Évry
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Summary. Membranes are one of the key concepts in P systems and membrane comput-
ing, and a lot of research focuses on their properties and possible extensions: membrane
division, membrane dissolution, mobile membranes, etc. In this work, we explore the
possibility of using membranes for thinking about the emergence of milieu separations
at the origins of life. We propose a new variant of P systems with reactive membranes,
in which every symbol is initially surrounded by an elementary membrane, and in which
membranes can non-deterministically merge and split, leading to the formation of bigger
and more complicated membranes. We show that such non-deterministic splitting and
merging does not seem to radically affect the computational power: P systems with reac-
tive membranes and non-cooperative rules generate at least all semilinear languages, and
cooperative rules allow for simulating partially blind register machines. We briefly discuss
using P systems with reactive membranes for illustrating the emergence of autocatalytic
cycles, but actual constructions are left for future work.
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1 Introduction

Membrane computing is a multiset rewriting-based theoretical construct for natu-
ral computing, originally introduced by Gh. Păun in [23], and extensively studied
ever since. The structure of a membrane system—or a P system—mimics that
of a living cell: it is a hierarchical family of nested membranes, each carrying a
multiset of abstract objects and multiset rewriting rules. The objects can be seen
as formal representations of chemical species, and the rewriting rules capture the
biochemical interactions these species may have.

Beyond the obvious abstraction arrow between biochemical species and formal
objects, membrane computing parallels biological systems in another interesting
way. In biology, centralization of functions is quite frequent (e.g., central nervous
systems, specialized organs, etc.), but not fundamental. Only as a first example,
simple organisms carry out many activities in a decentralized way, weakly orches-
trated by interference between related processes. Take unicellular organisms: a
computer scientist may be tempted to consider the genetic material as the pro-
gram for the whole cell, but it is now known (e.g. [10]) that the relationship
between the genotype and the phenotype—its manifestation—is very far from the
clear program–execution duality imbuing computer science. As an abstraction of
hierarchically structured biochemistry, P systems inherit this weakly centralized
way of functioning, which makes them a good candidate for supporting the thought
process about some grand laws of biology.

In this paper, we lay the groundwork for using P systems as a tool for thinking
about some aspects of the emergence of life. The particular question we focus
on is the emergence of milieu separations, which played an essential role as they
allowed to isolate and protect relevant processes from the environment [11]. Since
P systems already include membranes as first-class citizens, we will use them as
a framework for thinking about the emergence of complex regions from simpler
ones.

The approach we take here is to posit that every copy of a symbol a is endowed
with some elementary space—a membrane which initially only contains the multi-
set a. Two such symbols can bond by merging their membranes, thereby yielding
a more complex membrane containing 2 symbols. Such membranes can further
merge, yielding bigger and bigger regions. Dually, membranes containing multi-
ple symbols can split into a pair of simpler membranes, with the content of the
original larger membrane distributed across its children. This is in fact membrane
separation (e.g. [7, 21, 22]).

Measuring the complexity of a membrane by the number of symbols it contains
is simultaneously simple and appropriate: cooperative evolution rules are allowed,
so more symbols means more applicable rules and therefore more interactions. In
the setup we establish in this paper, all membranes share the same common set
of evolution rules. The rules can naturally be seen as defining a chemistry, while
membrane merging and splitting can on the other hand be seen as some lower-
level ground laws governing who may interact with whom, i.e. the topology of
the interactions. The resulting abstract structures featuring merging and splitting
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membranes are therefore systems in which objects interact based on the non-
deterministic variations in their neighborhoods. We call such structures P systems
with reactive membranes.

Before using P systems with reactive membranes as a formal tool, a number of
important details have to be sorted out. In particular, we show that the definition
of membrane splitting and merging turns out rather nontrivial. Choosing when to
recover and how to interpret the result also impacts the form of the computations
of a P system with reactive membranes, and also what kind of results one can
expect. Finally, this P system variant as informally introduced above and defined
in Section 3 is very basic and may be extended in many ways, as we briefly show
in Section 5.

