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Summary. In membrane computing, it is usual to obtain solutions to decision problems
by means of (non-)uniform families of membrane systems, where each P system of the
family can solve one or more than one instance of the problem. In this work, a new
solution to the ONLY-ONE-OBJECT problem is provided by means of a single membrane
system, that is capable of solving each instance of the problem.
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1 Introduction

Membrane Computing is a relatively young compared to other areas of computer
science research and therefore still presents us with some open questions. Some
computational models inspired by biological cells have already been very successful.
The ideas of this computational framework are materialized into non-deterministic,
parallel and distributed models of computation called membrane systems (or P sys-
tems). Certain membrane systems have achieved surprising results, ranging from
a simple computation of a square number [1] to an ad-hoc solution for the SAT

problem [2]. It is still not entirely clear what exactly these membrane systems are
capable of and what is beyond their reach. In this sense, several works concern-
ing lower and upper bounds of different classes of membrane systems have been
published [3, 4]. . Numerous questions arise from that, including the famous 26
problems of Păun [5]. PMCR is the class of problems solvable in polynomial time
by membrane systems of the class R. In this area, a new way to tackle the P
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versus NP problem appears in the form of efficiency frontiers. As P versus NP
is one of the most exciting problems in complexity theory in computer science, it
is of utmost interest to find out what the connections between the classes PMC
and P, NP are.

In [6, 7, 8, 9], a new methodology for solving decision problems or demon-
strating the non-solvability of a problem by means of a single membrane system is
presented. On the one hand, a solution to the PARITY problem is given by means
of a single membrane system using transition P systems using dissolution rules
and only two objects in the left-hand side of evolution rules. On the other hand,
it is demonstrated that the ONLY-ONE-OBJECT problem cannot be solved by means
of a single P system with active membranes without polarizations and without
dissolution rules.

The rest of the work is structured as follows. In the following sections, we
present some preliminaries about languages and set theory and we recall the
model of recognizer polarizationless P systems with active membranes with dis-
solution rules. In Section 4, we briefly recall the concept of complexity classes
with single recognizer membrane systems. Section 5 is devoted to cite some of
the main uses of the dependency graph technique. Next, we propose a solution
to the ONLY-ONE-OBJECT by means of a single recognizer membrane system from
NAM0(+d,−ne). We finish the paper with some conclusions and interesting open
research lines.

2 Preliminaries

In this section, we introduce some basic concepts and recognizer polarizationless
P systems with active membranes with dissolution rules. For deeper questions
concerning formal languages and membrane systems, we refer the reader to [10,
11].

An alphabet Γ is a non-empty set and their elements are called symbols. A
string u over Γ is an ordered finite sequence of symbols, that is, a mapping from
a natural number n ∈ N onto Γ . The number n is called the length of the string u
and it is denoted by |u|. The empty string (with length 0) is denoted by λ. The set
of all strings over an alphabet Γ is denoted by Γ ∗. A language over Γ is a subset
of Γ ∗.

A multiset over an alphabet Γ is an ordered pair (Γ, f) where f is a mapping
from Γ onto the set of natural numbers N. The support of a multiset m = (Γ, f) is
defined as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite (respectively, empty)
if its support is a finite (respectively, empty) set. We denote by ∅ the empty
multiset. Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets over Γ , then the union of m1

and m2, denoted by m1 +m2, is the multiset (Γ, g), where g(x) = f1(x) + f2(x)
for each x ∈ Γ . We denote by M(Γ ) the set of all multisets over Γ .
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3 Polarizationless P systems with active membranes

First presented in [1], a P system is a computational model inspired by a biological
cell.

Definition 1. A polarizationless P system with active membranes without division
rules of degree q ≥ 1 is a tuple

Π = (Γ,H, µ,M1, . . . ,Mq,R, iout)

where:

• Γ is a finite (working) alphabet whose elements are called objects.
• H is a finite alphabet such that H ∩ Γ = ∅ whose elements are called labels.
• q ≥ 1 is the degree of the system.
• µ is a labelled rooted tree (called membrane structure) consisting of q nodes

injectively labelled by elements of H (the root of µ is labelled by rµ).
• M1, . . . ,Mq are multisets over Γ \Σ.
• R is a finite set of rules, of the following forms:

(a) [ a → u ]h, where h ∈ H, a ∈ Γ , u ∈ M(Γ ), (object evolution rules).

