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Summary. Key agreement protocols are a central part of cryptography research. The
idea of such a protocol is to allow two or more parties to reach a shared secret by
communicating over a public channel. There are three main types of key agreement
protocols: based on hard mathematical problems, based on quantum effects and based
on neural synchronization. Although they have not been much studied until now, key
agreement protocols based on neural synchronization have several advantages. First, their
security does not involve any number theory problem which may be solved on a quantum
computer. Second, unlike quantum key agreement protocols, they do not require special
hardware which is expensive and hard to manage. Recently, a new neural key agreement
protocol based on the Anti-Spiking Neural Tree Parity Machine P system, ASNTPM P
system for short, has been proposed. Although the protocol is more efficient than the
rest of the neural key agreement protocols, no security analysis was performed.

In this paper, we study the security of the protocol based on ASNTPM P systems
from a cryptographic perspective. We analyze the running time of the protocol with
respect to the parameters of the system. We adopt multiple attacks from the neural
cryptography literature and show that the ASNTPM P system-based protocol is secure.
Through a series of experiments, we show that the running time of the protocol grows
polynomially in the system parameters while the probability that an attack will succeed
decreases exponentially.

Key words: Spiking Neural P system, Anti-spikes, ASNTPM P systems, Tree
Parity Machine, Cryptography

1 Introduction

Key agreement protocols are the basis of all modern cryptographic protocols. From
simple web traffic which is secured using the TLS protocol to the more complex
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end-to-end encrypted messaging communication platforms which are based on Sig-
nal protocol, most cryptographic systems use some sort of key agreement proto-
cols [10, 11, 42]. The main role of such protocols is to establish a shared secret
among two or more parties using public communication channels.

Currently, most key agreement protocols are based on hard number theory
problems e.g., the discrete logarithm problem (DLP), the Diffie-Hellman problem
(DHP), the decisional Diffie-Hellman problem (D-DHP), the factorization problem,
etc [15]. The disadvantage of these protocols is that they are vulnerable if a large
quantum computing is built. In [47], Peter Shor proposed a quantum algorithm
that can solve the DLP and the factorization problem in polynomial time. Until this
moment, there is no large enough quantum computer to endanger the cryptogamic
primitives and protocols deployed in the industry. However, it is expected that such
a computer will be built shortly [38].

There are three alternatives to the current key agreement protocols:

1. Post-quantum key agreement protocols
2. Quantum key agreement protocols
3. Neural key agreement protocols

The post-quantum key agreement protocols are based on hard mathematical prob-
lems for which no efficient solution is known on classical or quantum computers [4].
The disadvantage is that there is no mathematical proof that there is indeed no
solution to those problems. The quantum key agreement protocols are based on
quantum effects e.g., the collapse of the probability wave, entanglement, no-cloning
theorem, etc. [23]. Although these protocols are secure even if a large quantum
computer is built, they require specialized hardware which is hard to manage and
expensive.

There are many important applications of neural networks [1,2,16,25,27,29–32,
36,39,41]. A less known application is the construction of key agreement protocols.
The neural key agreement protocols represent an alternative to post-quantum or
quantum protocols. The idea behind these protocols is to synchronize over a public
channel two special neural networks called Tree Parity Machines, TPMs for short
[21]. Unlike post-quantum key agreement protocols, they are not based on any hard
mathematical problem so they are quantum secure. Their principal advantage over
the quantum key agreement protocols is that they do not require special hardware
and can be implemented on any classical computer.

Until recently, most TPMs were constructed using neurons modeled after the
perceptrons. In [40], the authors proposed for the first time a neural key agree-
ment protocol based on Spiking Neural P systems. They constructed a special
type of TPM called the Anti-Spiking Neural Tree Parity P system (ASNTPM P
system) and showed experimentally that their protocol is more efficient than the
classical neural key agreement protocols based on TPMs. In this paper, we study
the security of this protocol from a cryptographic perspective. We use the most
simple security model in which the attacker only eavesdrops on the communica-
tion channel. The attacker is not allowed to alter the messages exchanged by the



Security of ASNTPM-based protocol 77

legitimate parties nor to insert or delete messages. We adopt multiple attacks on
neural key agreement protocols from the literature and test whether the ASNTPM
P system-based protocol is secure against them. The paper is organized as follows:
in Section 2 we present related work and our contribution. In Section 3 we in-
troduce the definition of the model proposed by [40]. In Section 4 we analyze the
running time of the protocol with respect to the parameters of the system. In Sec-
tion 5 we discuss four different types of attacks against neural cryptography and
show experimentally that the protocol proposed in [40] is secure. Section 5 is left
for conclusions.

