Reaction Systems and Their Dynamics

Luca Manzoni

Università degli Studi di Trieste

Table of Contents

An Introduction to Reaction Systems

An Introduction to Dynamical Properties

Dynamical Properties in RS

Limiting the Power of RS

Conclusions

Why Rection Systems?

Reaction systems are a computational model inspired by bio-chemical reactions.

Why Rection Systems?

Reaction systems are a computational model inspired by bio-chemical reactions.

Why another bio-inspired model?

Why Rection Systems?

Reaction systems are a computational model inspired by bio-chemical reactions.

Why another bio-inspired model?

- A model abstract enough that is of theoretical interest. . .

Why Rection Systems?

Reaction systems are a computational model inspired by bio-chemical reactions.

Why another bio-inspired model?

- A model abstract enough that is of theoretical interest. . .
- . . . but still useful to model biological processes

Example of Application

Ion Petre et al. have studied the the eukaryotic heat shock response ${ }^{1}$

[^0]
Example of Application

Ion Petre et al. have studied the the eukaryotic heat shock response ${ }^{1}$
The heat shock response is a defense mechanism by which the cell reacts to elevated temperatures

[^1]
Example of Application

Ion Petre et al. have studied the the eukaryotic heat shock response ${ }^{1}$
The heat shock response is a defense mechanism by which the cell reacts to elevated temperatures

They have reformulate the existing model in terms of reaction systems and studied biologically relevant properties

[^2]
Reactions

A reaction is a triple $a=(R, I, P)$ of finite sets.

Reactions

A reaction is a triple $a=(R, I, P)$ of finite sets.

- A set R of reactants

Reactions

A reaction is a triple $a=(R, I, P)$ of finite sets.

- A set R of reactants
- A set / of inhibitors

Reactions

A reaction is a triple $a=(R, I, P)$ of finite sets.

- A set R of reactants
- A set / of inhibitors
- A set P of products

Reactions

A reaction is a triple $a=(R, I, P)$ of finite sets.

- A set R of reactants
- A set / of inhibitors
- A set P of products

If $R, I, P \subseteq S$ then a is a reaction over S

Reaction Systems

A reaction system is a pair $\mathcal{A}=(S, A)$

Reaction Systems

A reaction system is a pair $\mathcal{A}=(S, A)$

- S is a finite set of symbols or entities called the background set

Reaction Systems

A reaction system is a pair $\mathcal{A}=(S, A)$

- S is a finite set of symbols or entities called the background set
- A is a set of reactions of over S

Reaction Systems

A reaction system is a pair $\mathcal{A}=(S, A)$

- S is a finite set of symbols or entities called the background set
- A is a set of reactions of over S

A state of \mathcal{A} is a subset of S

Example of a Reaction System

Background set:

$$
S=\{a, b, c, d, e\}
$$

Set of reactions:

$$
\begin{aligned}
A=\{ & \{\{a\},\{b, c\},\{a, c\}) \\
& (\{a, c, e\},\{d\},\{d, e\})\}
\end{aligned}
$$

Enabled Reactions

A reaction $a=(R, I, P)$ is enabled in a state $T \subseteq S$ when:

Enabled Reactions

A reaction $a=(R, I, P)$ is enabled in a state $T \subseteq S$ when:

- All the reactants are present in T :

$$
R \subseteq T
$$

Enabled Reactions

A reaction $a=(R, I, P)$ is enabled in a state $T \subseteq S$ when:

- All the reactants are present in T :

$$
R \subseteq T
$$

- None of the inhibitors is present in T :

$$
I \cap T=\varnothing
$$

Result Function

Let $a=(R, I, P)$ be a reaction.
The result function of a on $T \subseteq S$ is:

$$
\operatorname{res}_{a}(T)= \begin{cases}P & \text { if } a \text { is enabled in } T \\ \varnothing & \text { otherwise }\end{cases}
$$

Result Function

Let $a=(R, I, P)$ be a reaction.
The result function of a on $T \subseteq S$ is:

$$
\operatorname{res}_{a}(T)= \begin{cases}P & \text { if } a \text { is enabled in } T \\ \varnothing & \text { otherwise }\end{cases}
$$

