
Modeling of Grey wolf algorithm
using membrane system agents

Mgr. Daniel Valenta
RNDr. Lucie Ciencialová, Ph.D
Doc. RNDr. Luděk Cienciala, Ph.D 2020

Presentation outline

1. Grey wolf algorithm 2. Relationship with P systems

1.
Grey wolf algorithm

Grey wolf algorithm

● inspired by the social dynamics found in packs of grey wolves and by their
ability to dynamically create hierarchies in which every member has a clearly
defined role,

● primarily used for solving optimisation-based problems,
● they have already found use in a variety of fields.

Alfa Beta Delta Omega

Dominant pair,
the pack follows
their lead during
hunts, while
locating a place
to sleep, ...

They support
and respect the
Alpha pair during
its decisions and
provide
feedback.

Scouts – they observe the
surrounding area and warn the pack,
Sentinels – they protect the pack
when endangered,
Caretakers – they provide aid to old
and sick wolves.

They help to filter
the packs
aggression and
frustrations by
serving as
scapegoats.

The environment and the wolf

● Wolf’s primary goal in its environment is to find and hunt down prey, which in
our case equals finding the optimal solution to the given problem (the
coordinates in which the fitness function reaches its criterium,

● The environment is represented by
○ dimensions of the problems environment (2D, 3D, …),
○ boundaries of the problems environment,
○ fitness function characterising the problem.

● The value of the fitness function at the wolfs current position will be
metaphorically referred to as the highest-quality prey located,
○ the wolf with the best (lowest) fitness value is ranked as Alpha, the second

best as Beta, third best as Delta, and all the other as Omega.

Hunting technique

The algorithm smoothly transitions between two phases:

● Scouting phase – the pack extensively scouts its environment through many
random movements so that the algorithm does not get stuck in a local
minimum.

● Hunting phase – the influence of random movements is slowly reduced and
pack members draw progressively closer to the discovered extreme (minimum)
of the fitness function.

Search for prey Exploitation of prey Encircling prey The prey is surrounded Attack

Scouting and tracking prey

● Wolves positions within the environment are updated based upon the
estimated location of the prey using Alpha, Beta, and Delta wolves as guides,

● in order to maintain divergence between scouting and the actual hunt, each
wolf is assigned a vector A,

● another component supporting the scouting phase is vector C = rand (0,2).

Fig. 1. Vector A and its impact in 1D space Fig. 2. Vector C and its impact in 1D space

hunting phase

Encircling prey

Wolves have the tendency to move closer towards prey and encircle it (wolves
approach from various directions).

1

3

5

2

6

4

1. Initialize agents (wolfs)
2.
3.
4.
5.

Describing the algorithm

𝛼

𝛽

𝛿
ω

ω

ω

1. Initialize agents (wolfs)
2. Calculate fitness of

each agents and
determine the social
hierarchy

3.
4.
5.

value:
331

value:
219

value:
164

value:
31

value:
73

value:
113

Describing the algorithm

𝛼

𝛽

𝛿
ω

ω

ω

X

1. Initialize agents (wolfs)
2. Calculate fitness of each

agents and determine
the social hierarchy

3. Calculate the best
solution found thus far
Xα (i), Xβ (i) , Xδ (i)

4.
5.

Describing the algorithm

𝛼

𝛽

𝛿
ω

ω

ω

ω

ω
𝛼 𝛿

𝛽

1. Initialize agents (wolfs)
2. Calculate fitness of each

agents and determine
the social hierarchy

3. Calculate the best
solution found thus far
Xα (i), Xβ (i) , Xδ (i)

4. Update positions of all
wolves Xj (i+1), while
vectors A (red arrow) ,
C (blue arrow) , are
updated for each one

5.

ω

X

Describing the algorithm

ω

ω
𝛼

𝛽

1. Initialize agents (wolfs)
2. Calculate fitness of each

agents and determine
the social hierarchy

3. Calculate the best
solution found thus far
Xα (i), Xβ (i) , Xδ (i)

4. Update positions of all
wolves Xj (i+1), while
vectors A, C, are
updated for each one

5. Check for the
termination criteria

 Go to step 2

ω

value:
342 < 400

value:
218 < 400

value:
359 < 400

value:
135 < 400

value:
47 < 400

Describing the algorithm

𝛿
value:
376 < 400

2.
Relationship with P systems

Modeling of Grey wolf algorithm using membrane system agents

Environmental problem

Communication problem

Problem with randomnessInspired by nature

Usable for solving optimization
problems

Multi-agent system model

Environmental problem

Grey wolf algorithm

● represented by a mathematical
fitness function

P colonies

● represented by multiset of symbols
/ objects

Example 1: Grey wolf algorithm fitness function
F = x2 + y2 : x, y ∈ (−100, +100).