2 Related work

The idea of using neural synchronization to build a key agreement protocol was
first proposed in [21]. The TPM proposed by the authors was a three-layer neural
network with binary inputs. Shortly after the idea was launched, three types of
attacks were proposed in [22]. The authors showed through multiple experiments
that they can recover more the 90% of the shared key using the geometric attack. In
[28] the authors experimentally proved that increasing the range of the weight can
improve the security of the protocol. The paper provides evidence that increasing
the range increases the synchronization time polynomially while decreasing the
probability that the geometric attack will succeed exponentially. In [46] is presented
a more powerful attack than the geometric one. This attack called the majority
attack cannot be mitigated by increasing the range of the weights.

There are also other strategies for improving the security of neural key agree-
ment protocols. In [43] the authors proposed a mechanism by which the inputs of
the TPM are generated based on the current internal state of the network. In [7]
and [8] the authors presented two algorithms for perturbing the output of the TPM
in such a way that the attacker cannot recover the original information but the
two legitimate parties can synchronize. This improves the security of the protocol
because every attack uses the fact that the eavesdropper can intercept the outputs
exchanged by legitimate parties over a public channel.

In [51] and [20] the authors proposed other architectures for constructing a
TPM. In [51] the idea of using non-binary input values is presented improving the
running time of the protocol. In [20] it is shown that using vector values as inputs
can further improve the efficiency and the security of the protocol. Similarly, [12]
proposed a TPM with complex input values. In [52] the authors analyzed the
impact of non-binary input values on the security of a TPM-based key agreement
protocol. Regarding the practical aspects of neural cryptography, in [45] several
sets of parameters for TPMs were analyzed. For each set, the authors presented
the synchronization time and the security impact.

In this work, we are dealing with TPM instantiated with Spiking Neural P
systems. These systems are a special type of the membrane computing model in-
troduced in [37]. Membrane computing models have been used to solve hard prob-
lems like Hamiltonian Path in polynomial time [58]. In [6] the authors proposed a
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new sorting algorithm based on P systems. There are also P systems inspired by
various physical phenomena. In [5] the authors presented a P system in which the
membranes have a limited capacity and [17] presents a new model inspired by the
controlled circulation of water. Also, there are attempts to make these models in
the laboratory [26].

Spiking neural P systems were first introduced in [18]. Over time, new function-
alities inspired by various biological phenomena were added to the original model.
The most known Spiking Neural P systems are the following [9, 33–35,49,56,57]:

1. SN P systems with astrocytes
2. SN P systems with communication on request
3. SN P systems with polarizations
4. SN P systems with colored spikes
5. SN P systems with asynchronous systems
6. SN P systems with anti-spikes
7. SN P systems with a flat maximally parallel use of rules

The protocol analyzed in this paper is instantiated with a TPM based on Spiking
Neural P system with anti-spikes. Several variations of this model include Spiking
Neural P systems without the annihilating priority [55] and Spiking Neural P
systems with multiple channels [50]. Spiking Neural P systems were studied from
both a practical and a theoretical perspective. The computational power of SN P
systems with multiple channels was investigated in [24] while a formal verification
of SN P systems by mapping them to kernel P systems was made in [14, 19]. SN
P systems were also used to simulate uniform sequential computing models [3].

Apart from key agreement protocol, SN P systems have other applications in
cryptography [48,59]. In [13] the authors implemented the famous RSA algorithm
using SN P systems and in [54] the authors used a variant of SN P systems to break
the same cryptosystem by proposing a new and efficient factorization procedure
[53].