Extension to a set A of reactions:

$$
\operatorname{res}_{A}(T)=\bigcup_{a \in A} \operatorname{res}_{a}(T)
$$

Result Function

Let $a=(R, I, P)$ be a reaction.
The result function of a on $T \subseteq S$ is:

$$
\operatorname{res}_{a}(T)= \begin{cases}P & \text { if } a \text { is enabled in } T \\ \varnothing & \text { otherwise }\end{cases}
$$

Extension to a set A of reactions:

$$
\operatorname{res}_{A}(T)=\bigcup_{a \in A} \operatorname{res}_{a}(T)
$$

Extension to a reaction system $\mathcal{A}=(S, A)$:

$$
\operatorname{res}_{\mathcal{A}}=\operatorname{res}_{A}
$$

Result Function: Example

Background set: $S=\{a, b, c, d, e\}$
Reactions: $\quad r_{1}=(\{a\},\{b, c\},\{a, c\})$

$$
r_{2}=(\{a, c, e\},\{d\},\{d, e\})
$$

Result Function: Example

Background set: $S=\{a, b, c, d, e\}$
Reactions: $\quad r_{1}=(\{a\},\{b, c\},\{a, c\})$

$$
r_{2}=(\{a, c, e\},\{d\},\{d, e\})
$$

State: $T=\{a, b, c, e\}$

$$
\begin{aligned}
& \{a\} \subseteq T \\
& \{b, c\} \cap T=\{b, c\} \neq \varnothing
\end{aligned}
$$

Result Function: Example

Background set: $S=\{a, b, c, d, e\}$
Reactions: $\quad r_{1}=(\{a\},\{b, c\},\{a, c\})$

$$
r_{2}=(\{a, c, e\},\{d\},\{d, e\})
$$

State: $T=\{a, b, c, e\}$

$$
\begin{aligned}
& \{a\} \subseteq T \\
& \{b, c\} \cap T=\{b, c\} \neq \varnothing \\
& \quad \operatorname{res}_{r_{1}}(T)=\varnothing
\end{aligned}
$$

Result Function: Example

Background set: $S=\{a, b, c, d, e\}$
Reactions: $\quad r_{1}=(\{a\},\{b, c\},\{a, c\})$

$$
r_{2}=(\{a, c, e\},\{d\},\{d, e\})
$$

State: $T=\{a, b, c, e\}$

$$
\begin{aligned}
& \{a, c, e\} \subseteq T \\
& \{d\} \cap T=\varnothing
\end{aligned}
$$

Result Function: Example

Background set: $S=\{a, b, c, d, e\}$
Reactions: $\quad r_{1}=(\{a\},\{b, c\},\{a, c\})$

$$
r_{2}=(\{a, c, e\},\{d\},\{d, e\})
$$

State: $T=\{a, b, c, e\}$

$$
\begin{gathered}
\{a, c, e\} \subseteq T \\
\{d\} \cap T=\varnothing \\
\operatorname{res}_{r_{2}}(T)=\{d, e\}
\end{gathered}
$$

Result Function: Example

Background set: $S=\{a, b, c, d, e\}$
Reactions: $\quad r_{1}=(\{a\},\{b, c\},\{a, c\})$

$$
r_{2}=(\{a, c, e\},\{d\},\{d, e\})
$$

State: $T=\{a, b, c, e\}$

$$
\operatorname{res}_{A}(T)=\operatorname{res}_{r_{1}}(T) \cup \operatorname{res}_{r_{2}}(T)
$$

Result Function: Example

Background set: $S=\{a, b, c, d, e\}$
Reactions: $\quad r_{1}=(\{a\},\{b, c\},\{a, c\})$

$$
r_{2}=(\{a, c, e\},\{d\},\{d, e\})
$$

State: $T=\{a, b, c, e\}$

$$
\begin{aligned}
\operatorname{res}_{A}(T) & =\operatorname{res}_{r_{1}}(T) \cup \operatorname{res}_{r_{2}}(T) \\
& =\varnothing \cup\{d, e\}
\end{aligned}
$$

Result Function: Example

Background set: $S=\{a, b, c, d, e\}$
Reactions: $\quad r_{1}=(\{a\},\{b, c\},\{a, c\})$

$$
r_{2}=(\{a, c, e\},\{d\},\{d, e\})
$$

State: $T=\{a, b, c, e\}$

$$
\begin{aligned}
\operatorname{res}_{A}(T) & =\operatorname{res}_{r_{1}}(T) \cup \operatorname{res}_{r_{2}}(T) \\
& =\varnothing \cup\{d, e\} \\
& =\{d, e\}
\end{aligned}
$$