Example 2: 2D P colony environment

Environment problem solution

Proposed solution:

● Env is a pair (m × n, f(x)) , where m × n, m, n ∈ N is the size of the environment and
f(x) is the initial contents of environment,
○ A = {ℝ (real numbers)} ∪ e (environmental symbol)

● Agent’s program rules will compare the number values
of objects using operators “<” (or “>”),
○ Bi = oi , Pi, [ri, si], o = 2,
○ example: o1 = 12, o2 = 31, env = x ∈ A,

Pi = (o1 < o2, x): an action rule

3 12 17 22 14 4

8 24 28 31 19 11

14 27 33 37 31 15

21 25 41 48 30 18

15 21 32 33 26 10

7 11 19 21 9 -2

Example:
Env = (6×6, f(x)), f(x) =

P colonies

● Communities of simple reactive agents
independently living and acting in a joint
shared environment,

● indirect communication through the special
objects in environment

Communication problem

Grey wolf algorithm

● Agents (wolves) have the knowledge of
their global position in the environment,

● wolves positions are updated based upon
the estimates created by Alpha, Beta, or
Delta wolves.

Agent
o1 = a
o2 = b

env = e1

Agent
o1 = a
o2 = b

env = e2

P1
(a,b,e): move_right

env = e3env = e0

Communication problem solution

Proposed solution:

● Extending the P system by adding the Blackboard that:
○ saves the agents’ best fitness values,
○ is always accessible to read and write by all agents,

● Agents must know their position in the environment.

BlackBoard

Index 0 1 2

Agent BAlpha BBeta BDelta

Position x1, y1 x2, y2 x3, y3

Value Best value 2nd best value 3rd Best value

agent

Blackboard

Get Alpha value

1. Compare values
2. I’m the new Alpha!

Update

The problem with randomness

Grey wolf algorithm

● Random vectors A and C
influence the movement of
wolves in the environment.

P colonies

● Each program rule is
deterministic,

● the rules can be chosen in a
non-deterministic manner.

P1:
1. (a, a, e): action_1
2. (a, a, e): action_2

Iterations influence the random values

Randomness problem solution

Proposed solution:

● Agents don’t need to know their position in the environment,
● all agents who can contribute to the search will send solutions to

the blackboard points (receiver),
● Estimation of prey position is calculated as average of distances

collected by blackboard points from wolves Alpha, Beta, Delta,
● Omega wolves can ping the blackboard if changing position.

BlackBoard

Index 0 1 2 3 4 ... 5

Agent BAlpha BBeta BDelta B1 B2 … Bn

Value Best value 2nd best value 3rd Best value

Distance Estimation of prey position (calculated by the BlackBoard) distance of prey distance of prey … distance of prey

Blackboard

● Omega wolf ping the blackboard
before changing position and
get its distance from the prey.

● If the distance would decrease
compared to the original
distance, then the wolf will
move.

d1,d2

BlackBoard

Index 0 1 2 3 4 5 6

Value Alpha Beta Delta

Distance of prey Prey position

Get distance of prey

d1,d2
Try to move

1. Compare distances
2. Move

Update

Blackboard

● the agent compares its fitness
value to the Alpha. If this agent
has the better fitness value, it
updates the blackboard.

f(x),Alpha

Get Alpha value

1. Compare fitness values
2. I’m new Alpha!

BlackBoard

Index 0 1 2 3 4 5 6

Value Alpha Beta Delta

Distance of prey Prey position

Initialization

e, e

23

18

32

41 19

16

21 10 18

13

10

e, e

42

21

8

35

BlackBoard

Index 0 1 2 3 4

Value Alpha Beta Delta

Distance of prey Prey position

(e1,e2,x): e1, e2↔ x; x ∊ ℝ

Iteration 1

23,23

e

18

32

41 19

16

21 10 18

13

10

42,42

e

21

8

35

BlackBoard

Index 0 1 2 3 4

Value Alpha Beta Delta

Distance of prey Prey position

(e1,e2,x): e1, e2↔ x; x ∊ ℝ
(x, y, e); x, y ∊ ℝ:
 y ← get(BB[Alpha])
 compare(x,y):
 x > y: I’m new Alpha!
 update(BB[Alpha])
 x < y: y ← get(BB[Beta])
 compare (x, y):
 x > y: I’m new Beta
 ….