2.1 Our contribution

In this paper, we make a security analysis of the key agreement protocol proposed
in [40]. In the paper, the authors proposed a new TPM called Anti-Spiking Neural
Tree Parity Mchine which is based on SN P systems with anti-spikes. We propose
a new algorithm for computing the synchronization percentage between two AS-
NTPM P systems and also study the efficiency of the protocol with respect to the
parameters of the SN P system. Our main contribution is a series of experiments
in which we show that increasing the number of input neurons or the number of
hidden neurons can exponentially decrease the percentage of the key recovered by
the attacker. This growth in the number of neurons increases the synchronization
time only polynomially. Our experiments adopt known attacks on TPM-based key
agreement protocols in a simple security model in which the attacker can only
eavesdrop on the messages exchanged by the legitimate parties.
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3 ASNTPM P Systems

The definition of an ASNTPM P system as stated in [40] is the following:

Definition 1. An Anti-Spiking Neural Tree Parity Machine P system is defined
as the following construct:

Π = (O, {σin11 , σin12 , ..., σinKN
}, {σh1 , σh2 , ..., σhK

}, σout, N,K,L, syn0, f)

where:

1. O = {a, a} is an alphabet formed by two symbols:
a) The symbol a denotes a spike
b) The symbol a denotes an anti-spike

2. σinij
is an input neuron formed by the following tuple (nij , nij , Rij):

a) nij denotes the number of spikes from the neuron
b) nij denotes the number of anti-spikes from the neuron
c) Rij is a finite set of rules of the following forms:

i. Firing rules: bc → bc∗wij where b ∈ {a, a}, 1 ≤ c ≤ L and wij is a
positive integer that will be defined below.
If at the moment t a neuron has c spikes or anti-spikes it will fire,
consuming either c spikes or c anti-spikes and sending c ∗wij spikes or
c ∗wij anti-spikes to the hidden neuron σhiwith which it is connected.
At moment t = 0, there are no spikes or anti-spikes in the neuron i.e.,
nij = 0, nij = 0.

ii. Annlihilation rule: aa → λ
This rule indicates that at any moment t, an input neuron cannot
contain spikes and anti-spikes simultaneously. If a spike and an anti-
spike are present in an input neuron, they will annihilate each other
instantaneously.

Here, 1 ≤ i ≤ K and 1 ≤ j ≤ N .
3. σhi

is a hidden neuron formed by the following tuple (ni, ni, Ri):
a) ni denotes the number of spikes from the neuron
b) ni denotes the number of anti-spikes from the neuron
c) Ri is a finite set of rules of the following form:

i. Firing rules: rule of the form bc → b where b ∈ {a, a}, 1 ≤ c ≤ NL.
If at the moment t the neuron has c spikes it will fire consuming c
spikes and sending 1 spike to the output neuron. If at the moment t
the neuron has c anti-spikes it will fire consuming c anti-spikes and
sending 1 anti-spike to the output neuron. At moment t = 0, there are
no spikes or anti-spikes in the neuron i.e., ni = 0, ni = 0.

ii. Annlihilation rule: aa → λ
This rule indicates that at any moment t, a hidden neuron cannot
contain spikes and anti-spikes simultaneously. If a spike and an anti-
spike are present in a hidden neuron, they will annihilate each other
instantaneously.

Here, 1 ≤ i ≤ K.
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4. σout is the output neuron formed by the following tuple (nout, nout, rout):
a) nout denotes the number of spikes from the neuron
b) nout denotes the number of anti-spikes from the neuron
c) rout is an annihilation rule of the form aa → λ. The rule indicates that

the output neuron cannot hold spikes and anti-spikes simultaneously. At
moment t = 0, there are no spikes or anti-spikes in the neuron i.e., nout = 0,
nout = 0.

The output of the system is the number of spikes or anti-spikes from this
neuron.

