
Queens of the Hill

Artiom Alhazov1, Sergiu Ivanov2, David Orellana-Mart́ın3,4

1Vladimir Andrunachievici Institute of Mathematics and Computer Science,
The State University of Moldova, Academiei 5, Chis, inău, MD-2028, Moldova
artiom@math.md
2IBISC Laboratory, Université Paris-Saclay, Univ Évry
91020, Évry-Courcouronnes, France
E-mail : sergiu.ivanov@univ-evry.fr
3Research Group on Natural Computing,
Department of Computer Science and Artificial Intelligence,
Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: dorellana@us.es
4SCORE Laboratory, I3US, Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

Summary. Inspired by the programming game Core Wars, we propose in this work a
framework and the organisation of king of the hill-style tournaments between P systems.
We call these tournaments Queens of the Hill and the individual contestants valkyries.
The goal of each valkyrie is to dissolve as many membranes of as many other valkyries as
possible, while at the same time resisting the attacks. Valkyries are transition P systems
with cooperative rules, target indication, and rudimentary matter–anti-matter annihi-
lation rules. These ingredients are sufficient for computational completeness, but the
context of Queens of the Hill reduces the relevance of this statement. We give some ten-
tative examples of strategies and discuss their advantages and drawbacks. Finally, we
describe how Queens of the Hill can be used as a teaching exercise, and also a tool to
federate the students’ creativity to push the frontiers of membrane computing.

Keywords: Core Wars, membrane dissolution, anti-matter, interaction.

1 Core Wars

To cite [11], “Core War (or Core Wars) is a programming game where assembly
programs try to destroy each other in the memory of a simulated computer.” In
Core Wars, programmers design programs—called warriors—with two goals in
mind:

1. kill as many other programs as possible,

42 A. Alhazov, S. Ivanov, D. Orellana-Mart́ın

2. survive for as long as possible against the attacks of the other programs.

In the most basic setup, all programs are loaded in the same shared memory
space, and only feature instruction segments, i.e. their memory only contains code,
and data is stored as part of some of the instructions. No memory protection is
available for the instructions, so all programs can write anywhere, including to the
instruction segments of competitors, which is the primary way of attacking. The
simplest warrior is called the Imp and only consists of a single instruction in the
special assembly language called Redcode:

MOV 0, 1

The numbers correspond to addresses in the memory space relative to the current
instruction, so 0 refers to the current instruction slot, and 1 refers to the next
one. This program copies its only instruction to the next memory slot, which then
copies itself to the next one, etc. The Imp therefore ends up populating the whole
memory with copies of itself.

As small and impressive as it is, the Imp will never actually win, because it just
reproduces itself, possibly over the code of the competitors, but it never kills any
competitor. To kill a process, Redcode features the special instruction DAT. When
it is executed, the current process is killed. A simple winning code would throw DAT

over the whole memory, while simultaneously avoiding to run this instruction in
its own execution. This is what the warrior called the Dwarf does, whose detailed
presentation is given in [11].

Multiple servers exist continuously running Code Wars tournaments in the
king of the hill mode (see section “Climbing the hill” in [11]): 10 to 30 warriors
are loaded in the same shared memory space and are run sequentially, on a sin-
gle virtual processor, which interleaves the execution of the instructions of every
warrior. The score of a warrior in a match roughly corresponds to the number of
other warriors it has killed. The warrior with the highest score is the current king
of the hill, and the warrior with the lowest score falls off the hill: it is replaced by
a new warrior.

2 Queens of the Hill

In this submission we propose a framework for running king of the hill style tour-
naments between P systems. We refer to such tournaments as (P) Queens of the
Hill, and we call individual contestants valkyries. In this section, we propose the
formal framework to be used for the valkyries as well as the rules for Queens of
the Hill tournaments.

2.1 Valkyries

Our choice of the P system variant for the valkyries is guided by the following two
principles: ability to interact with the other contestants and ease of programming.