Table of Contents

An Introduction to Reaction Systems

An Introduction to Dynamical Properties

Dynamical Properties in RS

Limiting the Power of RS

Conclusions

Reaction Systems as Dynamical Systems

This is a finite dynamical system:

$$
\left(\mathcal{A}, \operatorname{res}_{\mathcal{A}}\right)
$$

Reaction Systems as Dynamical Systems

This is a finite dynamical system:

$$
\left(\mathcal{A}, \operatorname{res}_{\mathcal{A}}\right)
$$

where:

- \mathcal{A} is a reaction system
- $\operatorname{res}_{\mathcal{A}}$ is its result function

Reaction Systems as Dynamical Systems

This is a finite dynamical system:

$$
\left(\mathcal{A}, \operatorname{res}_{\mathcal{A}}\right)
$$

where:

- \mathcal{A} is a reaction system
- $\operatorname{res}_{\mathcal{A}}$ is its result function

State sequence or orbit starting from $T \subseteq S$:

$$
\left(T, \operatorname{res}_{\mathcal{A}}(T), \operatorname{res}_{\mathcal{A}}^{2}(T), \operatorname{res}_{\mathcal{A}}^{3}(T), \ldots\right)
$$

Some Terminology

If $\operatorname{res}_{\mathcal{A}}\left(T_{i}\right)=T_{j}$ then there is an arrow from T_{i} to T_{j} :

Some Dynamical Properties $1 / 3$

Some Dynamical Properties 1/3

- Fixed Point. $\operatorname{res}_{\mathcal{A}}(T)=T$:

Some Dynamical Properties $1 / 3$

- Fixed Point. $\operatorname{res}_{\mathcal{A}}(T)=T$:

- Fixed Point Attractor. "A fixed point with something going in"

Some Dynamical Properties $1 / 3$

- Fixed Point. $\operatorname{res}_{\mathcal{A}}(T)=T$:

- Fixed Point Attractor. "A fixed point with something going in"

- Global Fixed Point Attractor. "A fixed point where everything goes in"

$$
\forall T^{\prime} \subseteq S \quad T^{\prime} \longrightarrow T^{\prime \prime} \longrightarrow \ldots \longrightarrow T \supseteq
$$

Some Dynamical Properties 2/3

Some Dynamical Properties 2/3

- Cycle. Every finite dynamical system has a cycle

Some Dynamical Properties 2/3

- Cycle. Every finite dynamical system has a cycle

- Attractor Cycle. "A cycle with something going in"

Some Dynamical Properties 3/3

Some Dynamical Properties 3/3

- Global Attractor Cycle. "A cycle reachable from every state"

Some Dynamical Properties 3/3

- Global Attractor Cycle. "A cycle reachable from every state"

- Gardens of Eden. "A state with nothing going in" A state with no preimages

$$
T^{\prime} \stackrel{\text { never }}{>} T
$$

Some Dynamical Properties 3/3

- Global Attractor Cycle. "A cycle reachable from every state"

- Gardens of Eden. "A state with nothing going in" A state with no preimages

$$
T^{\prime} \stackrel{\text { never }}{\triangleleft} T
$$

Recall that: garden of Eden \Longleftrightarrow attractor cycle

Table of Contents

An Introduction to Reaction Systems
 An Introduction to Dynamical Properties

Dynamical Properties in RS

Limiting the Power of RS

Conclusions

Fixed Points Problems

Given a reaction system $\mathcal{A}=(S, A)$:

Fixed Points Problems

Given a reaction system $\mathcal{A}=(S, A)$:

- does \mathcal{A} have a fixed point?

Fixed Points Problems

Given a reaction system $\mathcal{A}=(S, A)$:

- does \mathcal{A} have a fixed point?
- does \mathcal{A} have a fixed point attractor?

Fixed Points Problems

Given a reaction system $\mathcal{A}=(S, A)$:

- does \mathcal{A} have a fixed point?
- does \mathcal{A} have a fixed point attractor?
- does \mathcal{A} have a fixed point that is a global attractor?

Cycles Problems

Given a reaction system $\mathcal{A}=(S, A)$:

Cycles Problems

Given a reaction system $\mathcal{A}=(S, A)$:

- does \mathcal{A} have an attractor cycle?