Note that we do not pretend to faithfully model in any way the processes which
happened at the origins of life. Rather, we acknowledge the exceptional complexity
of these processes, as well as the impossibility to experimentally verify any of
the related hypotheses (e.g., [17]). The intended role of P systems with reactive
membranes is to serve as a formal vehicle for an otherwise abstract thought process,
to help verify the latter in a basic way, and to help the researcher to deal with
complex questions. This approach is similar in spirit to the works [26, 27], in which
sign Boolean networks are used with a similar purpose.

P systems with reactive membranes are naturally part of the lineage of P sys-
tems with active membranes, and feature similarities with other variants in this
family. Among closely related variants are P systems with mobile membranes, in
which membranes are allowed to move across the membrane structure, and thereby
change their immediate neighbors [8, 9, 20]. Another variant are P systems with
vesicles of multisets, in which multisets are contained in vesicles, which are con-
tained in membranes, implying that entire multisets of symbols can travel between
different membranes, thereby activating different sets of rules [5, 15]. A key speci-
ficity of P systems with reactive membranes setting them apart from the other
variants is that membrane splitting and merging is global, compulsory, and inde-
pendent of the contents of the membranes or of the rules. This feature introduces
a basic form of space, through which the entities travel and in which they interact
in their immediate neighborhood. On the other hand, such compulsory splitting
and merging modulates the computational power in interesting ways.

This paper is structured as follows. In Section 2 we recall some basic concepts
from formal languages and P systems. In Section 3 we introduce P systems with
reactive membranes, and define the precise semantics of splitting and merging of
membranes. In Section 4 we present some first results concerning the computa-
tional power of P systems with reactive membranes, with non-cooperative and
cooperative rules. In Section 5 we give some examples of possible extensions to the
new variant. Finally, in Section 6, we discuss the potential of reactive membranes
for illustrating some processes which happened at the origins of life, as well as
some aspects of their computational power.
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2 Preliminaries

For an alphabet V , a finite non-empty set of abstract symbols, the free monoid
generated by V under the operation of concatenation, i.e., the set containing all
possible strings over V , is denoted by V ∗. The empty string is denoted by λ, and
V ∗\{λ} is denoted by V +.

For two natural numbers a, b ∈ N, a ≤ b, we use the notation [a..b] to refer to
the interval of natural numbers between a and b, both included: [a..b] = {a, a +
1, . . . , b}.

Given a finite set A, a multiset over A is a function w : A → N, assigning the
number of times an element of A appears in w. The infinite set of all multisets over
A is denoted by A◦. The family of finite sets of finite multisets over A is denoted
by Pfin(A

◦).
To spell out a multiset w, we will generally write any string containing exactly

the same symbols with the same multiplicities. For example, the strings aab, aba,
ba2 will be used to refer to the same multiset w with the property w(a) = 2,
w(b) = 1, and w(c) = 0 for all c ∈ A \ {a, b}. We denote the empty multiset by Λ,
i.e. ∀a ∈ A : Λ(a) = 0, and its string representation is λ, the empty string.

Given two multisets w1 and w2 over A, their multiset union w1 ∪w2 is defined
as (w1 ∪ w2)(a) = w1(a) + w2(a), for all a ∈ A. As their multiset intersection
w1 ∩w2 we define (w1 ∩w2)(a) = min{w1(a), w2(a)}. A restriction of the multiset
w : A → N to the subset B ⊆ A is the multiset w|B : A → N with the property
that w|B(a) = w(a) if a ∈ B and w|B(a) = 0 otherwise.

The family of regular, context-free, and recursively enumerable string languages
is denoted by L(REG), L(CF ), and L(RE), respectively. For a family of languages
FL, the family of Parikh images of languages in FL is denoted by PsFL. As
PsL(REG) = PsL(CF ), in the area of multiset rewriting L(CF ) plays no role at
all, and in the area of membrane computing we often only get characterizations of
PsL(REG) and PsL(RE).