Queens of the Hill 43

We choose here a variation on what is sometimes called transition P systems, which
is partially inspired by P automata with matter–anti-matter annihilation rules as
shown in [5] and by P colonies [2]. As a reminder, the original P automata rely on
antiport rules exclusively [3].

We define a (valkyrie) P system as the following tuple:

Π = (O,µ,w1, . . . , wn, R1, . . . , Rn), where

• O = Σ ∪∆k is a finite alphabet of objects,
• ∆k = {δt, δ̄t | 1 ≤ t ≤ k} ∪ {δ} for some fixed k ∈ N,
• µ is the hierarchical membrane structure bijectively labeled by the numbers

from 1 to n and usually presented as a sequence of correctly nested brackets,
• wi is the initial multiset in membrane i, 1 ≤ i ≤ n,
• Ri is the finite set of rules in membrane i, 1 ≤ i ≤ n.

The rules in Ri feature full cooperation and may use target indications. More
precisely, a rule in Ri has the form u → v, where u ∈ Σ◦, u ̸= λ, is a non-empty
multiset over Σ, and v ∈ (O×Tar)◦ is a multiset of symbols over O, each equipped
with target indications Tar = {in, here, out}. A symbol appearing with the indi-
cation in in v will be sent into a non-deterministically chosen inner membrane of
membrane i, a symbol with the indication here will remain in membrane i, and a
symbol with the indication out will be sent to the parent membrane. If membrane i
does not have any inner membranes, the symbols with target indication in will be
kept in membrane i, i.e. the target indications in and here are equivalent in the
case of elementary membranes. For readability, we will always omit the indication
here, i.e. instead of writing (a, here)(a, here)(b, out) we will write aa(b, out).

The symbol δ ∈ ∆k has the special semantics of dissolving the membrane in
which it appears. More formally, once δ is introduced into membrane i, all of its
objects and inner membranes are moved to its parent membrane, and membrane i
is removed from the system—non-elementary membrane dissolution is allowed.
Membrane dissolution happens at the end of a computation step, and all intro-
duced copies of δ are removed from the system after all dissolutions are performed.
It follows incidentally that introducing any number of copies of δ in a membrane
produces exactly the same as effect as introducing one copy of δ. Dissolution of
the outermost (skin) membrane is forbidden, i.e. introducing a copy of δ into the
skin membrane will have no effect and the symbol δ will be immediately removed.

All sets Ri, 1 ≤ i ≤ n, also include the following rules:

Rδ
k = {δt → δt−1 | 2 ≤ t ≤ k} ∪ {δ1 → δ}
∪ {δtδ̄t → λ | 1 ≤ t ≤ k}.

Informally, the symbol δt is equipped with a timer which triggers the dissolution
of the containing membrane after t steps. The rules δtδ̄t → λ have weak priority,
meaning that if both a copy of δt and δ̄t are present, then they must be erased
(annihilate), preempting the evolution rule for δt.

44 A. Alhazov, S. Ivanov, D. Orellana-Mart́ın

Since the left-hand sides of the rules in Ri\Rδ
k are multisets over Σ, these rules

cannot directly detect or rewrite the symbols in ∆k. However, they can produce
the anti-symbol δ̄t to force the annihilation of a symbol δt if it is present in the
current membrane.

The rules are applied in the maximally parallel way, with weak priority of the
annihilation rules δtδ̄t → λ. A computation steps proceeds in the classical fashion,
by first non-deterministically choosing a non-extendable multiset of rules to apply,
applying it, and performing all the necessary dissolutions. A halting configuration
is a configuration in which no more rules are applicable. We can consider halting
computations of P systems, but due to the continual nature of the tournament,
we will generally consider infinite or time-limited computations instead.

Example 1. Consider the following valkyrie P system:

Π = (O, [1[2[3]3]2]1, d, bδ̄1, a, R1, R2, R3),

O = {a, b, c, d} ∪∆2,

R1 = {d → d, d → d(δ2, in)} ∪Rδ
2,

R2 = {bc → b} ∪Rδ
2,

R3 = {a → aa(c, out), a → δ} ∪Rδ
2.