(b) a [ ]h → [ c ]h, where h ∈ H \ {rµ}, a, b, c ∈ Γ (send-in communication
rules).

(c) [ a ]h → b [ ]h, where h ∈ H, a, b ∈ Γ (send-out communication rules).

(d) [ a ]h → b, where h ∈ H \ {iout, skin}, a, b ∈ Γ (dissolution rules).
• iout ∈ H ∪ {env}.

A polarizationless P system with active membranes

Π = (Γ,H, µ,M1, . . . ,Mq,R, iout)

can be viewed as a set of q membranes, labelled by elements of H, arranged in a
hierarchical structure µ given by a rooted tree (called membrane structure) whose
root is called the skin membrane, such that: (a) M1, . . . ,Mq represent the finite
multisets of objects initially placed in the q membranes of the system; (b) R is
a finite set of rules over Γ associated with the labels; and (c) iout ∈ H ∪ {env}
indicates the output region. We use the term region i to refer to membrane i in the
case i ∈ H and to refer to the “environment” of the system in the case i = env.

A membrane that does not have internal membranes (i.e. it is a leaf of the
tree structure µ) is called an elementary membrane. Otherwise, it is considered
a non-elementary membrane. The membrane that surrounds the whole system is
called skin membrane.

An instantaneous description or a configuration Ct at an instant t of a polariza-
tionless P system with active membranes is described by the following elements:
(a) the membrane structure at instant t, and (b) all multisets of objects over Γ
associated with all the membranes present in the system at that moment. The
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initial configuration of Π is described as C0 = (µ,M1, . . . ,Mq; ∅). We denote the
contents of the region h in the moment t as Ct(h).

An object evolution rule [ a → u ]h for h ∈ H, a ∈ Γ , u ∈ M(Γ ) is applicable
to a configuration Ct at an instant t, if there exists a membrane labelled by h in
Ct which contains object a. When applying such a rule, object a is consumed and
objects from multiset u are produced in that membrane.

A send-in communication rule a [ ]h → [ b ]h for h ∈ H, a, b ∈ Γ is applicable
to a configuration Ct at an instant t, if there exists a membrane labelled by h in Ct
such that h is not the label of the root of µ and its parent membrane contains object
a. When applying such a rule, object a is consumed from the parent membrane
and object b is produced in the corresponding membrane h.

A send-out communication rule [ a ]h → b [ ]h for h ∈ H, a, b ∈ Γ is applicable
to a configuration Ct at an instant t, if there exists a membrane labelled by h in Ct
such that it contains object a. When applying such a rule, object a is consumed
from such membrane h and object b is produced in the parent of such membrane.

A dissolution rule [ a ]h → b for h ∈ H \ {iout}, a, b ∈ Γ is applicable to
a configuration Ct at an instant t, if there exists a membrane labelled by h in
Ct, different from the skin membrane and the output region, such that it contains
object a. When applying such a rule, object a is consumed, membrane h is dissolved
and its objects are sent to the parent (or the first ancestor that has not been
dissolved).

A computational step is made by the application of the aforementioned rules
in the following way:

• One object can fire only one rule;
• Object evolution rules can fire in a maximal parallel way; that is, all the evo-

lution rules that can be fired will be fired;
• In each membrane, only one rule of the types (b), (c) or (d) can be fired in each

computational step;
• A computational step is divided in two microsteps: First, all the transforma-

tions of objects are made, and second, membranes that must be dissolved will
be dissolved.

If an object can fire more than one rule, then it will select one of them non-
deterministically. Ct leads to Ct+1 if the latter can be obtained from the former by
applying the rules in the previously explained way, and it is denoted by Ct ⇒Π

Ct+1. A computation of the system is a sequence of configurations C = (C0, . . . , Cn),
where C0 is the initial configuration of the membrane system, and for each Ct, t ≥ 1,
Ct−1 ⇒Π Ct. We say that the computation is finite if n ∈ N.

In [12, 13], a special type of membrane systems is introduced in order to solve
decision problems, the well-known recognizer membrane systems. A recognizer
membrane system is a membrane system from any class of P systems (e.g., cell P
systems, tissue P systems and so on) that has special requirements.