For further notions and results in formal language theory we refer to textbooks
like [12] and [25].

In the rest of this section, we briefly recall P systems and the related concepts.
For more extensive overviews, we refer the reader to [18, 24].

A (transition) P system is a construct

Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, δ, hi, ho) where

• O is the alphabet of objects,
• T ⊆ O is the alphabet of terminal objects,
• µ is themembrane structure injectivley labelled by the numbers from {1, . . . , n}

and usually given by a sequence of correctly nested brackets,
• wi are the multisets giving the initial contents of each membrane i, 1 ≤ i ≤ n,
• Ri is the finite set of rules associated with membrane i, 1 ≤ i ≤ n,
• δ is the derivation mode, and
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• hi and ho are the labels of the input membrane and the output membrane,
respectively; 1 ≤ hi ≤ n, 1 ≤ ho ≤ n).

Taking into account the well-known flattening process, which means that com-
putations in a P system with an arbitrary (static) membrane structure can be
simulated in a P system with only one membrane, e.g., see [14], often only simple
P systems are considered, i.e., with the simplest membrane structure of only one
membrane region, and then we write:

Π = (O, T,w1, R1, δ)

Quite often, the rules associated with membranes are multiset rewriting rules
(or special cases of such rules). Multiset rewriting rules have the form u → v, with
u ∈ O◦ \ {λ} and v ∈ O◦, where O◦ is the set of multisets over O, and λ(a) = 0,
for all a ∈ O. If |u| = 1, the rule u → v is called non-cooperative, otherwise it
is called cooperative. In communication P systems, rules are additionally allowed
to send symbols to the neighbouring membranes. In this case, for rules in Ri,
v ∈ (O × Tar i)

◦, where Tar i contains the symbols out (corresponding to sending
the symbol to the parent membrane), here (indicating that the symbol should be
kept in membrane i), and inj (indicating that the symbol should be sent into the
child membrane j of membrane i). When writing out the multisets over O×Tar i,
the indication here is often omitted.

In P systems, rules are often applied in the maximally parallel way: in one
derivation step, only a non-extendable multiset of rules can be applied. The rules
are not allowed to consume the same instance of a symbol twice, which creates
competition for objects and may lead to non-deterministic choice between the max-
imal collections of rules applicable in one step. The maximally parallel derivation
mode is generally denoted by the symbol max. Other derivation modes include
the sequential derivation mode sequ in which exactly one rule is applied in every
step, the set maximally parallel derivation mode smax only allowing multisets of
rules in which every rule has multiplicity 1, as well as the asynchronous derivation
mode asyn under which no restriction is imposed on the applied multiset of rules.
We refer to the works [3, 4, 6, 16] for an in-depth discussion of the matter.

A computation of a P system is traditionally considered to be a sequence of
configurations it can successively visit, stopping at the halting configuration. A
halting configuration is a configuration in which no rule can be applied any more,
in any membrane. The result of a computation in a P system Π as defined above is
the contents of the output membrane ho projected over the terminal alphabet T .

We will use the notations N(Π) and Ps(Π) to respectively refer to the number
language and the language of multisets generated by Π. The notation OPn(δ, τ)
will refer to the family of P systems with at most nmembranes, operating under the
derivation mode δ and relying on the rules of type τ , where τ = coo if cooperative
rules are allowed and τ = ncoo if all rules are non-cooperative. Finally, we use the
notations NOPn(δ, τ) and PsOPn(δ, τ) to refer to the family of number languages
and multiset languages, respectively, generated by the P systems in the family
OPn(δ, τ).



28 A. Alhazov et al.

Example 1. Figure 1 shows the graphical representation of the P system formally
given by

Π = ({a, b, c, d}, {a, d}, [1[2]2]1, R1, R2, 1, 1),
R2 = {a → aa, b → b (c, out)},
R1 = ∅.

a → aa
b → b (c, out)

ab
2

d

1

Fig. 1. An example of a simple P system.