As a reminder, ∆2 = {δ2, δ1, δ} ∪ {δ̄1, δ̄2} and Rδ
2 = {δ2 → δ1, δ1 → δ} ∪ {δ2δ̄2 →

λ, δ1δ̄1 → λ}. Figure 1 gives a graphical illustration of the P system above. For
conciseness, we omit the rules in Rδ

2 from such graphical illustrations.

a → aa(c, out)
a → δ

a
3

bc → b

bδ̄1

2

d → d
d → d(δ2, in)

d

1

Fig. 1. A simple valkyrie P system. The rules from Rδ
2 are not represented.

The rule a → aa(c, out) in membrane 3 doubles some of the a, and also ejects
the corresponding number of c in membrane 2. The remaining copies of a are used
to produce δ, which will dissolve membrane 3, copying all instances of a it contains
into the parent membrane 2. The symbol b in membrane 2 will progressively erase
all the copies of c ejected by membrane 1.

The symbol d in the skin may choose between simply maintaining itself, or
also injecting δ2 into membrane 2. The first copy of δ2 injected into 2 will undergo
the evolution rule δ2 → δ1, and will afterwards annihilate with δ̄1 already present
there from the start. However, the second copy of δ2 the rule d → d(δ2, in) will
inject into membrane 2 will be free to produce δ in two steps thereby dissolving
membrane 2. If by this time the rule a → δ has not yet been applied in membrane 3,

Queens of the Hill 45

membrane 3 will become the direct inner membrane of membrane 1, so the next
application of the rule d → d(δ2, in) will send δ2 in membrane 3, leading to its
dissolution in two steps. Therefore, this valkyrie P system always converges to
a cycle of configurations in which there is only the skin membrane containing a
copy of d, a copy of b, possibly some copies of c, some copies of a, as well as a
symbol from {δ2, δ1}, which always ticks down to δ without any effect, since the
dissolution of the skin membrane is disallowed. ⊓⊔

2.2 Tournament Setup

The setup of Queens of the Hill tournaments is partially inspired by P colonies [2]:
a set of valkyrie P systems is grouped together in a big skin membrane, which
always sends back in whatever is sent out. More formally, we define an m-Queens
of the Hill tournament as the following tuple:

Q = (O,Π1, . . . ,Πm),

where O = Σ ∪ ∆k and Πj is a valkyrie P system as defined in Section 2.1. All
P systems Πj share the same sets of symbols Σ and O. The tournament Q is a
P system obtained by placing all Πj into a common outer membrane 0 with the
empty initial multiset and with the following set of rules:

R0 = {a → (a, in) | a ∈ O} ∪Rδ
k.

In other words, R0 always sends in whatever symbols are sent out from the in-
dividual valkyries, but due to non-determinism these symbols do not necessarily
end up in the valkyrie which produced them. Note that R0 contains 2 rules for
symbols δt: such a symbol may be sent in, or it may evolve into δt−1. As before,
if the corresponding anti-symbol δ̄t is also present, the annihilation rule δtδ̄t → λ
will have to be applied. Finally note that R0 is the only set of rules in which the
left-hand sides are allowed to include δt.

Π1

(1, 1)

Πm

(m, 1)

. . .

{a → (a, in) | a ∈ O} ∪Rδ
k

0

Fig. 2. An informal picture of an m-Queens of the Hill tournament Q. The skin mem-
branes of the valkyries Πj are relabelled as (j, 1).

A Queens of the Hill tournament obeys the same semantics as valkyrie P sys-
tems defined in Section 2.1. In particular, this means that the dissolution of the

46 A. Alhazov, S. Ivanov, D. Orellana-Mart́ın

skin membranes of a valkyrie Πj is allowed, because at this time it is surrounded
by the bigger skin membrane of the whole tournament Q. To preserve consistent
membrane labelling, a membrane i in the valkyrie P system Πj is renamed into
membrane (j, i) in the tournament Q.