Cycles Problems

Given a reaction system $\mathcal{A}=(S, A)$:

- does \mathcal{A} have an attractor cycle?
- does \mathcal{A} have a global attractor cycle?

Existence of a Fixed Point

Let $\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$

Existence of a Fixed Point

Let $\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$
We will build a reaction system with a fixed point iff φ is satisfiable

Existence of a Fixed Point

Let $\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$
We will build a reaction system with a fixed point iff φ is satisfiable
Background set: $S=\left\{x_{1}, x_{2}, x_{3}, \boldsymbol{\AA}, \boldsymbol{\oplus}\right\}$

Encoding the Assignments

$$
\begin{aligned}
& x_{1}=\text { True } \\
& x_{2}=\text { False } \\
& x_{3}=\text { True }
\end{aligned}
$$

Encoding the Assignments

$$
\begin{aligned}
& x_{1}=\text { True } \\
& x_{2}=\text { False } \\
& x_{3}=\text { True }
\end{aligned} \quad \Rightarrow\left\{x_{1}, x_{3}\right\}
$$

Encoding the Assignments

$$
\begin{aligned}
& x_{1}=\text { True } \\
& x_{2}=\text { False } \\
& x_{3}=\text { True }
\end{aligned} \Rightarrow\left\{x_{1}, x_{3}\right\}
$$

Idea: if T is a satisfying assignment then:

else

$$
T \longrightarrow T \cup\{\boldsymbol{\infty}\} \rightleftarrows T \cup\{\boldsymbol{\phi}\}
$$

The Reactions

Preserve the assignment:

$$
\left(\left\{x_{i}\right\}, \varnothing,\left\{x_{i}\right\}\right)
$$

The Reactions

Preserve the assignment:

$$
\left(\left\{x_{i}\right\}, \varnothing,\left\{x_{i}\right\}\right)
$$

Create a cycle with $\boldsymbol{\uparrow}$ and $\boldsymbol{\Omega}$:

$$
\begin{aligned}
& (\{\boldsymbol{\phi}\}, \varnothing,\{\boldsymbol{\phi}\}) \\
& (\{\boldsymbol{\phi}\},\{\boldsymbol{\omega}\},\{\boldsymbol{\phi}\})
\end{aligned}
$$

The Reactions

Preserve the assignment:

$$
\left(\left\{x_{i}\right\}, \varnothing,\left\{x_{i}\right\}\right)
$$

Create a cycle with $\boldsymbol{\uparrow}$ and $\boldsymbol{\Omega}$:

$$
\begin{aligned}
& (\{\boldsymbol{\phi}\}, \varnothing,\{\boldsymbol{\phi}\}) \\
& (\{\boldsymbol{\phi}\},\{\boldsymbol{\sim}\},\{\boldsymbol{\phi}\})
\end{aligned}
$$

Evaluate a clause (e.g., $x_{1} \vee \neg x_{2} \vee x_{3}$):

$$
\left(\left\{x_{2}\right\},\left\{x_{1}, x_{3}, \boldsymbol{\phi}, \boldsymbol{\phi}\right\},\{\boldsymbol{\phi}\}\right)
$$

A Non-Satisfying Assignment

Evaluation of

$$
\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)
$$

with the assignment $x_{1}=$ False, $x_{2}=$ True, $x_{2}=$ False

A Non-Satisfying Assignment

Evaluation of

$$
\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)
$$

with the assignment $x_{1}=$ False, $x_{2}=$ True, $x_{2}=$ False

$$
\left\{x_{2}\right\} \longrightarrow\{, \quad\}
$$

A Non-Satisfying Assignment

Evaluation of

$$
\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)
$$

with the assignment $x_{1}=$ False, $x_{2}=$ True, $x_{2}=$ False

$$
\left\{x_{2}\right\} \longrightarrow\left\{x_{2}, \quad\right\}
$$

$$
\left(\left\{x_{2}\right\}, \varnothing,\left\{x_{2}\right\}\right)
$$

A Non-Satisfying Assignment

Evaluation of

$$
\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)
$$

with the assignment $x_{1}=$ False, $x_{2}=$ True, $x_{2}=$ False

$$
\left\{x_{2}\right\} \longrightarrow\left\{x_{2}, \boldsymbol{\oplus}\right\}
$$

$$
\left(\left\{x_{2}\right\},\left\{x_{1}, x_{3}, \boldsymbol{\uparrow}, \boldsymbol{\infty}\right\},\{\boldsymbol{\omega}\}\right)
$$