In the maximally parallel mode, the inner membrane 2 of Π will apply as many
instances of the rules as possible, thereby doubling the number of a, and ejecting
a copy of c into the surrounding (skin) membrane in each step. The symbol d in
the skin membrane is not used. Therefore, after k steps of evolution, membrane 2

will contain the multiset a2
k

b and membrane 1 the multiset ckd. Since all rules are
always applicable in Π, this P system never halts. ⊓⊔

3 Reactive Membranes

A P system with reactive membranes is the following construct:

Π = (O, T,W0, R, δ) where

• O is the alphabet of objects,
• T ⊆ O is the alphabet of terminal objects,
• W0 ∈ Pfin(O

◦) is the (finite) initial set of multisets over O,
• R ⊆ O◦ ×O◦ is the set of evolution rules, and
• δ is the derivation mode.

We will require that at least one of the sides of all rules in R be non-empty, i.e.

∀u → v ∈ R : u ̸= λ ∨ v ̸= λ.

We immediately stress two major features of this definition. On the one hand,
we do not include any membrane structure. Indeed, as W0 hints, we simply use
individual multisets to represent the contents of the individual membranes, without
explicitly representing the membranes themselves. Incidentally, this means that
membranes do not nest in this model. On the other hand, the evolution of all
symbols in all multisets is governed by the same common set of rules R.
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A configuration of Π is any set of multisets over O. Similarly to networked
models of computing like networks of evolutionary processors (e.g. [19]) or tissue
P systems with vesicles of multisets [5], a computation step in P systems with
reactive membranes consists of two stages:

1. splitting and merging,
2. evolution.

Informally, the splitting and merging stage implements the non-deterministic
evolution of the membranes—individual multisets under this definition—as de-
scribed in the introduction: any two multisets may merge, and any multiset may
split in two. The evolution stage consists in applying the evolution rules in R
to every multiset of the configuration, according to the mode δ. In the following
paragraphs we give a formal description of both stages, applied to a configuration
Wi ∈ Pfin(O

◦).

Splitting and merging stage

1. Non-deterministically partition Wi into 3 subsets:

Wi = Mi ∪ Si ∪ Ii

such that |Mi| is even, and the sets Si, Mi, and Ii are mutually disjoint, i.e.,
Si ∩Mi = Si ∩ Ii = Mi ∩ Ii = ∅. The multisets in Mi will be merged pairwise,
the multisets in Si will be split, and the multisets in Ii will remain intact.

2. Partition Mi into a set of disjoint pairs. Non-deterministically pick a bijection
φ : [1..|Mi|] → Mi and construct the following set:

M̂i = {(φ(2k − 1), φ(2k)) | 1 ≤ k ≤ |Mi|/2}.

Then define M ′
i = {w1 ∪ w2 | (w1, w2) ∈ M̂i}.

3. Define split(w) to be the set of all possible ways to split the multiset w into
two multisets:

split(w) = {(w1, w2) | w1 ∪ w2 = w,w1, w2 ∈ O◦}.

Define the set of all possible ways of splitting the multisets in Si:

Ŝi =
∏
w∈Si

split(w).

Non-deterministically pick S′
i ∈ Ŝi.

4. Compute the new intermediate configuration as

W ′
i = M ′

i ∪ flatten(S′
i) ∪ Ii,

where flatten(S′
i) = {w1, w2 | (w1, w2) ∈ S′

i}.

In the above presentation we describe merging before splitting, but the order of
the two substeps does not matter, since they occur on disjoint sets Mi and Si. Fur-
thermore, we stress that multiple intermediate configurations W ′

i may be obtained
from the same configuration Wi.
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Evolution stage

The evolution stage is defined in the conventional way by applying the rules in R
to every multiset in W ′

i individually, according to the derivation mode δ:

Wi = {w′ ∈ W ′
i | w

δ,R
==⇒ w′},

where w′ is a multiset derived from w by applying the rules in R under the mode δ.