2.3 Tournament Organization

An m-Queens of the Hill tournament runs all the valkyries in the maximally paral-
lel mode multiple times and for a limited number of steps. At the end, the score of
each valkyrie is computed from the number of its membranes that was dissolved.
Non-determinism in the computations is resolved probabilistically, as it is done in
the P-Lingua framework [4, 6]: at every non-deterministic branching point, one of
the branches is chosen under the uniform probability distribution.

More concretely, the tournament runs in the following way:

1. Run the computation for N steps, resolving non-determinism according to the
uniform probability distribution.

2. Repeat Step 1 M times.

The score of a valkyrie is computed according to the following formula:

score(Πj) =
1

|Πj |

(
|Πj | −

1

M

M∑
i=1

dissi(Πj)

)
,

where dissi(Πj) is the number of membranes of Πj that were dissolved during
the i-th computation (i-th run of Step 1 above), and |Πj | is the total number of
membranes in Πj .

Example 2. Suppose that Πj has 5 membranes, |Πj | = 5, and take M = 3. Further
suppose that 2, 3, and 4 membranes of Πj were dissolved respectively in the
first, second, and third computations, i.e. diss1(Πj) = 2, diss2(Πj) = 3, and
diss3(Πj) = 4. Then the score of Πj in this tournament will be:

1

5

(
5− 2 + 3 + 4

3

)
=

2

5
.

Informally, the score of a valkyrie is how many membranes on average it retains
by the end of a computation of the tournament, normalized by its total number
of membranes. ⊓⊔

A valkyrie has the highest score of 1 if none of its membranes is ever dissolved
in the tournament. It has the lowest score of 0 if all its membranes are always
dissolved.

Queens of the Hill 47

2.4 Tournament Parameters

Table 1 summarizes the parameters governing a Queens of the Hill tournament
that were introduced in the previous sections. The values of these parameters may
have a significant impact on the strategies adopted by the individual valkyries.
Smaller values of |Σ| reduce the richness of the behaviors of a valkyrie and make it
less robust to perturbations coming from the skin membrane 0, i.e. from the other
valkyries. Larger values of k mean more opportunities for the symbols δt to be
captured. Larger values of m mean lower probability of receiving a symbol δt after
emitting it into the skin membrane 0. Shorter computation lengths N mean that
lightning attacks may be more feasible, while smaller values for M mean fewer
computations in a tournament, which increases the contribution of randomness to
the outcome.

|Σ| 10 The number of working symbols.
k 5 The maximal value of the index t in δt.
m 10–20 The number of entrants in the tournament.
N 1000 The length of a computation in the tournament.
M 50 The total number of computations in the tournament.

Table 1. A summary of the parameters governing a Queens of the Hill tournament,
together with the possible values for these parameters.

3 A Note on Computational Complexity

Valkyrie P systems as defined in Section 2 are quite obviously computationally
complete, even with a subset of the ingredients. In particular, full cooperation
together with the maximally parallel mode suffice to simulate arbitrary register
machines. We refer the reader to the first publication in membrane computing [15]
for the very first proofs, as well as to the more recent [10, 16] for a sample of the
wide variety of techniques for proving computational completeness of P system
variants. For the record and for the sake of the discussion of the possible strate-
gies in Queens of the Hill tournament, we briefly recall a proof of computational
completeness of P systems as defined above.

A (deterministic) register machine is an abstract computational device con-
sisting essentially of a finite set of registers and a program. The registers can
contain natural numbers or zero. The program consists of the following two types
of instructions:

• (p,ADD(r), q): in state p, increment register r and go to state q;
• (p, SUB(r), q, s): in state p, check the value of register r; if its value is strictly

positive, decrement it and go to state q; otherwise go to state s.

48 A. Alhazov, S. Ivanov, D. Orellana-Mart́ın

Register machines are famously computationally complete. We refer the reader
to [13] for a much more in-depth discussion.

