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Why Rection Systems?

Reaction systems are a computational model inspired by
bio-chemical reactions.

Why another bio-inspired model?

▶ A model abstract enough that is of theoretical interest. . .
▶ . . .but still useful to model biological processes
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Example of Application

Ion Petre et al. have studied the the eukaryotic heat shock response1

The heat shock response is a defense mechanism by which the cell
reacts to elevated temperatures

They have reformulate the existing model in terms of reaction
systems and studied biologically relevant properties

1Sepinoud Azimi, Bogdan Iancu, and Ion Petre. Reaction systemmodels for the heat shock
response. Fundamenta Informaticae, 131(3):299–312, 2014.
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Reactions

A reaction is a triple a = (R, I, P) of finite sets.

▶ A set R of reactants

▶ A set I of inhibitors

▶ A set P of products

If R, I, P ⊆ S then a is a reaction over S
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Reaction Systems

A reaction system is a pair A = (S,A)

▶ S is a finite set of symbols or entities called the background set

▶ A is a set of reactions of over S

A state of A is a subset of S
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Example of a Reaction System

Background set:

S = {a, b, c, d, e}

Set of reactions:

A = {({a}, {b, c}, {a, c})
({a, c, e}, {d}, {d, e})}

7 of 38



Enabled Reactions

A reaction a = (R, I, P) is enabled in a state T ⊆ S when:

▶ All the reactants are present in T:

R ⊆ T

▶ None of the inhibitors is present in T:

I ∩ T = ∅
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Result Function
Let a = (R, I, P) be a reaction.

The result function of a on T ⊆ S is:

resa(T) =
{
P if a is enabled in T
∅ otherwise

Extension to a set A of reactions:

resA(T) =
⋃
a∈A

resa(T)

Extension to a reaction system A = (S,A):

resA = resA
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Result Function: Example

Background set: S = {a, b, c, d, e}
Reactions: r1 = ({a}, {b, c}, {a, c})

r2 = ({a, c, e}, {d}, {d, e})

State: T = {a, b, c, e}
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Reaction Systems as Dynamical Systems

This is a finite dynamical system:

(A, resA)

where:

▶ A is a reaction system

▶ resA is its result function

State sequence or orbit starting from T ⊆ S:(
T, resA(T), res2

A(T), res3
A(T), . . .

)
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Some Terminology

If resA(Ti) = Tj then there is an arrow from Ti to Tj:

T1 // T2 // T3 gg

T4

??

T5 // T6
)) T7ii T8oo

13 of 38



Some Dynamical Properties 1/3

▶ Fixed Point. resA(T) = T:

T ee

▶ Fixed Point Attractor. “A fixed point with something going in”

T′ // T ee

▶ Global Fixed Point Attractor. “A fixed point where everything
goes in”

∀T′ ⊆ S T′ // T′′ // . . . // T ee
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Some Dynamical Properties 2/3

▶ Cycle. Every finite dynamical system has a cycle

T2
)) T3

��
T1

66

...

yyTn

VV

Tn−1ii

▶ Attractor Cycle. “A cycle with something going in”

T2
)) T3

��
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Tn−1ii
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Some Dynamical Properties 3/3

▶ Global Attractor Cycle. “A cycle reachable from every state”

T2
)) T3

��
∀T′ ⊆ S T′ // . . . // T1

66

...

yyTn

VV

Tn−1ii

▶ Gardens of Eden. “A state with nothing going in”
A state with no preimages

T′ never // T

Recall that: garden of Eden ⇐⇒ attractor cycle
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Fixed Points Problems

Given a reaction system A = (S,A):

▶ does A have a fixed point?

▶ does A have a fixed point attractor?

▶ does A have a fixed point that is a global attractor?

18 of 38



Fixed Points Problems

Given a reaction system A = (S,A):

▶ does A have a fixed point?

▶ does A have a fixed point attractor?

▶ does A have a fixed point that is a global attractor?

18 of 38



Fixed Points Problems

Given a reaction system A = (S,A):

▶ does A have a fixed point?

▶ does A have a fixed point attractor?

▶ does A have a fixed point that is a global attractor?

18 of 38



Fixed Points Problems

Given a reaction system A = (S,A):

▶ does A have a fixed point?

▶ does A have a fixed point attractor?

▶ does A have a fixed point that is a global attractor?

18 of 38



Cycles Problems

Given a reaction system A = (S,A):

▶ does A have an attractor cycle?