A configurationW is halting if no rules are applicable in the evolution stage, for
any intermediate configuration W ′ which can be obtained from W in the splitting
and merging stage. An n-step halting computation of a P system with reactive
membranes Π is a finite sequence of configurations (Wi)0≤i≤n such that Wi+1 is
obtained from Wi by the computation step described above, and Wn is a halting
configuration.

As the result of a computation in a P system with reactive membranes Π as
defined above we take all the terminal objects appearing in the membranes present
in a halting configuration Wn:( ⋃

w∈Wn

w

)∣∣∣∣∣
T

=
⋃

w∈Wn

w|T .

To conclude the introduction of P systems with reactive membranes, we
again stress that the splitting and merging of multisets (or membranes) is non-
deterministic, imposed in every computation step, and independent of the features
of the configuration or of the rules in R. More concretely, the rules in R cannot
directly influence which symbols will appear next to which after the splitting and
merging stage.

Example 2. Consider the following P system with reactive membranes:

Π = (O, T,W0, R,max), where
O = {a, b, c, d, e, f},
T = {d, f},
W0 = {a, b, c},
R = {ab → d, abc → f, a → e}.

For the first step of the computation, Π may decide to not split or merge any
multisets (M0 = S0 = ∅, I0 = W0), meaning that the evolution rules will be
applied directly to singleton multisets a, b, and c. While no rules are applicable to
b or c individually, the rule a → e will have to be applied to a, yielding the next
configuration W1 = {b, c, e}. We can immediately conclude that the rules ab → d
and abc → f will never be applicable any more later in this computation, as there
is no way to reintroduce a. In sum, this halting computation yields the result Λ.
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Suppose now that Π decides to merge the multisets a and b in the first
step, yielding the intermediate configuration W ′

0 = {ab, c}. In this case a non-
deterministic choice will appear in the evolution stage between applying the rule
ab → d or a → e (both singleton sets of rules are non-extendable). As a conse-
quence, the following two possibilities exist for the second configuration: {d, c} and
{eb, c}. In sum, these halting computations yield the results d and Λ, respectively.

Finally, note that the rule abc → f will never be applicable with W0 = {a, b, c},
since putting a, b, and c together in one membrane requires at least two mergers,
and a will necessarily be consumed by a → e or ab → d along the way. On the
other hand, if we put together a, b and c in one multiset from the start, or even if
we put ab together and c apart, the rule abc → f will have a chance to be applied.
In particular, in the case in which the initial configuration is {ab, c} it suffices
to consider the branch of the computation along which Π decides to merge the
two multisets in the first splitting and merging stage. In sum, with the initial sets
{ab, c} and {a, b, c} we can get the results Λ, d, and f . ⊓⊔

As indicated by the example discussed above, it makes a difference in how
many multisets the initial multiset of objects is divided. Thus, we will use the
notation RenOP (δ, τ) to refer to the family of P systems with reactive membranes
starting with n initial multisets, running under the mode δ and using rules of
type τ ∈ {coo,ncoo}, as well as the notations NRenOP (δ, τ) and PsRenOP (δ, τ)
to refer to the family of number languages and multiset languages, respectively,
generated by the P systems with reactive membranes from RenOP (δ, τ).

Whereas on the one hand the previous example shows the effect of having
more than one initial membrane, prohibiting the application of some evolution
rules, the next example shows that the halting condition can be fulfilled due to
the fact that symbols are distributed over several membranes, although some rule
could be applied if all symbols on its left-hand side could be put into the same
membrane by a merge operation. As merging can only combine the contents of
two membranes, we can already get the situation that a rule with three symbols
in its left-hand side cannot be applied any more.

Example 3. Consider the following P system with reactive membranes:

Π = (O, T,W0, R,max), where
O = {ai, a′i, a′′i | 1 ≤ i ≤ 3} ∪ {f},
T = {a′′1 , a′′2 , a′′3 , f},
W0 = {a1a2a3},
R = {ai → a′i, a

′
i → a′′i , a

′′
1a

′′
2a

′′
3 → f}.