Iteration 1

23, _

e

18

32

41 19

16

21 10 18

13

10

42, _

e

21

8

35

BlackBoard

Index 0 1 2 3 4

Value Alpha Beta Delta

Distance of prey Prey position

(e1,e2,x): e1, e2↔ x; x ∊ ℝ
(x, y, e); x, y ∊ ℝ:
 y ← get(BB[Alpha])
 compare(x,y):
 x > y: I’m new Alpha!
 update(BB[Alpha])
 x < y: y ← get(BB[Beta])
 compare (x, y):
 x > y: I’m new Beta
 ….

…

Iteration 2

23,_

e

18

32

41 19

16

21 10 18

13

10

42,23

e

21

8

35

BlackBoard

Index 0 1 2 3 4

Value 23 Beta Delta

Distance of prey Prey position

(e1,e2,x): e1, e2↔ x; x ∊ ℝ
(x, y, e); x, y ∊ ℝ:
 y ← get(BB[Alpha])
 compare(x,y):
 x > y: I’m new Alpha!
 update(BB[Alpha])
 x < y: y ← get(BB[Beta])
 compare (x, y):
 x > y: I’m new Beta
 ….
 x > y: I’m new Delta

…

Iteration n

23,29

e

18

32

41 19

16

21 10 18

13

10

42,42

e

21

8

35

BlackBoard

Index 0 1 2 3 4

Value 42 36 29

Distance of prey Prey position

(x, y, e); x, y ∊ ℝ:
 ...
 I’m Omega!
 y ↔ e
 e → m
 m ↔ y
(x, y, m); x, y ∊ ℝ:
 Ping BB[i]
 x ← get(BB(i))
 Ping+mv1 BB[i]; mv1 = rand
 (⇐,⇑,⇒,⇓)
 y ←get(BB(i))
 compare (x,y)
 x > y: do mv1

…

Iteration n+1

2,3

m

18

32

41 19

16

21 10 18

13

10

42,42

e

21

8

35

BlackBoard

Index 0 1 2 3 4

Value 42 36 29

Distance of prey Prey position

…

2,3

(x, y, e); x, y ∊ ℝ:
 ...
 I’m Omega!
 y ↔ e
 e → m
 m ↔ y
(x, y, m); x, y ∊ ℝ:
 Ping BB[i]
 x ← get(BB(i))
 Ping+mv1 BB[i]; mv1 = rand
 (⇐,⇑,⇒,⇓)
 y ←get(BB(i))
 compare (x,y):
 x > y: do mv1

Model of Grey wolf algorithm using membrane system agents
Pgw = (A, e, env, B1, B2, …, Bn, X, f), where:

● A = {ℝ} ∪ {e,m,f},
● e ∊ A is the basic environmentální object,
● f is the final object, f ∊ A,
● Env is a pair (m × n, f(x)) , where m × n,

m, n ∈ ℕ, is the size of the environment
and f(x), is the initial contents of environment,

● X is the blackboard,
● B1, …, Bn are the agents, Bi = (Oi, Pi, [rx,sy]),

Oi = 2,
P1 = P2 = … = Pn,
Rx, Sy are the initial coordinates,

● Initial agents’ configuration: (O1[e], o2[e], env[i]), i ∊ ℝ.

Pi = {
1. (e1,e2,x): e1, e2↔ x; x ∊ ℝ
2. (x, y, e); x, y ∊ ℝ:

A. y ← get(BB[Alpha])
B. compare(x,y):

a. x > y: I’m new Alpha!
● update(BB[Alpha])

b. x < y: y ← get(BB[Beta])
● compare (x, y):

○ x > y: I’m new Beta!
i. update(BB[Beta])

○ x < y: y ← get (BB[Delta])
i. x > y: I’m new Delta!

➢ Update(BB[Delta])
ii. x < y: I’m Omega:

➢ y ↔ e
➢ e → m
➢ m ↔ y

3. (x, y, m); x, y ∊ ℝ:
A. Ping BB[i]
B. x ← get(BB(i))
C. Ping+mv1 BB[i]; mv1 = rand (⇐,⇑,⇒,⇓)
D. y ←get(BB(i))
E. compare (x,y):

a. x > y: do mv1
b. x < y:

● Ping+mv2 BB[i];
mv2 = rand(⇐,⇑,⇒,⇓) - mv1

● y ←get(BB(i))
● x > y: do mv2
● x < y: …

○ Can’t move:
i. y ↔ m
ii. m → f
iii. f ↔ m

 4. (x, y, f); x, y ∊ ℝ: stop the agent
 }

←
get from blackboard

→
rewrite agent’s object

↔
change agent’s object
with environment
object

Thanks for your attention
Daniel Valenta

Silesian University in Opava
Faculty of Philosophy and Science

Institute of Computer Science
F180337@fpf.slu.cz