▶ does A have a global attractor cycle?
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Existence of a Fixed Point

Let φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

We will build a reaction system with a fixed point iff φ is satisfiable

Background set: S = {x1, x2, x3,♣,♠}
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Encoding the Assignments

x1 = True
x2 = False

⇒ {x1, x3}

x3 = True

Idea: if T is a satisfying assignment then:

T ee

else
T // T ∪ {♠}

--
T ∪ {♣}mm
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The Reactions

Preserve the assignment:

({xi},∅, {xi})

Create a cycle with ♠ and ♣:

({♠},∅, {♣})
({♣}, {♠}, {♠})

Evaluate a clause (e.g., x1 ∨ ¬x2 ∨ x3):

({x2}, {x1, x3,♠,♣}, {♠})
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A Non-Satisfying Assignment

Evaluation of

φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

with the assignment x1 = False, x2 = True, x2 = False

{x2} //
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A Satisfying Assignment

Evaluation of

φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

with the assignment x1 = True, x2 = True, x2 = False
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NP-complete problems

This shows the NP-hardness of finding if a fixed point exists

With similar techniques we can find:

▶ Finding if a fixed point exists is NP-complete
▶ Finding if a fixed point attractor exists is NP-complete
▶ Finding if an attractor cycle exists is NP-complete
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Global Attractors

For global attractors we need another approach:

A Turing Machine + A binary counter

▶ The Turing Machine has a polynomially-sized tape
▶ The binary counter force the machine in a fixed point after a

finite number of steps. . .
▶ . . .unless the TM has already rejected the input
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Global Attractors: Results

▶ Finding if there exists a global fixed point attractor is
PSPACE-complete

▶ Finding if there exists a global attractor cycle is
PSPACE-complete

▶ Reachability between two configurations is PSPACE-complete
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Bounding Reactants and Inhibitors

RS(r, i):
All Reaction Systems whose reactions

▶ have at most r reactants
▶ and at most i inhibitors

We have the classes:

▶ RS(∞,0) is all Reaction Systems without inhibitors
▶ RS(0,∞) is all Reaction Systems without reactants
▶ RS(∞,∞) is all Reaction Systems
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Classification

RS(∞,∞) Every function 2S → 2S

RS(0,∞) Antitone functions: T ⊆ T′ → resA(T) ⊇ resA(T′)

RS(∞,0) Monotone functions: T ⊆ T′ → resA(T) ⊆ resA(T′)

RS(1,0) Functions such that resA(T ∪ U) = resA(T) ∪ resA(U)

RS(0,0) All constant functions
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Reachability in Resource-Constrained Reaction Systems

By adapting the simulation of Turing Machine we can prove that

▶ Reachability is PSPACE-complete for RS(0,∞)

▶ Reachability is PSPACE-complete for RS(∞,0)

However for RS(1,0) it is NL-hard and in NP.
We solved the similar problem of sup-reachability
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Influence Graph

S = {a, b, c}
A = {({a},∅, {b})

({b},∅, {c})
({a},∅, {c})
({c},∅, {c})}

We can interpret S as a set of vertices and A as a set of edges:

a //

��

b

��
c dd
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Sup-Reachability in RS(1,0)

Let φ = (x1 ∨ ¬x2) ∧ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3)

For each variable xi:

▶ Create a cycle of length pi (the i-th prime) in the influence graph
▶ A point of the cycle generates all the clauses that xi = True

forces to be true
▶ All the other points generates all the clauses that xi = False

forces to be true

The set of all clauses appears iff φ is satisfiable
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Reachability Influence Graph

x1,1

x1,0

x2,0

x2,2 x2,1

x3,4

x3,3 x3,2

x3,1

x3,0

ϕ1 ϕ2 ϕ3 ϕ4
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Sup-Reachability Complexity

The previous construction shows the NP-hardness of the
sup-reachability problem

To show the containment in NP:

▶ Let G be the adjacency matrix of the influence graph
▶ Let X be the characteristic vector of the state TX ⊆ S
▶ Let Y be the characteristic vector of the state Ty ⊆ S
▶ Let ≥ be the element-wise comparison of two vectors

then we only need to guess a time step t ∈ N and check if

GtX ≥ Y
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Other Research Areas

▶ Combinatorial properties of Reaction Systems
▶ Long sequences and cycle in resource-constrained Reaction

Systems
▶ Dynamical Properties in resource-constrained Reaction

Systems
▶ Modeling of biological systems
▶ Combination of multiple Reaction Systems
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Thank you
for your attention
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