
Polymorphic P Systems with Limited Depth

Anna Kuczik and György Vaszil

Faculty of Informatics, University of Debrecen
Kassai út 26, 4028 Debrecen, Hungary
kuczik.anna@inf.unideb.hu

vaszil.gyorgy@inf.unideb.hu

Summary. We investigate the computational power of non-cooperating polymorphic
P systems with no additional ingredients and having a membrane structure of limited
depth. We show that any ET0L language can be generated by such systems with a
membrnae structure of depth three.

Key words: Program as data, P systems with dynamic rules, Polymorphic P sys-
tems, P systems with non-cooperating rules, P systems with limited depth

1 Introduction

Polymorphic P systems were introduced in [1] motivated by the idea that the pro-
gram of a computing device could be viewed as data, therefore, it could also be
changed during the course of the computation. In these types of P systems, rules
are not statically defined, but are dynamically inferred from the contents of pairs
of membranes: The contents of one member of the pair defines the multiset rep-
resenting the left-hand side of the rule, the contents of the other member defines
the right-hand side. As the membranes can contain further membranes, the con-
tents of the pairs, and this way the left- and right-hand sides of rules may change
dynamically during the computation.

The initial results presented in [1] show the power of the model. With cooper-
ating rules (rules with left-hand sides with more than one objects) any recursively
enumerable set of numbers can be generated, but non-cooperating systems (sys-
tems with rules with just one object on the left-hand side) can also generate several
interesting languages, mainly based on the fact that an exponential, even super-
exponential growth of the number of objects inside the system can be produced.

The study of non-cooperating variants of the model was continued further in
[3] with considering the case of “no ingredients”, that is, when no special features
(not even target indicators) are added to the system. The equivalence of so called
strong and weak polymorphism was shown, left polymorhism, right polymorphism,

66 Anna Kuczik and György Vaszil

and general polymorphism was defined. As its main contribution, [3] presented a
hierarchy of computational power based on the depth of the membrane structure,
but the computational power of the non-cooperating variant remained unclear.

In the present work, we intend to take some initial steps in this direction by
showing that any ET0L language can be generated using non-cooperating poly-
morphic P systems (with no other ingredients) of depth three. In the following
we first review the necessary definitions, then present an example wehere a simple
ET0L system is simulated, then finally generalize the idea of the simulation to a
method for generating any ET0L language.

2 Preliminaries

In the following we breiefly define the basic notions we will use. See [6] for more
on formal language theory, and [4, 5] for details about membrane computing.

Multisets are sets with multiplicites associated with their elements. Let U be
a set. A multiset over U is a mapping M : U → N, M(a), for all a ∈ U , is the mul-
tiplicity of a in the multiset M . We can also use the form (a,M(a)). If U is finite,
U = {a1, a2, . . . an}, then {(a1,M(a1)), (a2,M(a2)), . . . , (an,M(an))} can also be

represented by a string w = a
M(a1)
1 , a

M(a2)
2 , . . . , a

M(an)
n (and all permutations of

this string).
In formal language theory, an alphabet V is a finite non-empty set of symbols,

its cardinality is denoted by |V |. A string generated by V under the operation of
concatenation is denoted by V ∗, and V + = V ∗ \ {λ} where λ denotes the empty
string.

Lindenmayer systems (or L systems) are parallel rewriting systems introduced
in 1968 by A. Lindenmayer. Several variants of L systems have been developed
since then, among these, we will use ET0L systems and languages.

A finite substitution τ over an alphabet V is a function mapping each symbol
a ∈ V into a non-empty finite language over: V : τ(a) ⊆ V ∗. We extend τ to words
by τ(λ) = {λ}, τ(w) = τ(a1)τ(a2) . . . τ(an) for w = a1a2 . . . an, and to languages
by τ(L) = {τ(w)|w ∈ L}.

An ET0L system is a 4-tuple G = (V, T, U,w) where V is an alphabet and
T ⊆ V is a terminal alphabet are finite sets, w ∈ V + is the initial word of G,
and U is a finite set of finite substitutions over V (called the tables of U). In a
computational step in G, all the symbols of the current sentential form (starting
with the axiom) are substituted (or rewritten) using one of the tables of U . The
language generated by G consists all terminal strings which can be generated
in a series of computational steps (a derivation) from the initial word, that is,
L(G) = {u ∈ T ∗ | w ⇒∗ u} where ⇒ denotes a comptutaional step, and ⇒∗ is the
reflexive and transitive closure of ⇒. The family of languages generated by ET0L
systems is denoted by L(ET0L).