One-membrane valkyrie P systems can simulate both types of register machine
instructions, even without dissolution or anti-matter rules. Classically, the alpha-
bet Σ will include one symbol per state p of the register machine, and the value
of register r will be represented by the multiplicity of symbol ar. The instruction
(p,ADD(r), q) can be directly simulated by the rule p → qar. The simulation of
(p, SUB(r), q, s) is more intricate, as usual, and relies on non-determinism and
maximal parallelism: the symbol p non-deterministically guesses whether the reg-
ister is empty, and a trap symbol is produced if the guess is wrong. The following
table lists the rules for both branches, arranged by steps:

Decrement Zero test

1. p → p̄1p̂1 p → p̃1ṗ1
2. p̄1ar → p̄2, p̂1 → p̂2 ṗ1ar → #, p̃1 → p̃2
3. p̂2p̄2 → q, p̂2p̄1 → # p̃2ṗ1 → s

The decrement branch begins by splitting the state symbol p into p̄1 and p̂1.
The symbol p̄1 erases a copy of ar if it is present in the system and evolves into
p̄2. It does not evolve if no copies of ar are present. At the same time, p̂1 evolves
into p̂2. In the third step, p̂2 evolves into q in the presence of p̄2, i.e. in the case in
which the decrement was successful. If the decrement could not happen, p̂2 finds
p̄1, which produces the trap symbol.

The zero test branch begins by splitting the state symbol p into p̃1 and ṗ1. The
symbol ṗ1 must evolve into the trap symbol # if it finds a copy of ar, as ṗ1ar → #
is the only rule which may transform ṗ1. In the meantime, p̃1 evolves into p̃2. If
in the third step ṗ1 is still present in the system, this means that it did not find
any copies of ar, the register is empty, and the symbol s is produced. Otherwise
p̃2 cannot evolve, but this also means that a trap symbol was produced at step 2,
meaning that the computation will never halt.

The argument above shows that the language of valkyries in Queens of the
Hill tournaments is rich enough. However, note how this argument relies on two
essential details which are partially relevant or even irrelevant in Queens of the
Hill: non-determinism and halting. On the one hand, non-determinism is resolved
probabilistically, meaning that not all possibilities will be explored, and that some
of them may be explored multiple times. Furthermore, proofs of computational
completeness in P systems classically consider the results produced at the end of
halting computations, while in Queens of the Hill halting does not have a central
role. What is important in Queens of the Hill is communicating with the other
valkyries, i.e. attempting to dissolve as many of their membranes as possible, as
soon as possible. From this standpoint, efficiency is important, while actual compu-
tational complexity is much less relevant, as long as the valkyrie manages to attain
a relatively high score. Finally, note how |Σ| is a powerful tool for modulating the
complexity and the efficiency of individual valkyries.

Queens of the Hill 49

4 Tentative Strategies

The main goal of Queens of the Hill is turning P system design into a game
involving teams of students on the front line, backed by researchers collecting
and systematizing the explicit and implicit knowledge produced by the teams
designing the valkyries. In this section, we present several tentative strategies,
whose efficiency or relevance will be the subject of immediate future work.

One of the first strategies one may think of when seeing the rules of Queens
of the Hill is the Bomber: eject δt for some value of t into the skin membrane 0
and hope that none of those symbols is sent back into the same membrane. The

{a → a(δt, out) | 1 ≤ t ≤ k}
a

1

Fig. 3. The Bomber.

efficiency of the bomber decreases as the number of valkyries decreases. For ex-
ample, when there is only one other valkyrie, the probability is quite high that
the ejected δt lands back in the Bomber. Note that this probability is not exactly
1
2 , since the rule δt → δt−1 can also be applied in the skin, potentially until the
production of δ.

The Bomber can be made more robust by making it accumulate copies of δ̄t
for some values of t, so that the symbols δt coming from the skin annihilate with
the corresponding copies of δ̄t. While this strategy can deal with an occasional δ̄t,
it will be quickly overwhelmed when sharing the tournament with a considerable
population of bombers.