5. synt is the set of synapses at the computational step t. A synapse is defined by
the triplet (σi, σj , wij) meaning the existence of a synapse between the neuron
σi and the neuron σj . Here, σi and σj can be input, hidden, or output neurons.
The weight on the synapse, wij ∈ ZZ+ has the role to amplify the spikes or
the anti-spikes passing through the synapse e.g., if the neuron σi fires sending
c spikes or anti-spikes to the neuron σj and the weight on the synapse is wij

then the neuron σj will receive c ∗ wij spikes or anti-spikes.
syn0 represents the set of synapses at moment t = 0. Initially, the weights
between the input and the hidden neurons are randomly chosen from the set
{1, 2, ..., L}. The weights between the hidden and the output neurons are al-
ways 1.

6. N is the number of input neurons connected to a single hidden neuron.
7. K is the number of neurons hidden neurons.
8. L represents the maximum value of a weight i.e., 0 < wij ≤ L.
9. The learning function f has the role of updating the weights on the synapses

according to (1):
synt+1 = f(synt) (1)

The exact form of the learning function f is described by the procedure from
Algorithm 3.

The system is initialized using the initialization procedure described in Algo-
rithm 1. The input consists of the ASNTPM P System and a vector of N ∗ K
elements X = (x11, x12, ..., xKN ), −L ≤ xij ≤ L, xij ̸= 0, ∀1 ≤ i ≤ K, 1 ≤ j ≤ N .
The input of the system is defined by the vector. If xij < 0 then the input neu-
ron σij will receive from the environment |xij | anti-spikes. If on the other hand,
xij > 0 then the input neuron σij will receive from the environment xij spikes.
The initialization procedure is described by Algorithm 1.

The input neurons fire sending all the spikes or all the anti-spikes to the hidden
neurons. The number of spikes or anti-spikes is amplified by the corresponding
weight of the synapse. After the annihilation rule is applied the maximum number
of times in each hidden neuron, they send one spike or one anti-spike to the output
neuron. After the annihilation rule is applied the maximum number of times in
the output neuron, it can be in one of the following states:

1. The output neuron is empty if the number of spikes received from the hidden
neurons is equal to the number of anti-spikes.
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2. The output neuron contains one spike if the number of spikes received from
the hidden neurons is greater than the number of anti-spikes.

3. The output neuron contains one anti-spike if the number of spikes received
from the hidden neurons is smaller than the number of anti-spikes.

The output of the system is the state of the output neuron. The system evolves
by the application of the learning function f which modifies the weights of the
synapses between the input and the hidden neurons. The running procedure of an
ANSTPM P System is described in Algorithm 2. A generic ASNTPM P System
is presented in Figure 1.

Fig. 1. A generic ASNTPM P System

Let N(Π,σ) be the number of spikes from neuron σ of the ASNTPM Π. Sim-
ilarly, let N(Π,σ) be the number of anti-spikes from neuron σ of the ASNTPM
Π. Here σ can be an input, a hidden, or an output neuron.

Let WΠ be the weights on the synapses of the ASNTPM Π. More exactly, WΠ

is a K×N matrix in which the element on line i and column j denoted as WΠ [i][j]
represent the weight between the hidden neuron σhi

and the input neuron σinij
.
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Algorithm 1 ASNTPM P System initialization
1: function Initialize(Π,X)
2: for i = 1; i ≤ K; i = i+ 1 do
3: for j = 1 j ≤ N j = j + 1 do
4: if X[i ∗N + j] ≤ 0 then
5: N(Π,σinij ) = |X[i ∗N + j]|
6: else
7: N(Π,σinij ) = X[i ∗N + j]
8: end if
9: WΠ [i][j]

$← [0, 2L]
10: end for
11: end for
12: for i = 1; i ≤ K; i = i+ 1 do
13: N(Π,σhi) = 0
14: N(Π,σhi) = 0
15: end for
16: N(Π,σout) = 0
17: N(Π,σout) = 0
18: end function

Algorithm 2 ASNTPM P System running
1: function Run(Π)
2: for i = 1; i ≤ K; i = i+ 1 do
3: for j = 1 j ≤ N j = j + 1 do
4: N(Π,σhi) = N(Π,σhi) +WΠ [i][j] ∗N(Π,σinij )
5: N(Π,σhi) = N(Π,σhi) +WΠ [i][j] ∗N(Π,σinij )
6: end for
7: end for
8: for i = 1; i ≤ K; i = i+ 1 do
9: N(Π,σout) = N(Π,σout) +N(Π,σhi)