A Non-Satisfying Assignment

Evaluation of

$$
\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)
$$

with the assignment $x_{1}=$ False, $x_{2}=$ True, $x_{2}=$ False

$$
\begin{aligned}
\left\{x_{2}\right\} \longrightarrow & \left\{x_{2}, \boldsymbol{巾}\right\} \\
& \left.\downarrow \begin{array}{l}
\downarrow \\
\end{array}, \quad\right\}
\end{aligned}
$$

A Non-Satisfying Assignment

Evaluation of

$$
\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)
$$

with the assignment $x_{1}=$ False, $x_{2}=$ True, $x_{2}=$ False

$$
\begin{aligned}
\left\{x_{2}\right\} \longrightarrow & \left\{x_{2}, \boldsymbol{\uparrow}\right\} \\
\downarrow & \downarrow \\
& \left\{x_{2}, \quad\right\}
\end{aligned}
$$

$$
\left(\left\{x_{2}\right\}, \varnothing,\left\{x_{2}\right\}\right)
$$

A Non-Satisfying Assignment

Evaluation of

$$
\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)
$$

with the assignment $x_{1}=$ False, $x_{2}=$ True, $x_{2}=$ False

$$
\begin{aligned}
\left\{x_{2}\right\} \longrightarrow & \left\{x_{2}, \boldsymbol{\phi}\right\} \\
& \downarrow \\
& \left\{x_{2}, \boldsymbol{\varphi}\right\}
\end{aligned}
$$

$(\{\boldsymbol{\phi}\}, \varnothing,\{\boldsymbol{\phi}\})$

A Non-Satisfying Assignment

Evaluation of

$$
\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)
$$

with the assignment $x_{1}=$ False, $x_{2}=$ True, $x_{2}=$ False

$$
\begin{aligned}
\left\{x_{2}\right\} \longrightarrow & \left\{x_{2}, \boldsymbol{\varphi}\right\} \\
\uparrow & (\downarrow \\
& \left\{x_{2}, \boldsymbol{\varphi}\right\}
\end{aligned}
$$

A Satisfying Assignment

Evaluation of

$$
\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)
$$

with the assignment $x_{1}=$ True, $x_{2}=$ True, $x_{2}=$ False

A Satisfying Assignment

Evaluation of

$$
\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)
$$

with the assignment $x_{1}=$ True, $x_{2}=$ True, $x_{2}=$ False

$$
\left\{x_{1}, x_{2}\right\} \longrightarrow\{, \quad\}
$$

A Satisfying Assignment

Evaluation of

$$
\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)
$$

with the assignment $x_{1}=$ True, $x_{2}=$ True, $x_{2}=$ False

$$
\left\{x_{1}, x_{2}\right\} \longrightarrow\left\{x_{1}, \quad\right\}
$$

$$
\left(\left\{x_{1}\right\}, \varnothing,\left\{x_{1}\right\}\right)
$$

A Satisfying Assignment

Evaluation of

$$
\varphi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)
$$

with the assignment $x_{1}=$ True, $x_{2}=$ True, $x_{2}=$ False

$$
\left\{x_{1}, x_{2}\right\} \longrightarrow\left\{x_{1}, x_{2}\right\}
$$

$$
\left(\left\{x_{2}\right\}, \varnothing,\left\{x_{2}\right\}\right)
$$

NP-complete problems

This shows the NP-hardness of finding if a fixed point exists

NP-complete problems

This shows the NP-hardness of finding if a fixed point exists
With similar techniques we can find:

NP-complete problems

This shows the NP-hardness of finding if a fixed point exists
With similar techniques we can find:

- Finding if a fixed point exists is NP-complete

NP-complete problems

This shows the NP-hardness of finding if a fixed point exists
With similar techniques we can find:

- Finding if a fixed point exists is NP-complete
- Finding if a fixed point attractor exists is NP-complete

NP-complete problems

This shows the NP-hardness of finding if a fixed point exists
With similar techniques we can find:

- Finding if a fixed point exists is NP-complete
- Finding if a fixed point attractor exists is NP-complete
- Finding if an attractor cycle exists is NP-complete

Global Attractors

For global attractors we need another approach:

Global Attractors

For global attractors we need another approach:
A Turing Machine + A binary counter

Global Attractors

For global attractors we need another approach:

A Turing Machine + A binary counter

- The Turing Machine has a polynomially-sized tape

Global Attractors

For global attractors we need another approach:

> A Turing Machine + A binary counter

- The Turing Machine has a polynomially-sized tape
- The binary counter force the machine in a fixed point after a finite number of steps. . .