It is known (see [2]) that for each ET0L system with an arbitrary number of
tables, there exists an ET0L system with only two tables generating the very same

Polymorphic P Systems with Limited Depth 67

language. This means that every task which can be solved by an arbitrary ET0L
system can also be solved by a system using two tables. Therefore, in the following
example and model, we will assume that ET0L systems have two tables.

Moreover, since we are going to relate ET0L languages to the multiset langugaes
of P systems, the most important thing is not the string generated by the ET0L
system, but the multiplicities of different letters in the generated strings. We will
denote by N(G) the language of multisets corresponding the strings of L(G), and
by L(NET0L) the obtained class of multiset langugaes.

A membrane systms (or P system) is a tuple

Π = (O, T, µ, w1, . . . , wn, R1, . . . , Rn, ho),

where O is an alphabet of objects, T ⊆ O is the set of terminal objects, µ is
the membrane structure, wi are the multisets giving the initial contents of each
membrane 1 ≤ i ≤ n, Ri is a finite set of rules for each membrane 1 ≤ i ≤ n, and
ho is the label of the output membranes, ho ∈ {1, . . . , n}.

The membrane structure µ is usually denoted by a string of matching paren-
theses labelled by the numbers {1, . . . , n}, but it can also be represented by a tree
with its root labelled by the label of the outermost membrane, and the descendant
nodes of each node labelled by the labels of membranes enclosed by the region
corresponding to the given node. In the following, the number of nodes encoun-
tered during the traversal of the longest path from the root to a leaf in such a tree
representation will be called the depth of the membrane system. (For example, the
membrane system which only has one membrane is of depth 1, the system with
two nested membrane is of depth 2.)

The rules in Ri, 1 ≤ i ≤ n, are given as multiset rewriting rules, of the form
u → v, where u, v ∈ V ∗ are strings (understood as representations of multisets). If
in such rules, the number of objects in u (the multiset on the left side of the rules)
is greater than one, then we say that Π is a system with cooperation. Otherwise,
it is a non− cooperative system.

The rules in a given Ri are applied in the region enclosed by membrane i in
a maximally parallel way, that is, as many rules have to be applied in parallel as
possible with the restriction that each object can be rewritten by at most one rule.

2.1 The polymorphic P system model

In polymorphic membrane systems, unlike traditional membrane systems, the rules
are not directly defined. The rules are represented by the membranes. The left and
right sides of each rule are contained by a membrane. Consequently, the structure
of the polymorphic membrane system will be different.

A polymorphic P system is a tuple

Π = (O, T, µ, ws, ⟨w1L, w1R⟩ , . . . , ⟨wnL, wnR⟩ , ho),

where O is the alphabet of objects, T ⊆ O is the set of terminal objects, µ is the
membrane structure consisting 2n + 1 membranes labelled by s, 1L, 1R, . . . , nL,

68 Anna Kuczik and György Vaszil

Fig. 1. The polymorphic P system Π1 of Example 1.

nR, the multiset ws is the initial contents of the skin membrane, ⟨wiL, wiR⟩ are
pairs of multisets giving the contents of membranes iL and iR, 1 ≤ i ≤ n, and
ho ∈ {1, . . . , n} is the label of the output membrane.

The depth is defined in the same way as conventional membrane systems, it is
the height of µ seen as a tree. For every 1 ≤ i ≤ n, the membranes iL and iR have
the same parent membrane, so they are located at the same depth.

The rules of Π are not given statically in the description, but are dynamically
deduced for each configuration based on the content of the membrane pairs iL
and iR. Thus, if in the configuration of the system these membranes contain the
u and v multisets, then in the next step their parent membrane is transformed as
if the u → v multiset transcription rule were added to it. If iL is empty in some
configuration, then the rule defined by the pair iL, iR is considered disabled, that
is, no rule will be inferred from the contents of iL and iR.

Similarly to [1], polymorphic membrane systems and their languages are
denoted as NOP k(polym, ncoo) and L(NOP k(polym, ncoo)) where k denotes
the depth, polym means polymorphism, and ncoo means that the system is
non− cooperative.

Now we recall an example of a simple polymorphic membrane system with
superexponential growth from [1].

Example 1. Consider the polymorphic P system

Π1 = ({a}, {a}, µ, a, ⟨a, a⟩ , ⟨a, aa⟩ , S)

having a membrane structure as illustrated in Figure 2.1.
In the initial configuration, rule 1 looks like a → a, because of the contents

of 1L and 1R, while rule 2 in membrane 1R is a → aa. In the first step, rule 1
is applied in the skin, leaving the contents of the membrane intact, and rule 2
is applied in membrane 1R doubling the number of a’s in 1R, so rule 1 will be
changed to the form a → aa. In the second step, rule 1 will transform the multiset
a in the skin into aa. and rule 2 is applied in membrane 1R and double the contents
again, so after that, rule 1 looks like a → a4. In general, after k derivation steps,

1R will be a2
k
, so rule 1 will have the form a → a2

k
. As the number of a’s in the

skin will be 2
k(k−1)

2 , the rate of growth of the contents of the skin membrane is
superexponential.