If in the first two steps of the computation, Π decides to not split or merge
any multisets, from W0 = {a1a2a3} with applying the rules {ai → a′i | 1 ≤ i ≤ 3},
after the first evolution step we obtain W1 = {a′1a′2a′3}, and by then applying
the rules {a′i → a′′i | 1 ≤ i ≤ 3}, after the second evolution step we obtain
W2 = {a′′1a′′2a′′3}. Keeping {a′′1a′′2a′′3} in the same membrane then allows for applying
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the rule a′′1a
′′
2a

′′
3 → f , thus obtaining the terminal result W3 = {f}, as W3 is a

halting configuration.
Yet with two splits, but still applying the rules {ai → a′i | 1 ≤ i ≤ 3} in the

first evolution step and the rules {a′i → a′′i | 1 ≤ i ≤ 3} in the second evolution
step, we get a two-step halting computation

{a1a2a3} =⇒ {a′1, a′2a′3} =⇒ {a′′1 , a′′2 , a′′3}

yielding the terminal result a′′1a
′′
2a

′′
3 .

We also mention that with having T = {f} only, this halting computation
yields the result Λ. ⊓⊔

4 Computational Power: First Results

In this section, we list some first results regarding the computational power of
P systems with reactive membranes. We start by remarking that the halting con-
dition can checked in an easier way when the system only includes non-cooperative
rules.

Remark 1. When using only non-cooperative rules, the halting condition for a con-
figuration W can be checked without considering all possible splits and mergers
and then the non-applicability of the rules in all membranes; instead it suffices
to check the non-applicability of the rules to the flatten(W ), i.e., to the union of
multisets in all the membranes of W .

The following result even holds for non-cooperative rules and cooperative rules.

Lemma 1. For every Re1OP (δ, τ) system there exist an equivalent RenOP (δ, τ)
system, for every n > 1.

Proof. Given a P system with reactive membranes using rules of type τ

Π ′ = (O, T, {w}, R, δ),

an equivalent P system with reactive membranes using rules of type τ with n
initial membranes is

Π ′ = (O, T, {w,w2 = Λ, . . . , wn = Λ}, R, δ).

In an empty membrane Λ, no non-cooperative rules or cooperative rules are appli-
cable. Moreover, merging a membrane X with Λ yields X again, so no additional
applications of rules can happen.

Now we show that splitting and merging do not affect the (results of the)
computations in a P system with reactive membranes at all, no matter which
derivation mode is used, when only non-cooperative rules are used. Hence, we get
a characterization of PsL(REG):
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Theorem 1. For any δ1, δ2 ∈ {asyn, seq,max, smax} and Y ∈ {N,Ps} as well
as any n ≥ 1,

Y RenOP (δ1,ncoo) = Y OP1(δ2,ncoo) = Y L(REG).

Proof. The equality Y OP1(δ2,ncoo) = Y L(REG) is folklore, e.g., see [24]. The
main idea for proving this result is that the evolution of symbols by applying
non-cooperative rules can be described by a derivation tree, but for the resulting
terminal objects it is completely irrelevant when the symbols evolve.

A similar argument now can be used here to argue that for any δ1 ∈
{asyn, seq,max, smax},

Y RenOP (δ1, ncoo) = Y OP1(asyn, ncoo) = Y L(REG).

(⇒) Given a P system with reactive membranes

Π ′ = (O, T, {w}, R, δ1),

we can easily define the equivalent simple P system

Π = (O, T,w,R, asyn).

Even distributing the contents of a single membrane over several membranes,
even at the beginning with having several initial multisets, does not effect
the applicability of the non-cooperative rules. Yet we have to mention that
using the sequential derivation mode in several membranes yields a kind of
parallelism like smax, but also this has no effect on the results of computa-
tions, especially as, according to Remark 1, halting only depends on the non-
applicabiltiy of all rules to the symbols in all the multisets of the underlying
configuration.

(⇐) Given a simple P system

Π = (O, T,w,R, asyn),

we can easily define the equivalent P system with reactive membranes

Π ′ = (O, T, {w}, R, asyn).