10: N(Π,σout) = N(Π,σout) +N(Π,σhi)
11: end for
12: end function
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Algorithm 3 The learning function
1: function UpdateWeights(Π)
2: for i = 1; i ≤ K; i = i+ 1 do
3: if [[N(Π,σhi) = N(Π,σout)] ∨ [N(Π,σhi) = N(Π,σout)]] then
4: for j = 1 j ≤ N j = j + 1 do
5: if N(Π,σout) > 0 then
6: WΠ [i][j] =

∣∣WΠ [i][j] +N(Π,σinij )
∣∣

7: else if N(Π,σout) > 0 then
8: WΠ [i][j] =

∣∣WΠ [i][j]−N(Π,σinij )
∣∣

9: end if
10: end for
11: if WΠ [i][j] > L then
12: WΠ [i][j] = L
13: end if
14: end if
15: end for
16: end function

4 The synchronization of two ASNTPM P Systems

Two ASNTPM P Systems are synchronized if their weights are identical. To formal-
ize this idea, we introduce a new quantitative indicator called the synchronization
percentage which describes how much two ASNTPM P Systems are synchronized.
This indicator is computed by the function SynchronizationPercentage presented
in Algorithm 4.

Algorithm 4 The synchronization percentage
1: function SynchronizationPercentage(Π1, Π2)
2: total← 0
3: counter ← 0
4: for i = 1 i ≤ K i = i+ 1 do
5: for j = 1 j ≤ N j = j + 1 do
6: if WΠ1 [i][j] ̸= 2L ∧WΠ2 [i][j] ̸= 2L then
7: total← total + 1
8: if WΠ1 [i][j] = WΠ2 [i][j] then
9: counter ← counter + 1

10: end if
11: end if
12: end for
13: end for
14: return counter/total
15: end function
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A simple function for synchronizing two ASNTPM P Systems defined by the
same parameters K, N and L is presented in Algorithm 5. Since both systems
update their weights based on their mutual output, we say that the two ASNTPM
P systems are synchronizing with mutual learning.

Algorithm 5 Synchronization of two ASNTPM P Systems
1: function Synchronize(Π1, Π2)
2: while SynchronizationPercentage(Π1, Π2) ̸= 1 do
3: x

R← ZKN

4: Initialize(Π1, x)
5: Initialize(Π2, x)
6: Run(Π1)
7: Run(Π2)
8: if N(Π1, σout) = N(Π2, σout) ∨N(Π1, σout) = N(Π2, σout) then
9: UpdateWeights(Π1)

10: UpdateWeights(Π2)
11: end if
12: end while
13: end function

We study the efficiency of the function Synchronize with respect to the param-
eters K and N of the two ASNTPM P Systems. We note that both systems have
the same parameters K, N and L. We denote by T (Synchronize) the number of
steps taken by the function Synchronize.

Hypothesis 1. The number of steps taken by the function Synchronize to synchro-
nize two ASNTPM P Systems is quadratic in the parameter K of the inputs:

T (Synchronize) = 0.8K2 − 30K + 1184 (2)

Experiment. We run the algorithm for 50 times and compute the mean of the
results for each K ∈ {4, 8, 16, 32, 64, 128, 256} with L = 256 and N = 128. The
results are presented in Table 1 and Figure 2.

Table 1. The efficiency of Algorithm 5 with respect to K

K 4 8 16 32 64 128 256
T(Synchronize) 158.08 286.66 623.34 1443.48 3532.3 10253.7 47492.06
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Fig. 2. The number of iterations of Algorithm 5 with respect to K

Using the least square method with the Levenberg-Marquardt algorithm on
the values recorded during the experiment we computed the best polynomial that
fits the data and obtained (2).

Hypothesis 2. The number of steps taken by the function Synchronize to synchro-
nize two ASNTPM P Systems is linear in the parameter N of the inputs:

T (Synchronize) = 27N + 191 (3)

Experiment. We run the algorithm for 50 times and compute the mean of the
results for each N ∈ {4, 8, 16, 32, 64, 128, 256} with L = 256 and K = 64. The
results are presented in Table 2 and Figure 3.