Polymorphic P Systems with Limited Depth 69

Fig. 2. The P system Π of Example 2.

3 Polymorphic P systems with limited depth

In this section we would like to examine the relationship of languages generated
by ET0L systems and simple polymorphic P systems, where simplicity is captured
by non-cooperation and limited depth. We look at an example first.

Example 2. Consider the following ET0L system G = (V, T, U,w) with V = T =
{a1, a2}, w = a1a2, and two tables U = (P1, P2), each containing two rules

P1 = {a1 → a1a2, a2 → a2a1a1}, and

P2 = {a1 → a2, a2 → a1}.

We construct a non-cooperative polymorphic P system Π with depth 3 that
can perform the choosing between rules of P1 and P2, and therefore simulates the
operation of G.

Let O = {a1, a2, a′1, a′2, a01, a02, a11, a12, ā1, ā2, ¯̄a1, ¯̄a2, b, c, d, }, T ′ = {a′1, a′2} and

Π2 = (O, T ′, µ, ws, ⟨w1L, w1R⟩, . . . , ⟨w21L, w21R⟩, s)

where the membrane structure of Π is defined as

µ = [[. . .]1L [. . .]1R []14L []14R . . . []21L []21R]s

with membrane 1L containing the inner membranes []2L []2R . . . []6L []6R , and
membrane 1R containing the inner membranes []7L []7R . . . []13L []13R.

We use two types of rules in polymorphic membrane systems. The rules be-
longing to the first type do not change during the solution of the task, while the

70 Anna Kuczik and György Vaszil

rules belonging to the second type can change step by step. In this example we
only have one rule that changes during the steps, rule 1. The other rules have the
same form at every step during the process.

The graphical representation of µ can be seen in Figure 2 where also the initial
membrane contents are depicted. Non-dynamical rules, that is, pairs of membranes
[wiL]iL, [wiR]iR with constant contents (contents that never change during the
computation) are given in a simplified notation as wiL → wiR.

The initial contents of the regions effected by the polymorphic nature of Π,
that is, the regions with non-constant contents are

ws = a′1a
′
2, w1L = b, w1R = b.

Step Rule 1 Skin 1L 1R Rules 14-21

1. b → b a′
1a

′
2 2 7

2. a′
1 → ā1 a′

1a
′
2 3 8

3. a′
2 → ā2 ā1a

′
2 4 9 14

4. c → c a1
1a

1
2ā2 5 13 16, 18, 20

5. b → b a0
1a

0
2a

0
2a

0
1a

0
1 2 7 or

10
19, 21

6. a′
1 → ā1 or

a′
1 → ¯̄a1

a′
1a

′
2a

′
2a

′
1a

′
1

Table 1. The polymorphic system Π of example 2

The functioning of Π is demonstrated in Table 1. The first column contains the
step number. The second column contains how rule 1, defined by the membranes
1L and 1R looks like after every step. The third column contains the elements of
the skin region. The fourth, fifth, and sixth columns contain the rules we (need
to) use in the corresponding steps.

The general idea behind the functioning of Π2 is as follows. Rules 14 − 17
simulate the rewriting process of the tables of G. Those with lefthand side ā1 or
ā2 simulate the first table, those with lefthand side ¯̄a1,

¯̄b2 simulate the second table.
The objects of the skin region correspond to the sentential form of G. Rule 1 is
“dynamic”, it prepares the objects of the skin membrane for the application of the
rules 14 − 17 in the appropriate order. At the beginning of a “simulating cycle”,
rule 1 is used to rewrite a (more precisely, its variant, a′1) to ā1 or ¯̄a2, selecting
this way the table to be simulated. Then, rule 1 changes to rewrite a′2 according to
the same selection, while rules 14 − 17 proceed with the actual simulation of the
chosen table. The rest of the rules are needed to synchronize the whole process.

Table 1 shows how the rewriting of a1a2 to a1a2a2a1a1 by the first table of G is
simulated in Π. In the initial state, rule 1 looks like b → b, which is not applicable,
because we only have an a′1 and a a′2 in the skin.