Definition 2. A recognizer polarizationless P system with active membranes with-
out division rules of degree q ≥ 1 is a tuple



A Solution to the Only One Object Problem with Dissolution Rules 59

(Π,Σ, iin)

where:

• Π = (Γ,H, µ,M1, . . . ,Mq,R, iout) is a polarizationless P system with active
membranes without division rules of degree q ≥ 1 where:
– Γ has two special symbols, yes and no.
– M1, . . . ,Mq are multisets over Γ \Σ.
– iout = env is the environment of the system.

• Σ ⊊ Γ .
• iin ∈ H is the input membrane.

Let m ∈ M(Σ). We denote by Π +m the membrane system Π with input m;
that is, the membrane system Π where the multiset m is introduced in the initial
configuration in the input membrane iin. Then, the initial configuration of Π +m
is C0 = (µ,M1, . . . ,Miin +m, . . . ,Mq; ∅). We recall the concept of solvability of
decision problems by means of recognizer membrane systems:

Definition 3. Let X = (IX , θX) be a decision problem, and let cod : IX → M(Σ)
be a function that transforms an instance of X to a multiset over Σ, that will be
the input of Π. We say that Π solves an instance u ∈ IX of the decision problem
X if:

• The system Π + cod(u) sends only one object yes or one object no, but not
both, to the environment, and only in the last step of the computation; and

• The system Π + cod(u) is confluent; that is, all the computations halt and
return the same result.

4 The complexity classes PMCR and PMC1f
R

We recall the definition of various computational complexity classes in the frame-
work of membrane computing.

Definition 4. Let R be a class of recognizer membrane systems. We say that a
family of recognizer membrane systems Π = {Π(n) | n ∈ N} from R solves a
decision problem X = (IX , θX) in a uniform way if the following hold:

• There exists a pair of functions (cod, s) computable in polynomial time over IX
such that cod(u) ∈ M(Σ) (input multiset) and s(u) ∈ N (size of the instance);

• For each n ∈ N, s−1(n) ⊆ IX .
• Π is polynomially bounded, sound and complete with regard to (X, cod, s).

In this way, for solving a certain instance u ∈ IX , we need to know the answer
of the membrane system Π(s(u)) + cod(u). For more detail, we refer the reader
to [12].

In [9, 6], authors introduce the complexity class PMC1f
R as a manner to deal

with decision problems with a single recognizer membrane system.
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Definition 5. Let R be a class of recognizer membrane systems. Let X = (IX , θX)
be a decision problem such that IX is a language over a finite alphabet ΣX . We
say that problem X is solvable in polynomial time by a single membrane system Π
from R free of external resources, denoted by X ∈ PMC1f

R , if the following hold:

• The input alphabet of Π is ΣX .
• The system Π is polynomially bounded, sound and complete with regard to X

The term free of resources means that the input is directly introduced as a
multiset from the instance, without “being encoded”.

The class PMC1p
R is also defined in the aforementioned paper, being defined

in a similar way to PMC1f
R , but in this case the encoding of the input instance

is allowed.
From these asserts, it is trivial to see that PMC1f

R ⊆ PMC1p
R ⊆ PMCR .

5 The Origins of the Dependency Graph

The non-deterministic nature of membrane systems let a membrane system have,
instead of a single computation, a tree of computations, usually denoted by
Comp(Π). The dynamics of the system are captured by Comp(Π), being the
initial configuration the root node of the tree and there exists an edge between C
and C′ if and only if C ⇒Π C′. The configuration paths of maximum length up
to a leaf are the computations of Π and a computation terminates if and only if
the path is finite. From the definition of PMCR we know that the obtained mem-
brane systems must be confluent. Therefore, it is sufficient to consider only one
computation per problem case. An interesting question would consist on finding
the computational path of minimum length, but for this one has to measure the
degree of similarity between two configurations (e.g., by the distance metric [14]).
In this context, the dependency graph was introduced, which represents the de-
pendencies between the membrane states (configurations) and the set of rules of
the P system.

6 The Dependency Graph as a Proof Technique

From that very first application, different applications that are not related to the
first one appeared.

6.1 Non-Efficiency of specific Membrane Systems

Let us now consider polarizationless recognizer P systems with active membranes
that do not use dissolution rules. The dependency graph G is a directed graph
whose vertex set consists of the initial configuration and all membrane configura-
tions (a, h) (= alphabet object and membrane label on which it appears), for which
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a appears on the right or left side of a rule. If there is a rule leading from config-
uration 1 to configuration 2, then nodes 1 and 2 in G are connected by an edge.
Here, they use the concept of “accessibility” in the graph. The objects initially
placed in the system can be considered as the initial nodes (taking into account
the corresponding membranes). Instead of simulating the whole system, the graph
can be constructed from the definition of the recognizer membrane system and the
question is transformed to the following one:

Is there a path from the initial nodes to the node (yes, env)?