Table 2. The efficiency of Algorithm 5 with respect to N

N 4 8 16 32 64 128 256
T(Synchronize) 277.42 483.64 744.28 1173.58 1960.0 3594.54 7441.92
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Fig. 3. The number of iterations of Algorithm 5 with respect to N

Using the least square method with the Levenberg-Marquardt algorithm on
the values recorded during the experiment we computed the best polynomial that
fits the data and obtained (3).

5 Attacks on the synchronization process

In this section, we will examine three algorithms through a series of experiments
that aim to synchronize two ASNTPMs without mutual learning. These algorithms
are inspired by various attacks on key agreement protocols based on TPMs [22,
44, 46]. All algorithms received as inputs three ASNTPMs: Π1, Π2 and Π3. The
purpose of each algorithm is to synchronize Π3 with Π1 without mutual learning
in the time frame in which Π1 and Π2 synchronize with mutual learning using
Algorithm 5.

Algorithm 6 presents the naive solution inspired by [22] while Algorithm 7
presents the geometric solution inspired by [46]. The genetic attack presented
in [44] is exponential in K so we do not include it here. We denote by ρ (Πx, Πy)
the synchronization percentage between Πx and Πy after the execution of the
synchronization algorithm.
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5.1 The naive attack

The function NaiveAttack stops execution when Π1 and Π2 are fully synchro-
nized. The algorithm returns the synchronization percentage between Π1 and Π3.
Hypotheses 3 and 4 capture the relation between the parameters K and N of the
ASNTPM P systems and ρ (Π1, Π3).

Algorithm 6 The naive attack on the synchronization process
1: function NaiveAttack(Π1, Π2, Π3)
2: while SynchronizationPercentage(Π1, Π2) ̸= 1 do
3: x

R← ZKN

4: Initialize(Π1, x)
5: Initialize(Π2, x)
6: Initialize(Π3, x)
7: Run(Π1)
8: Run(Π2)
9: Run(Π3)

10: if N(Π1, σout) = N(Π2, σout) ∨N(Π1, σout) = N(Π2, σout) then
11: UpdateWeights(Π1)
12: UpdateWeights(Π2)
13: if N(Π1, σout) = N(Π3, σout) ∨N(Π1, σout) = N(Π3, σout) then
14: UpdateWeights(Π3)
15: end if
16: end if
17: end while
18: return SynchronizationPercentage(Π1, Π3)
19: end function

Hypothesis 3. The synchronization percentage between Π1 and Π3 after running
the function NaiveAttack drops exponentially in K according to (4).

ρ (Π1, Π3) = 1.27e−0.11K + 0.04 (4)

Experiment. We run the algorithm for 50 times and compute the mean of the
results for each K ∈ {4, 8, 16, 32, 64, 128, 256} with L = 256 and N = 128. The
results are presented in Table 3 and Figure 4.

Table 3. ρ (Π1, Π3) using Algorithm 6 with respect to K

K 4 8 16 96 128 192 256
ρ (Π1, Π3) 0.83 0.53 0.23 0.06 0.05 0.04 0.02
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Fig. 4. ρ (Π1, Π3) using Algorithm 6 with respect to K

Using the least square method with the Levenberg-Marquardt algorithm on
the values recorded during the experiment we computed the best power function
that fits the data and obtained (4).

Hypothesis 4. The synchronization percentage between Π1 and Π3 after running
the function NaiveAttack drops in N according to (5).

ρ (Π1, Π3) = 0.02e−0.03N + 0.06 (5)

Experiment. We run the algorithm for 50 times and compute the mean of the
results for each N ∈ {4, 8, 16, 32, 64, 128, 256} with L = 256 and K = 64. The
results are presented in Table 4 and Figure 5.