Polymorphic P Systems with Limited Depth 71

So in the first step, we have to change rule 1. In 1L we can use rule 2 (b → a′1),
which rewrites b in 1L to a′1 making rule 1 is applicable, because we can use it
to write a′1 in the skin. In parallel, we have to use rule 7 (b → ā1) or rule 10
(b → ¯̄a2) in 1R. This decision depends on which table of the ET0L system we
want to simulate. To simulate P1, we must use rule 7, and to simulate P2, we must
use rule 10. As we would like to simulate P1, we use rule 7.

As can be seen in the second row of Table 1, the form of rule 1 has changed,
and now we can use it in the skin and rewrite a′1 to ā1.

At the same time, the rules used in 1L and 1R (a′1 → a′2, ā1 → ¯̄a2, respectively),
changed the shape of rule 1 to a′2 → ¯̄a2, in order to be able to start rewriting a′2-s
in the next step.

After we used rule 1, the object(s) in the skin changed. Now, we can use rule
14 (ā1 → a11a

1
2), which simulates the first rule from the P1 ET0L table of G. The

upper indexing of the symbols on the right-hand side starts from 1, so that they
are written back into the primed form (after counting down with the indices to
zero) at the appropriate step.

Meanwhile, in step 3, rule 1 (a′2 → ¯̄a2) is also applied to rewrite a′2 (so the
second rule of table P1 of G can also be simulated), and rule 1 is changed to c → c
(so it cannot be applied in the next step).

Now, with rule 16 (¯̄a2 → a02a
0
1a

0
1), the rule a2 → a2a1a1 of G is simulated,

while rules 18 and 20 decrement the upper indices of the objects introduced by
the simulation of the previous rule, and rule 1 is changed to b → b.

Now, as can be seen in row 5. of Table 1, the system is ready to prepare the next
simulating cycle by rewriting the objects corresponding to the sentential form of G
to their primed versions, and changing rule 1 in the appropriate way. We returned
to a state that was similar to the initial state, where 1L has b and 1R also has b,
so we can choose between rule 7 and rule 10 again (to simulate another step from
the ET0L system), and in parallel, rewrite a01-s and a02-s to a′1-s and a′2-s, with
rules 19 and 21.

The simulation of the ET0L system can be completed when it returns to a state
that is similar to the initial state, so before another table is selected for simulation.
So, if 1L has b and 1R also has b, and we want to stop the mechanism, then we can
choose rule 6 instead of rule 7 or rule 10. Rule 6 shuts down the system and the
simulation ends. The reason for this is that after applying rule 6, the form of rule
1 is: d → ā1 or d → ¯̄a1, and we can’t use any of these rules in the Skin membrane,
because we don’t have a d object in Skin.

The result will be a string made from the letters {a′1, a′2, . . .} in the Skin
membrane of the system.

Now we show that the basic idea of the example above can be generalized to
arbitrary ET0L systems. Without the loss of generality, we assume that we deal
with systems having two tables.

Theorem 1. L(NET0L) ⊆ L(NOP 3(polym, ncoo)).

72 Anna Kuczik and György Vaszil

Proof. Let G = (N,T, U,w) be an ET0L system and let k denote the number of
letters in the alphabet, N = {a1, a2, ..., ak}. The two tables are U = (P1, P2), and
the rules are denoted by ri,j , where index i ∈ {1, 2} denotes the index of the table,
and 1 ≤ j ≤ m is the index of the rule, with m being the maximum of |P1| and
|P2|, the number of rules in the two tables.

We denote the left- and righthand sides of the rules as ri,j : αi,j → βi,j , where
αi,j ∈ N and βi,j ∈ N∗, 1 ≤ i ≤ 2, 1 ≤ j ≤ m.

Let

O = {ai, a′i, ani , āi, ¯̄ai | 1 ≤ i, n ≤ k} ∪ {b, c, d, }, T ′ = {a′i | 1 ≤ i ≤ k}

and let
Π = (O, T ′, µ, ws, ⟨w1L, w1R⟩, . . . , ⟨wpL, wpR⟩, s)

where p = 2+(3k+6)+2m+ k(k+1)
2 , and the membrane structure of Π is defined

as
µ = [[. . .]1L [. . .]1R [](3k+7)L [](3k+7)R . . . []pL []pR]s

with membrane 1L containing the inner membranes []2L []2R . . . []6L []6R, and
membrane 1R containing the inner membranes []7L []7R . . . []13L []13R.

In 1L, the number of rules depends on the number of letters in the alphabet
of the ET0L system, we have to apply k + 2 rules for each table simulation in
succession, where k = |N |. In general, we specify the rules for k letters as

b → a′1, a′i → a′i+1, for 1 ≤ i ≤ k − 1, and a′k → c, c → b.