Any derivation of the 1-membrane transition P system Π operating under the
the asynchronous derivation mode can be directly simulated by the P system
with reactive membranes Π ′ which uses the same rules for the evolution stage,
but then always chooses to not split or merge any membranes, i.e. Mi and Si

from the splitting and merging stage are always empty. As we are only using
non-cooperative rules, the applicability of all the (multisets of) rules applied
in Π is also guaranteed in Π ′.
Finally we can apply Lemma 1 to get an equivalent P system with reactive
membranes with n initial membranes.
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In sum we see that P systems with reactive membranes behave as the corre-
sponding transition P system when only non-cooperative rules are used. ⊓⊔

Finally, P systems with reactive membranes working under the maximally par-
allel mode and using cooperative rules can simulate partially blind register ma-
chines. As a reminder, we mention that partially blind register machines (PBRM)
have programs consisting of the following two types of instructions for increment-
ing and decrementing a register:

• (p,ADD(r), q, s): in state p increment register r and jump to state q or state s;
• (p, SUB(r), q): in state p try to decrement register r; if successful, jump to

state q, otherwise abort the computation without producing a result.

Partially blind register machines feature a final zero check: the register machine
only halts with producing a result if all non-output registers are empty when the
machine reaches the halting instruction uniquely labeled by h.

We will refer to the set of multiset languages generated by partially blind
register machines by PsPBRM .

Theorem 2. For any δ ∈ {asyn, sequ,max, smax},

PsPBRM ⊆ PsRe1OP (δ, coo).

Proof (Sketch). The main idea of the proof is that throughout the simulation of the
partially blind register machine, the configurations of the P system with reactive
membranes Π always contains exactly one instance of the symbol representing
the label of the instruction to be carried out next. The contents of a register r is
represented by the total number of symbols ar in the configurations of Π.

The increment instruction (p,ADD(r), q, s) can be simulated directly by the
rules p → qar and p → sar.

The decrement instruction (p,SUB(r), q) can be simulated by the following two
rules: par → q, p → p. Moreover, for every register symbol ar with r not being an
output register, we add the unit rules ar → ar.

Indeed, if p and a copy of ar find themselves in the same membrane, then a
successful decrement is simulated: the total number of copies of ar in the system
is reduced by one.

If there are no copies of ar left in the system, then p only has the chance to
be used with the unit rule p → p; observe that in any derivation mode at least
one rule has to be applied if the system is not halting, i.e., as long as there still
is a rule which can be applied to some symbol. In this case, either p → p and/or
some unit rule ar → ar can be applied in every future derivation step, hence, the
computation will never halt.

If copies of ar do appear in the system, but not in the membrane containing
p, then p can use the unit rule p → p, and in any derivation mode either only this
rule and/or other unit rules ar → ar can be applied. If in some future step, p and
ar appear in the same membrane, possibly par → q can be applied. Otherwise,
again we obtain just non-halting computation branches.
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However, there must exist another branch in which no splits and mergers have
happened at all, i.e., p and ar are together, and in which the simulation therefore
will be able to proceed correctly. The same alternative holds if p and ar share the
same membrane, but the system non-deterministically would choose to only apply
p → p rather than par → p.

As soon as the halting label h appears, we have to use the final rule h → λ. The
final zero check is simulated by the unit rules ar → ar for all non-output registers r,
which keep the computation to go on forever if at least one such symbol ar is still
present. Observe that this argument does not depend on the distribution of the
symbols in the membranes of a configuration.

In sum, we conclude that the P system with reactive membranesΠ can simulate
the computations of the given partially blind register machine correctly, but on
the other hand cannot yield more results. ⊓⊔

Finally, we remark that the construction we show here is non-deterministic,
even if the simulated partially blind register machine is deterministic, i.e., all
increment instructions are of the form (p,ADD(r), q, q), which in a simpler way
can be written as (p,ADD(r), q).