{a → aδ̄t(δt, out) | 1 ≤ t ≤ k}
a

1

Fig. 4. The Bar Bomber.

Another variation of the Bomber is the strategy of ejecting δ̄t in the hope of
neutralizing δt before it even gets into the valkyrie. This has the obvious disad-
vantage that it will also protect the other valkyries from δt.

In case the number of competing valkyries m—or an upper bound on m—is
known, robustly dealing with such bomber strategies is in fact not very difficult: it
suffices to ensure the presence of r(m−1) copies of δ̄1 at all times, where r ∈ N\{0}
is a natural factor which we discuss in the following paragraph. Indeed, it is not
necessary to provide for δ̄t for t > 1, as these symbols will inextricably tick down
to δ1 and will have to annihilate with δ̄1.

50 A. Alhazov, S. Ivanov, D. Orellana-Mart́ın

{a → a(δ̄t, out)(δt, out) | 1 ≤ t ≤ k}
a

1

Fig. 5. The Anti-Bomber.

a → aδ
r(m−1)
1

aδ
r(m−1)
1

1

Fig. 6. The Delta Wall.

The idea behind the factor r is that other strategies may try to beat the
Delta Wall by having rules emitting a large number of δt. However, the more
such symbols are emitted, the lower the probability that they end up in the same
valkyrie, meaning that the Delta Wall will have a high degree of resilience, even
for smaller values of r, like 3 or even 2.

Another protective strategy consists in wrapping the valkyrie in a couple of
additional membranes. In this way, the valkyrie can tolerate several membrane
dissolutions without being thrown out of the game.

a → a(b, out)

a
2

{a → (a, out) | a ∈ Σ}
1

Fig. 7. The 2-layer Onion.

Remark that the Onion will have trouble emitting δt symbols. Firstly, the rules
in the valkyrie are not allowed to contain δt in their left-hand sides, so the rules
of the shape δt → (δt, out) are not allowed. If instead of emitting δt a different
symbol d is used, then it is necessary to convert d into δt at some moment. If
such conversion rules only appear in the outermost membrane of the Onion, then
dissolving that membrane will remove those rules. On the other hand, including
such rules in every layer of the Onion will create the possibility that an inner level
inadvertently causes the dissolution of an outer level. Therefore, a strategy which
may work best with the Onion would consist in relying on the relative scarcity
of the symbols in Σ and in trying to destabilize the other valkyries by forcing
some unexpected symbols into their membranes. For this to work, |Σ| has to be
sufficiently small.

Queens of the Hill 51

Finally, the last tentative strategy we present in this section is the Bombshell.
The idea is to have multiple inner membranes which are all released into the skin
membrane of the tournament, therefore creating a family of cooperating agents be-
longing to the same team. This allows for exceeding the total number of valkyiesm,
but comes at the price of dissolving a membrane, which will be reflected in the
final score.

Subvalkyrie1

2

Subvalkyrie2

3

Subvalkyrie3

4

δ

1

Fig. 8. The scheme of a 3-charge Bombshell.

5 Future Work and Perspectives

The immediate future work is setting up Queens of the Hill tournaments between
valkyries designed by teams of students taking a course in formal languages or in
natural computing. Queens of the Hill can be seen as a programming exercise in the
language of an unconventional model of computing with a concrete goal: attacking
all other contestants and surviving against their attacks for as long as possible.
This context can also be used to introduce questions from theoretical biology about
evolution and robustness, somewhat in the spirit of [17, 18]. We remark that such
exercises are quite widespread in teaching of multi-agent systems and autonomic
systems, as NetLogo-related resources illustrate [19].

To us as teachers and researches (enseignants-chercheurs as they say in French),
Queens of the Hill is a great opportunity to employ our students’ creativity to
push the frontiers of what can be done with P systems. In the particular setup we
describe in this paper we focus on transition P systems with non-elementary mem-
brane dissolution and some rudimentary matter-antimatter annihilation rules, a
model directly supported by P-Lingua. Obviously, other variants of P systems
and the corresponding simulator engines can be used as the underlying formal-
ism, thereby stimulating the students’ interest in these other variants. Among the
salient examples we cite kernel P systems [7, 12] and cP systems [8, 9, 14].