Table 4. ρ (Π1, Π3) using Algorithm 6 with respect to N

K 4 8 16 96 128 192 256
ρ (Π1, Π3) 0.28 0.25 0.18 0.09 0.08 0.07 0.06
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Fig. 5. ρ (Π1, Π3) using Algorithm 6 with respect to N

Using the least square method with the Levenberg-Marquardt algorithm on
the values recorded during the experiment we computed the best power that fits
the data and obtained (5).

5.2 The geometric attack

Another solution for the synchronization of three ASNTPM P Systems is pre-
sented in Algorithm 7. This solution is inspired by the geometric attack on neural
cryptography presented in [22].

The idea of this solution is to interpret the weights and the input associated
with each hidden neuron as points in a N −dimensional discrete space. When the
outputs of Π1 and Π2 are the same but the output of Π3 is different then at least
one hidden neuron of Π3 has the wrong number of spikes or anti-spikes.

To correct this error, we compute the distance between the input and the
weights associated with each hidden neuron of Π3. The hidden neuron which
presents the minimum distance will have the number of spikes and anti-spikes
inverted. The output of Π3 will be set to the output of Π1 and the weights of Π3

will be updated using the new configuration.
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Although this solution is more efficient than the one presented in Algorithm 6,
the synchronization percentage still decreases as K or N increases.

Algorithm 7 The geometric solution for the synchronization of three ASNTPM
P Systems

function GeometricAttack(Π1, Π2, Π3)
while SynchronizationPercentage(Π1, Π2) ̸= 1 do

x
R← ZKN

Initialize(Π1, x)
Initialize(Π2, x)
Initialize(Π3, x)
Run(Π1)
Run(Π2)
Run(Π3)
if N(Π1, σout) = N(Π2, σout) ∨N(Π1, σout) = N(Π2, σout) then

UpdateWeights(Π1)
UpdateWeights(Π2)
if N(Π1, σout) = N(Π3, σout) ∨N(Π1, σout) = N(Π3, σout) then

UpdateWeights(Π3)
end if
if N(Π1, σout) ̸= N(Π3, σout) ∧N(Π1, σout) ̸= N(Π3, σout) then

distance = ∥WΠ3 [1]− x∥
minimum = distance
index = 1
for i = 2; i ≤ K; i = i+ 1 do

distance = ∥WΠ3 [i]− x∥
if distance < minimum then

mininum = distance
index = i

end if
end for
aux = N(Π3, σhindex)
N(Π3, σhindex) = N(Π3, σhindex)
N(Π3, σhindex) = aux
N(Π3, σoutput) = N(Π1, σoutput)
N(Π3, σoutput) = N(Π1, σoutput)
UpdateWeights(Π3)

end if
end if

end while
return SynchronizationPercentage(Π1, Π3)

end function

Hypothesis 5. The synchronization percentage between Π1 and Π3 after running
the function GeometricAttack drops in K according to (6).
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ρ (Π1, Π3) = 0.91e−0.004K (6)

Experiment. We run the algorithm for 50 times and compute the mean of the
results for each K ∈ {4, 8, 16, 32, 64, 128, 256, 512} with L = 256 and N = 128.
The results are presented in Table 5 and Figure 6.

Table 5. ρ (Π1, Π3) using Algorithm 7 with respect to K

K 4 8 16 32 64 128 256 512
ρ (Π1, Π3) 0.95 0.88 0.82 0.73 0.65 0.55 0.27 0.05

Fig. 6. ρ (Π1, Π3) using Algorithm 7 with respect to K

Using the least square method with the Levenberg-Marquardt algorithm on the
values recorded during the experiment we computed the best exponential function
that fits the data and obtained (6).

Hypothesis 6. The synchronization percentage between Π1 and Π3 after running
the function GeometricAttack drops in N according to (7).
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ρ (Π1, Π3) = 0.99e−0.003N (7)

Experiment. We run the algorithm for 50 times and compute the mean of the
results for each N ∈ {4, 8, 16, 32, 64, 128, 256, 512} with L = 256 and K = 64. The
results are presented in Table 6 and Figure 7.