They perform the same task as the rules of 1L in Example 2 do for two letters.
Note that here we have used the simplified notation again for membranes with

contents that remain constant for the whole computation. (Without this simplifi-
cation we would have to write ⟨w2L, w2R⟩ and specify w2L = b, w2R = a′1 instead
of the rule b → a′1, and so on.)

Rules must be applied in 1R depending on the choice of the table, because
those rules give the right side of rule 1, which modifies the objects in the skin. So
we have to create rules for also P1 and P2, like in the example. We need

b → ā1, āi → āi+1 for 1 ≤ i ≤ k − 1, āk → c, c → b,

and
b → ¯̄a1, ¯̄ai → ¯̄ai+1 for 1 ≤ i ≤ k − 1, ¯̄ak → c, c → b.

In the skin region we have to go through the rules of a table in order, and for
this reason we do not rewrite the letters at the same time. We have to add extra
rules, which help us get back to the form a′1, a

′
2, . . . for all objects at the same step,

after rewriting the last letter.
We denote the jth rule of table 1 and table 2 with r1,j and r2,j , respectively.

In order to simplify the notation, we assume that the cardinality of the two tables
are the same, m = |P1| = |P2|. If this is not the case, |P1| < |P2| for example, then

Polymorphic P Systems with Limited Depth 73

we consider the “missing rules” r1,j , P1| < j ≤ |P2|, to be a1 → a1. Now we add
the following rules to the skin region.

Rule set for the rules of P1, the first table of U = (P1, P2):

{āi → βk+1−i
1,j | α1,j → β1,j ∈ P1, α1,j = ai for some ai ∈ {a1, a2, . . . ak}}.

Rule set for the rules of P2 of U = (P1, P2):

{¯̄ai → βk+1−i
2,j | α2,j → β2,j ∈ P2, α2,j = ai for some ai ∈ {a1, a2, . . . ak}}.

After rewriting with the rules above, we have to use rules to count down ai-
s indexes until the last letter is transcribed, similarly as we count down in the
example. Thus, every ai gets k + 1− i indices as follows.

ani → an−1
i , a1i → a

′

i, where 2 ≤ n ≤ k + 1− i, 1 ≤ i ≤ k − 1.

To stop the system, we need to add another rule to 1L. The rule must be one
that can be applied at the end of a table simulation. For this reason, when 1L and
1R return to a state similar to the initial state, there should be an option to apply
the stopping rule, which is b → d, similar to the system of Example 2.

So we add the rule
b → d

to 1L.
After we used this rule the system shut down, because we never have d object

in the skin region. So after this step we can’t continue the rule application, the
system halts. The result will be a string consisting of the letters {a′1, a′2, . . .} in the
skin membrane of the system.

4 Conclusion

We have shown how a simple ET0L system can be simulated by a non-cooperating
polymorphic P system of depth three, and then generalized the idea to produce
any ET0L language. Our work is intended to be the initial step in the investigation
of the computing power of non-cooperating systems with limited depth. The next
topic of further study is looking for upper bounds on the computational power,
and in particular, to relate left and right polymorphism and their depth-limited
variants to the general case.

References

1. Artiom Alhazov, Sergiu Ivanov, and Yurii Rogozhin. Polymorphic P systems. In
Marian Gheorghe, Thomas Hinze, Gheorghe Păun, Grzegorz Rozenberg, and Arto
Salomaa, editors, Membrane Computing, volume 6501 of Lecture Notes in Computer
Science, pages 81–94, Berlin, Heidelberg, 2011. Springer-Verlag.

74 Anna Kuczik and György Vaszil

2. Andrzej Ehrenfeucht, Grzegorz Rozenberg, and Sven Skyum. A relationship between
ET0L and EDT0L languages. Theoretical Computer Science, 1(4):325–330, 1976.

3. Sergiu Ivanov. Polymorphic P systems with non-cooperative rules and no ingredients.
In Marian Gheorghe, Grzegorz Rozenberg, Arto Salomaa, Petr Sośık, and Claudio
Zandron, editors, Membrane Computing, volume 8961 of Lecture Notes in Computer
Science, pages 258–273, Cham, 2014. Springer International Publishing.

4. Gheorghe Păun. Membrane Computing: An Introduction. Springer-Verlag, Berlin,
Heidelberg, 2002.

5. Gheorghe Păun, Grzegorz Rozenberg, and Aarto Salomaa, editors. The Oxford Hand-
book of Membrane Computing. Oxford University Press, Oxford, 2010.

6. Grzegorz Rozenberg and Aarto Salomaa, editors. Handbook of Formal Languages.
Springer-Verlag, Berlin Heidelberg, 1997.