While valkyrie P systems are in principle computationally complete (Section 3),
individual computational steps are less expressive than register machine instruc-
tions, meaning that designing valkyries de facto explores the capabilities of a less
powerful language. Furthermore, good valkyrie design will require estimating the
probabilities of different branches of computation, which will encourage the stu-
dents to delve deeper into probability theory.

The setup we propose in this paper is at an early stage. We will most likely need
to further tune the values of the parameters in Table 1, and probably also adjust

52 A. Alhazov, S. Ivanov, D. Orellana-Mart́ın

some aspects of the definitions of valkyrie P systems as well as of the tournament
in order to avoid trivial edge cases and incite the design of complex strategies. An
important question is the relevance of the scoring function score(Πj) introduced in
Section 2.3—other scoring functions may better capture the results of the compe-
tition. It is also possible to define scoring functions measuring the production of a
certain set of symbols, thereby shifting the focus away from membrane dissolution
entirely. One could also think about tracking the origins of the symbols, which
could in principle allow saying which valkyrie dissolved which other valkyrie. This
would require a rather fine analysis of the computations.

On a final note, we remark that while Queens of the Hill tournaments are
directly inspired by Core Wars, the P system context shuffles things up quite a
bit. In particular, data is secondary in Core Wars, and warriors interact by writing
over each other’s code. If we take the rules to be the program in P systems, then the
programs of the valkyries are immutable in the sense that individual rules cannot
be modified1. However, it is possible to instantly and entirely erase parts of their
programs by dissolving the corresponding membranes. Furthermore, P systems are
inherently non-deterministic, which we translate into a probabilistic framework,
while warriors in Core Wars are deterministic. These remarks make us believe that
Queens of the Hill tournaments have great potential waiting to be explored.

Acknowledgements

The authors would like to thank the Organizing Committee of the 19th Brain-
storming Week on Membrane Computing2 (BWMC 2023) for organizing this fruit-
ful event.

References

1. Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov. Polymorphic P systems: A
survey. Technical report, Bulletin of the International Membrane Computing Society,
December 2016.

2. Lucie Ciencialová, Erzsébet Csuhaj-Varjú, Ludek Cienciala, and Petr Sośık. P
colonies. J. Membr. Comput., 1(3):178–197, 2019.

3. Erzsébet Csuhaj-Varjú and György Vaszil. P automata or purely communicating
accepting P systems. In Gheorghe Păun, Grzegorz Rozenberg, Arto Salomaa, and
Claudio Zandron, editors, Membrane Computing, International Workshop, WMC-
CdeA 2002, Curtea de Arges, Romania, August 19-23, 2002, Revised Papers, volume
2597 of Lecture Notes in Computer Science, pages 219–233. Springer, 2002.

4. Ignacio Pérez-Hurtado et al. The P-Lingua Website. http://www.p-lingua.org/

wiki/index.php/Main_Page, Retrieved in May 2023.

1 This may be an opportunity for plugging in polymorphic P systems and other P system
variants with dynamic rules [1].

2 http://www.gcn.us.es/19bwmc

http://www.p-lingua.org/wiki/index.php/Main_Page
http://www.p-lingua.org/wiki/index.php/Main_Page
http://www.gcn.us.es/19bwmc

Queens of the Hill 53

5. Rudolf Freund, Sergiu Ivanov, and Ludwig Staiger. Going beyond turing with P
automata: Regular observer ω-languages and partial adult halting. Int. J. Unconv.
Comput., 12(1):51–69, 2016.

6. Manuel Garćıa-Quismondo, Rosa Gutiérrez-Escudero, Miguel A. Mart́ınez-del-Amor,
Enrique Orejuela-Pinedo, and Ignacio Pérez-Hurtado. P-lingua 2.0: A software frame-
work for cell-like P systems. Int. J. Comput. Commun. Control, 4(3):234–243, 2009.