Global Attractors

For global attractors we need another approach:

A Turing Machine + A binary counter

- The Turing Machine has a polynomially-sized tape
- The binary counter force the machine in a fixed point after a finite number of steps. . .
- ... unless the TM has already rejected the input

Global Attractors: Results

- Finding if there exists a global fixed point attractor is PSPACE-complete

Global Attractors: Results

- Finding if there exists a global fixed point attractor is PSPACE-complete
- Finding if there exists a global attractor cycle is PSPACE-complete

Global Attractors: Results

- Finding if there exists a global fixed point attractor is PSPACE-complete
- Finding if there exists a global attractor cycle is PSPACE-complete
- Reachability between two configurations is PSPACE-complete

Table of Contents

An Introduction to Reaction Systems
 An Introduction to Dynamical Properties
 Dynamical Properties in RS

Limiting the Power of RS

Conclusions

Bounding Reactants and Inhibitors

$\mathcal{R S}(r, i):$
All Reaction Systems whose reactions

- have at most r reactants
- and at most i inhibitors

Bounding Reactants and Inhibitors

$\mathcal{R S}(r, i):$
All Reaction Systems whose reactions

- have at most r reactants
- and at most i inhibitors

We have the classes:

Bounding Reactants and Inhibitors

$\mathcal{R S}(r, i):$
All Reaction Systems whose reactions

- have at most r reactants
- and at most i inhibitors

We have the classes:

- $\mathcal{R S}(\infty, 0)$ is all Reaction Systems without inhibitors

Bounding Reactants and Inhibitors

$\mathcal{R S}(r, i):$
All Reaction Systems whose reactions

- have at most r reactants
- and at most i inhibitors

We have the classes:

- $\mathcal{R S}(\infty, 0)$ is all Reaction Systems without inhibitors
- $\mathcal{R S}(0, \infty)$ is all Reaction Systems without reactants

Bounding Reactants and Inhibitors

$\mathcal{R S}(r, i):$
All Reaction Systems whose reactions

- have at most r reactants
- and at most i inhibitors

We have the classes:

- $\mathcal{R S}(\infty, 0)$ is all Reaction Systems without inhibitors
- $\mathcal{R S}(0, \infty)$ is all Reaction Systems without reactants
- $\mathcal{R S}(\infty, \infty)$ is all Reaction Systems

Classification

$\mathcal{R S}(\infty, \infty) \quad$ Every function $2^{s} \rightarrow 2^{s}$

Classification

$\mathcal{R S}(\infty, \infty) \quad$ Every function $2^{S} \rightarrow 2^{S}$
$\mathcal{R S}(0, \infty) \quad$ Antitone functions: $T \subseteq T^{\prime} \rightarrow \operatorname{res}_{\mathcal{A}}(T) \supseteq \operatorname{res}_{\mathcal{A}}\left(T^{\prime}\right)$

Classification

$\mathcal{R S}(\infty, \infty) \quad$ Every function $2^{S} \rightarrow 2^{S}$
$\mathcal{R S}(0, \infty) \quad$ Antitone functions: $T \subseteq T^{\prime} \rightarrow \operatorname{res}_{\mathcal{A}}(T) \supseteq \operatorname{res}_{\mathcal{A}}\left(T^{\prime}\right)$
$\mathcal{R S}(\infty, 0) \quad$ Monotone functions: $T \subseteq T^{\prime} \rightarrow \operatorname{res}_{\mathcal{A}}(T) \subseteq \operatorname{res}_{\mathcal{A}}\left(T^{\prime}\right)$

Classification

$\mathcal{R S}(\infty, \infty) \quad$ Every function $2^{S} \rightarrow 2^{S}$
$\mathcal{R S}(0, \infty) \quad$ Antitone functions: $T \subseteq T^{\prime} \rightarrow \operatorname{res}_{\mathcal{A}}(T) \supseteq \operatorname{res}_{\mathcal{A}}\left(T^{\prime}\right)$
$\mathcal{R S}(\infty, 0) \quad$ Monotone functions: $T \subseteq T^{\prime} \rightarrow \operatorname{res}_{\mathcal{A}}(T) \subseteq \operatorname{res}_{\mathcal{A}}\left(T^{\prime}\right)$
$\mathcal{R S}(1,0) \quad$ Functions such that $\operatorname{res}_{\mathcal{A}}(T \cup U)=\operatorname{res}_{\mathcal{A}}(T) \cup \operatorname{res}_{\mathcal{A}}(U)$