Table 6. ρ (Π1, Π3) using Algorithm 7 with respect to N

N 4 8 16 32 64 128 256 512
ρ (Π1, Π3) 0.98 0.97 0.95 0.90 0.78 0.65 0.46 0.23

Fig. 7. ρ (Π1, Π3) using Algorithm 7 with respect to N

Using the least square method with the Levenberg-Marquardt algorithm on the
values recorded during the experiment we computed the best exponential function
that fits the data and obtained (6).



Security of ASNTPM-based protocol 93

5.3 The majority attack

Let the ordered set HΠ =
(
N(Π,σh1), N(Π,σh1), N(Π,σh2), N(Π,σh2), ..., N(Π,σhK

), N(Π,σhK
)
)

be the hidden state of the ASNTPM P System Π. Let S = {HΠ1
, HΠ2

, ...,HΠM
}

be the set of hidden states of M ASNTPM P Systems. We denote by FS (HΠi
)

the frequency of the element HΠi
in the set S. Given two ASNTPM P Systems

ΠA and ΠB we can synchronize them in parallel with each of the M ASNTPM
Systems Πi, for each 1 ≤ i ≤ M using the geometric solution. Similar to [46] we
could try to design a solution that uses the frequency FS (HΠi

) to synchronize ΠA

and ΠB with at least one of the M ASNTPM P Systems. However, this is not
possible given the fact that for ASNTPM P Systems there exist certain values of
K, s.a. FS (HΠi

) = 1
M , ∀1 ≤ i ≤ M . This is illustrated by hypotheses 7 and 8.

Hypothesis 7. Given two ASNTPM P Systems ΠA and ΠB and a set of M AS-
NTPM P Systems {Π1, Π2, ...,ΠM}, the mean of the frequencies FS (HΠi

) after
each iteration of GeometricAttack (ΠA, ΠB , Πi), 1 ≤ i ≤ M converges to 1

M as K
increases according to (8).

1

M

M∑
i=1

FS (HΠi
) = 1.13e−0.06K (8)

Experiment. We run GeometricAttack (ΠA, ΠB , Πi) in parallel for each 1 ≤ i ≤
M and averaged the result. The procedure was repeated 50 times and the mean
of the results were computed for each K ∈ {4, 8, 16, 32, 64, 128, 256, 512} with
L = 256, N = 128 and M = 128. The results are presented in Table 7 and Figure
8. Let µFS

= 1
M

∑M
i=1 FS (HΠi).

Table 7. The average µFS with respect to K

K 4 8 16 32 64 128 256 512
µFS 0.85 0.66 0.36 0.13 0.018 0.00786 0.0078125 0.0078125
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Fig. 8. µFS with respect to K

Using the least square method with the Levenberg-Marquardt algorithm on the
values recorded during the experiment we computed the best exponential function
that fits the data and obtained (8).

6 Conclusions and further directions of research

In this paper, we analyzed the security of the neural key agreement protocol pro-
posed in [40]. The protocol proposed by the authors is based on a new type of
TPM called the Anti-Spiking Neural Tree Parity Machine. Unlike classical TPM,
the model of the neuron used by ASNTPM is inspired by Spiking Neural P systems
with anti-spikes. We adopt four different types of attacks on TPM-based protocols:
the naive attack, the geometric attack, the majority attack and the genetic attack.
We showed through a series of experiments that increasing the number of neurons
decreases exponentially the percentage of the key recovered by the attacker. This
growth in the number of neurons implies only a polynomial increase in the run-
ning time. From a cryptographic perspective, this behavior is similar to trapdoor
problems on which the currently used cryptosystems are based.
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A further direction of research is to formalize the hard problem on which the
security of the TPM-based key agreement protocol is based. Analyzing the security
of a specific protocol is dependent on the security model. Constructing a hard
problem enables the creation of many cryptographic primitives whose security can
be proved by reduction to the underlining hard problem.

Another direction of research implies analyzing the security of the protocol us-
ing another security model in which the attacker can alter the messages exchanged
by the legitimate parties. The current protocol is insecure in such a security model
given the fact that any third party can mount a Man-in-the-Middle (MitM) attack.

The third direction of research is to construct neural key agreement protocols
for groups. This is particularly important because most applications for secure
communications are designed for group messaging.
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