7. Marian Gheorghe, Rodica Ceterchi, Florentin Ipate, Savas Konur, and Raluca Lefti-
caru. Kernel P systems: From modelling to verification and testing. Theor. Comput.
Sci., 724:45–60, 2018.

8. Alec Henderson and Radu Nicolescu. Actor-like cP systems. In Thomas Hinze,
Grzegorz Rozenberg, Arto Salomaa, and Claudio Zandron, editors, Membrane Com-
puting - 19th International Conference, CMC 2018, Dresden, Germany, September
4-7, 2018, Revised Selected Papers, volume 11399 of Lecture Notes in Computer Sci-
ence, pages 160–187. Springer, 2018.

9. Alec Henderson, Radu Nicolescu, and Michael J. Dinneen. Solving a PSPACE-
complete problem with cP systems. J. Membr. Comput., 2(4):311–322, 2020.

10. Bulletin of the International Membrane Computing Society (IMCS). http://

membranecomputing.net/IMCSBulletin/index.php.
11. Ilmari Karonen. The beginners’ guide to Redcode. https://vyznev.net/corewar/

guide.html, version 1.23, August 11, 2020.
12. Savas Konur, Laurentiu Mierla, Florentin Ipate, and Marian Gheorghe. kPWork-

bench: A software suit for membrane systems. SoftwareX, 11:100407, 2020.
13. Ivan Korec. Small universal register machines. Theor. Comput. Sci., 168(2):267–301,

1996.
14. Radu Nicolescu and Alec Henderson. An introduction to cP systems. In Carmen Gra-

ciani Dı́az, Agust́ın Riscos-Núñez, Gheorghe Păun, Grzegorz Rozenberg, and Arto
Salomaa, editors, Enjoying Natural Computing - Essays Dedicated to Mario de Jesús
Pérez-Jiménez on the Occasion of His 70th Birthday, volume 11270 of Lecture Notes
in Computer Science, pages 204–227. Springer, 2018.

15. Gheorghe Păun. Computing with membranes. Journal of Computer and System
Sciences, 61(1):108–143, 2000.

16. Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors. The Oxford Hand-
book of Membrane Computing. Oxford University Press, 2010.

17. Rémi Segretain, Sergiu Ivanov, Laurent Trilling, and Nicolas Glade. A methodol-
ogy for evaluating the extensibility of boolean networks’ structure and function. In
Rosa M. Benito, Chantal Cherifi, Hocine Cherifi, Esteban Moro, Luis Mateus Rocha,
and Marta Sales-Pardo, editors, Complex Networks & Their Applications IX - Vol-
ume 2, Proceedings of the Ninth International Conference on Complex Networks and
Their Applications, COMPLEX NETWORKS 2020, 1-3 December 2020, Madrid,
Spain, volume 944 of Studies in Computational Intelligence, pages 372–385. Springer,
2020.

18. Rémi Segretain, Laurent Trilling, Nicolas Glade, and Sergiu Ivanov. Who plays
complex music? On the correlations between structural and behavioral complexity
measures in sign Boolean networks. In 21st IEEE International Conference on Bioin-
formatics and Bioengineering, BIBE 2021, Kragujevac, Serbia, October 25-27, 2021,
pages 1–6. IEEE, 2021.

19. Uri Wilensky. NetLogo. http://ccl.northwestern.edu/netlogo/. Center
for Connected Learning and Computer-Based Modeling, Northwestern University,
Evanston, IL.

http://membranecomputing.net/IMCSBulletin/index.php
http://membranecomputing.net/IMCSBulletin/index.php
https://vyznev.net/corewar/guide.html
https://vyznev.net/corewar/guide.html
http://ccl.northwestern.edu/netlogo/

	Queens of the Hill
	Artiom Alhazov1, Sergiu Ivanov2, David Orellana-Martín3,4