Classification

$\mathcal{R S}(\infty, \infty) \quad$ Every function $2^{S} \rightarrow 2^{S}$
$\mathcal{R S}(0, \infty) \quad$ Antitone functions: $T \subseteq T^{\prime} \rightarrow \operatorname{res}_{\mathcal{A}}(T) \supseteq \operatorname{res}_{\mathcal{A}}\left(T^{\prime}\right)$
$\mathcal{R S}(\infty, 0) \quad$ Monotone functions: $T \subseteq T^{\prime} \rightarrow \operatorname{res}_{\mathcal{A}}(T) \subseteq \operatorname{res}_{\mathcal{A}}\left(T^{\prime}\right)$
$\mathcal{R S}(1,0) \quad$ Functions such that $\operatorname{res}_{\mathcal{A}}(T \cup U)=\operatorname{res}_{\mathcal{A}}(T) \cup \operatorname{res}_{\mathcal{A}}(U)$
$\mathcal{R S}(0,0) \quad$ All constant functions

Reachability in Resource-Constrained Reaction Systems

By adapting the simulation of Turing Machine we can prove that

Reachability in Resource-Constrained Reaction Systems

By adapting the simulation of Turing Machine we can prove that

- Reachability is PSPACE-complete for $\mathcal{R S}(0, \infty)$

Reachability in Resource-Constrained Reaction Systems

By adapting the simulation of Turing Machine we can prove that

- Reachability is PSPACE-complete for $\mathcal{R S}(0, \infty)$
- Reachability is PSPACE-complete for $\mathcal{R S}(\infty, 0)$

Reachability in Resource-Constrained Reaction Systems

By adapting the simulation of Turing Machine we can prove that

- Reachability is PSPACE-complete for $\mathcal{R S}(0, \infty)$
- Reachability is PSPACE-complete for $\mathcal{R S}(\infty, 0)$

However for $\mathcal{R S}(1,0)$ it is NL-hard and in NP.
We solved the similar problem of sup-reachability

Influence Graph

$$
\begin{aligned}
S= & \{a, b, c\} \\
A=\{ & \{(\{a\}, \varnothing,\{b\}) \\
& (\{b\}, \varnothing,\{c\}) \\
& (\{a\}, \varnothing,\{c\}) \\
& (\{c\}, \varnothing,\{c\})\}
\end{aligned}
$$

Influence Graph

$$
\begin{aligned}
S= & \{a, b, c\} \\
A=\{ & \{(\{a\}, \varnothing,\{b\}) \\
& (\{b\}, \varnothing,\{c\}) \\
& (\{a\}, \varnothing,\{c\}) \\
& (\{c\}, \varnothing,\{c\})\}
\end{aligned}
$$

We can interpret S as a set of vertices and A as a set of edges:

Influence Graph

$$
\begin{aligned}
S= & \{a, b, c\} \\
A=\{ & \{(\{a\}, \varnothing,\{b\}) \\
& (\{b\}, \varnothing,\{c\}) \\
& (\{a\}, \varnothing,\{c\}) \\
& (\{c\}, \varnothing,\{c\})\}
\end{aligned}
$$

We can interpret S as a set of vertices and A as a set of edges:

Sup-Reachability in $\mathcal{R S}(1,0)$

$$
\text { Let } \varphi=\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

Sup-Reachability in $\mathcal{R S}(1,0)$

$$
\text { Let } \varphi=\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

For each variable x_{i} :

Sup-Reachability in $\mathcal{R S}(1,0)$

$$
\text { Let } \varphi=\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

For each variable x_{i} :

- Create a cycle of length p_{i} (the i-th prime) in the influence graph

Sup-Reachability in $\mathcal{R S}(1,0)$

$$
\text { Let } \varphi=\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

For each variable x_{i} :

- Create a cycle of length p_{i} (the i-th prime) in the influence graph
- A point of the cycle generates all the clauses that $x_{i}=$ True forces to be true

