
Attacking cryptosystems by means of
virus machines

Mario J. Pérez-Jiménez
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LIFE!
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? Synthesis of proteins.

? Production of energy.

? Execution of metabolic procceses.
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Viruses

Small parasitic biological agents that cannot reproduce by itself.

? The most abundant parasites on Earth.

? They have not independent life.

? Viruses are not lone “wolves”.
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Viruses

A simple structure:

? Genetic material: either RNA or DNA.

? A protective protein coat.
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Virus machines

A new computing paradigm inspired by the manner in which viruses transmit
from one host to another (introduced in 20151).
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L. Valencia, M.J. Pérez-Jiménez, X. Chen, B. Wang, X. Zheng. Basic virus machines. In J.M. Sempere and

C. Zandron (eds) Proceedings of the 16th International Conference on Membrane Computing (CMC16), 17-21
August, 2015, Valencia, Spain, pp. 323-342.
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Virus machines

A VM of degree (p, q), p ≥ 1, q ≥ 1: (Γ,H, I ,DH ,DI ,GC , n1, . . . , np, i1)

? Γ = {v} is the singleton alphabet (v is called virus).

? H = {h1, . . . , hp}, I = {i1, . . . , iq} such that v /∈ H ∪ I and H ∩ I = ∅.

? DH = (H ∪ {h0},EH ,wH) is a weighted directed graph: EH ⊆ H × (H ∪ {h0}),

and wH is a mapping from EH onto N \ {0}.

? DI = (I ,EI ,wI ) is a weighted directed graph, where EI ⊆ I × I , wI is a mapping

from EI onto N \ {0}, and for each vertex ij ∈ I the out-degree of ij is ≤ 2.

? GC = (VC ,EC ) is an undirected bipartite graph, where VC = I ∪ EH being

{I ,EH} the partition associated with it. In addition, for each vertex ij ∈ I , the

degree of ij is less than or equal to 1.

? nj ∈ N (1 ≤ j ≤ p) and i1 ∈ I .
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A Virus Machine of degree (4, 6)
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Virus machines

The virus machines are equivalent in power to Turing machines2.

They have the ability to:

? Generate all diophantine sets3

? Compute all recursive functions4.

2
X. Chen, M.J. Pérez-Jiménez, L. Valencia, B. Wang, X. Zeng. Computing with viruses. Theoretical

Computer Science, 623 (2016), 146-159.
3

A. Romero, L. Valencia, M.J. Pérez-Jiménez. Generating Diophantine Sets by Virus Machines. In M. Gong,
L. Pan, T. Song, K. Tang, X. Zhang (eds) Bio-Inspired Computing: Theories and Applications. The 10th
International Conference (BIC-TA 2015), Hefei, China, September 25-28, 2015. Proceedings, pp. 331-341.

4
A. Romero, L. Valencia, A. Riscos, M.J. Pérez-Jiménez. Computing partial recursive functions by Virus

Machines. Lecture Notes in Computer Science, 9504 (2015), 353-368.
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Cryptography

Concerns the security of the information in the presence of possible intruders,
as well as authentication and identification, providing privacy and integrity.

Cryptosystems symmetrics: with secret key where the key to encrypt and
decrypt the text, is the same.

Cryptosystems asymmetrics: the issuer has both a public and a private key.

Within asymmetric cryptography, highlights the public-key cryptosystems.

The security of the cryptosystems relies on the presumed computational
hardness of a mathematical problem associated with them.
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The RSA cryptosystem

The pioneers of the public-key cryptosystems were W. Diffie and M. Hellman
who formulated the theoretical conditions such cryptosystems should satisfy 5.

RSA cryptosystem: R. Rivest, A. Shamir and L. Adleman in 1978 6.

RSA cryptosystem: the first public-key cryptosystem verifying the
Diffie-Hellman conditions.

5
W. Diffie, M. Hellman. New directions in cryptography. IEEE Transactions on Information Theory, 22, 6

(1976), 644-654.
6

R.L. Rivest, A. Shamir, L. Adleman. A method for obtaining digital signatures and public-key cryptosystems.
CAMC, 21, 2 (1978), 120-126.
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The RSA cryptosystem

The underlying problem of the RSA system is the semiprime factorization
problem: “given a semiprime number, find its decomposition”

(Semiprime: the product of exactly two prime numbers).

This problem can be characterized by the following partial function FACT: for
each semiprime x = y · z , with y ≥ z ≥ 2, we have FACT(x) = z .

The semiprime factorization problem is conjectured to be a computationally
hard problem.

Any “large” semiprime input n for RSA can be used as the modulus for both
public and private keys.
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A VM computing the partial function FACT
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i1 activates h2 → h3

i2 activates h1 → h4

i3 activates h1 → h4

i4 activates h4 → h1

i5 activates h3 → env

i6 activates h5 → h2 (2)

i7 activates h2 → h5

i8 activates h4 → h1

i9 activates h3 → h2
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