In [15], the well-known Păun’s conjecture was stated. IsP = PMCAM0(+d,−ne).
In [16], they use the concept to give a partial affirmative answer for the case where
dissolution is forbidden and division rules both for elementary and non-elementary
membranes. In that work, it is shown that P = PMCAM0(−d,+ne).

As stated above, we need to find a path from the initial nodes to the node
(yes, env). But for this purpose, we reduce the entire problem to the REACHABILITY
problem, that is stated as follows:

Given a directed graph G = (V,E) and two vertices s, t ∈ V . Is there a
path from s to t?

It is known that REACHABILITY ∈ P, thus completing the proof.

6.2 Negative Results in Membrane Computing

The dependency graph can be used to show negative results as well. For instance,
on can show:

ONLY-ONE-OBJECT /∈ PMC1f
AM0(−d,+ne) (1)

In this context, a computation is accepting if and only if there is a path in G
from s to t, with s being the initial and t the final vertex of the computation.
We will show (1) by contradiction. Let us assume there were such a P system
Π ∈ AM0(−d,+ne). Then, a path from the initial vertex to the vertex (yes, env)
that passes the vertex (a, iin) would exist, to correctly resolve the case {a}. When
we analyze the case {an}, n > 1, the following holds:

∀n > 1 : GΠ+{a} = GΠ+{an}

This holds, because the vertex set of the dependency graph is a set and not a
multiset. And because of that, a different multiplicity of the same element (n
elements a instead of a single a) does not change the graph at all. Thus, every
computation would be accepting ⇒ this contradicts our assumption.
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7 Proposed Solution for the ONLY-ONE-OBJECT Problem
Using Dissolution

As we have just seen, the ONLY-ONE-OBJECT problem cannot be solved with a P
system Π ∈ AM0(−d,+ne). However, if we allow the use of dissolution rules, the
problem is solvable. In Figure 1, we propose a P system that is in AM0(+d,−ne)
and solves ONLY-ONE-OBJECT. The system takes a multiset {an}, n ∈ N+ as input
in membrane 3 and outputs the answer to the problem (yes or no) into the system’s
surrounding. The system uses three dissolution rules: one in membrane 3 and two
in membrane 2, two of these only activate themselves if there is an a present in
the membrane. In the case n = 1, only membrane 3 will be diluted by those rules,
in the other case (n > 1), the membranes 3 and 2 are diluted. Making use of the
auxiliary element β, we can now “count“ the number of necessary computation
steps to reach membrane 1. If there is more than one a, membranes 3 and 2
will be diluted in two computation steps, so the auxiliary element β′′ will be in
membrane 1 and the system will output no. On the other hand, if there is only one
a, membrane 2 won’t be diluted using the dissolution rule [a]2 → δ, but using this
one instead: [β′′′]2 → δ. So, if there is only one a, we can increment the auxiliary
element β until it reaches β′′′. In the final step, if there is a β′′′ in membrane 1, we
output yes. It is impossible by design that are a β′′ and a β′′′ at the same time in
membrane 1, which means that the system will always output the same and the
correct answer.

8 Conclusions

Multiple use cases exist for the dependency graph in the analysis of computational
models. With that tool, we were able to show the non-efficiency of a membrane sys-
tem and the non-existence of a solution for a given problem when using a specific
membrane system (ONLY-ONE-OBJECT /∈ PMC1f

AM0(−d,+ne)). Furthermore, we pre-

sented a P system in AM0(+d,−ne) that solves the ONLY-ONE-OBJECT problem.

If we want to solve P versus NP, we should keep making efforts in exploring new
techniques to analyze the possibility and feasibility in the context of membrane
systems.
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{an}

[a]3 → δ

3 β
[β → β′]2
[β′ → β′′]2
[β′′]2 → β′′′δ
[a]2 → δ

2

[β′′]1 → no [ ]1
[β′′′]1 → yes [ ]1

1

Fig. 1. P system Π ∈ AM0(+d,−ne) solving ONLY-ONE-OBJECT
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