Sup-Reachability in $\mathcal{R} \mathcal{S}(1,0)$

$$
\text { Let } \varphi=\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

For each variable x_{i} :

- Create a cycle of length p_{i} (the i-th prime) in the influence graph
- A point of the cycle generates all the clauses that $x_{i}=$ True forces to be true
- All the other points generates all the clauses that $x_{i}=$ False forces to be true

Sup-Reachability in $\mathcal{R} \mathcal{S}(1,0)$

$$
\text { Let } \varphi=\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

For each variable x_{i} :

- Create a cycle of length p_{i} (the i-th prime) in the influence graph
- A point of the cycle generates all the clauses that $x_{i}=$ True forces to be true
- All the other points generates all the clauses that $x_{i}=$ False forces to be true

The set of all clauses appears iff φ is satisfiable

Reachability Influence Graph

Sup-Reachability Complexity

The previous construction shows the NP-hardness of the sup-reachability problem

Sup-Reachability Complexity

The previous construction shows the NP-hardness of the sup-reachability problem

To show the containment in NP:

Sup-Reachability Complexity

The previous construction shows the NP-hardness of the sup-reachability problem

To show the containment in NP:

- Let G be the adjacency matrix of the influence graph

Sup-Reachability Complexity

The previous construction shows the NP-hardness of the sup-reachability problem

To show the containment in NP:

- Let G be the adjacency matrix of the influence graph
- Let X be the characteristic vector of the state $T_{X} \subseteq S$

Sup-Reachability Complexity

The previous construction shows the NP-hardness of the sup-reachability problem

To show the containment in NP:

- Let G be the adjacency matrix of the influence graph
- Let X be the characteristic vector of the state $T_{X} \subseteq S$
- Let Y be the characteristic vector of the state $T_{y} \subseteq S$

Sup-Reachability Complexity

The previous construction shows the NP-hardness of the sup-reachability problem

To show the containment in NP:

- Let G be the adjacency matrix of the influence graph
- Let X be the characteristic vector of the state $T_{X} \subseteq S$
- Let Y be the characteristic vector of the state $T_{y} \subseteq S$
- Let \geq be the element-wise comparison of two vectors

Sup-Reachability Complexity

The previous construction shows the NP-hardness of the sup-reachability problem

To show the containment in NP:

- Let G be the adjacency matrix of the influence graph
- Let X be the characteristic vector of the state $T_{X} \subseteq S$
- Let Y be the characteristic vector of the state $T_{y} \subseteq S$
- Let \geq be the element-wise comparison of two vectors
then we only need to guess a time step $t \in \mathbb{N}$ and check if

$$
G^{t} X \geq Y
$$

Table of Contents

> An Introduction to Reaction Systems

> An Introduction to Dynamical Properties

> Dynamical Properties in RS

> Limiting the Power of RS

Conclusions

Other Research Areas

Other Research Areas

- Combinatorial properties of Reaction Systems

Other Research Areas

- Combinatorial properties of Reaction Systems
- Long sequences and cycle in resource-constrained Reaction Systems

Other Research Areas

- Combinatorial properties of Reaction Systems
- Long sequences and cycle in resource-constrained Reaction Systems
- Dynamical Properties in resource-constrained Reaction Systems

Other Research Areas

- Combinatorial properties of Reaction Systems
- Long sequences and cycle in resource-constrained Reaction Systems
- Dynamical Properties in resource-constrained Reaction Systems
- Modeling of biological systems

Other Research Areas

- Combinatorial properties of Reaction Systems
- Long sequences and cycle in resource-constrained Reaction Systems
- Dynamical Properties in resource-constrained Reaction Systems
- Modeling of biological systems
- Combination of multiple Reaction Systems

Thank you
for your attention

[^0]: ${ }^{1}$ Sepinoud Azimi, Bogdan lancu, and Ion Petre. Reaction system models for the heat shock response. Fundamenta Informaticae, 131(3):299-312, 2014.

[^1]: ${ }^{1}$ Sepinoud Azimi, Bogdan lancu, and Ion Petre. Reaction system models for the heat shock response. Fundamenta Informaticae, 131(3):299-312, 2014.

[^2]: ${ }^{1}$ Sepinoud Azimi, Bogdan lancu, and Ion Petre. Reaction system models for the heat shock response. Fundamenta Informaticae, 131(3):299-312, 2014.