5 Extensions

Given the motivation to use P systems with reactive membranes for thinking about
the emergence of space and space separations in abiotic environments, and also
the richness of the ecosystem of P systems variants, multiple extensions can be
proposed.

A natural one to be considered would be limiting the size of individual mem-
branes, as real membranes do not generally grow very big. Limitations on the
number of symbols have already been considered in P systems [2], but combined
with constant splitting and merging this ingredient may have a drastically different
impact. It would be necessary to decide what happens when a membrane attains
its maximal capacity. The approach in [2] is to prevent it to accept new symbols,
but in the context of reactive membranes it may be appropriate to bias the split-
ting and merging stage of the computational step to force such full membranes
to split. The contribution of such limitations to the computational power is yet
unclear, but probably in some strong relation to the size of the left-hand sides of
the evolution rules.

An extension in the spirit of generalized P systems [13] would be to subject the
rules to splitting and merging. With such an extension, membranes would contain
objects and rules, and splitting and merging would affect not only which symbols
can interact, but also which rules will ensure their interaction.

Finally, splitting and merging could also be applied to rules: for example, a
rule u → v could split into two rules u → α and α → v, which could later merge
back into u → v. Similarly to splitting and merging of membranes, splitting and
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merging of rules delays some interactions. Relevance to thinking about the origins
of life and the computational power of this variant remain to be explored.

6 Conclusion and Perspectives

This paper is a first attempt at using P systems for thinking about the origins of
life, and in particular about the emergence of individual compartments separated
by membranes. We introduced P systems with reactive membranes, in which ev-
ery symbol is conceptually surrounded by elementary membranes, which then can
merge to form bigger membranes, or split. Mimicking biochemistry, the set of rules
is common to all membranes—the differences in the processes in different mem-
branes should come from the symbols. Cooperative rules are allowed, and probably
even necessary to meaningfully implement distinctions between membranes.

It is still an open research direction to actually illustrate some processes be-
lieved to have happened during abiogenesis in P systems with reactive membranes.
Perhaps the most promising would be to implement autocatalytic cycles (e.g. [11]).
The next step would be to implement self-replication, as suggested by José M. Sem-
pere in a discussion. Indeed, in P systems with reactive membranes the membrane
structure emerges spontaneously, which makes them a promising candidate for
implementing self-replication of something other than symbol objects.

A parallel research direction which we started to explore in this paper is the
computational power of P systems with reactive membranes. We have shown here
that splitting and merging does not affect the computational power of P systems
with reactive membranes using non-cooperative rules—P systems with reactive
membranes using non-cooperative rules have the same computational power as
simple P systems provided we only start with one singleton multiset, no matter
which derivation mode we use. Based on this result, we have shown that P systems
with reactive membranes can characterize the family of Parikh sets of semilinear
languages when using only non-cooperative rules in any derivation mode.

Finally, when cooperative rules are allowed, P systems with reactive membranes
can generate all multiset languages generated by partially blind register machines.

Several questions still remain to be addressed, in particular: can splitting and
merging augment the computational power? It would indeed be surprising, but it
has already been shown that non-deterministic shuffling of rule right-hand sides
allows for generating non-semilinear languages [1], meaning that random shuffling
of symbol neighborhoods as described in this paper may boost the power of the
variant in some specific cases.

A subtle aspect which we do not discuss in depth in this paper is the halting
condition and the procedure for retrieving the result. There is an asymmetry be-
tween these two: halting occurs when no more evolution rules are applicable after
all possible splits and mergers. On the other hand, getting out the result essentially
happens by merging all membranes into a single one.

Since the computational results we give in this paper seem to depend directly
on the halting condition and on the procedure for obtaining the result, it would
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be relevant to explore how slight variations in these two affect the computational
power of P systems with reactive membranes.

Finally, in Section 5 we have suggested several possible extensions of the new
variant. A formal exploration of the computational power of such extensions would
be quite relevant. Even more importantly, it would be very relevant to identify
which extensions are more useful for using P systems with reactive membranes in
thinking about the origins of life.
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