EFOP-3.6.3-VEKOP-16-2017-00002.

Integrált kutatói utánpótlás-képzési program az informatika és számítástudomány diszciplináris területein

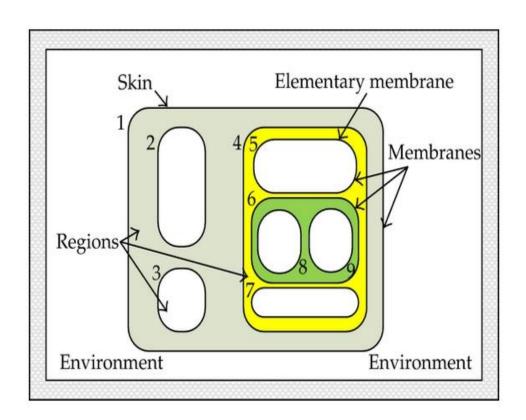
REACTIONS IN MEMBRANE SYSTEMS

PRAMOD KUMAR SETHY

DOCTORAL SCHOOL IN IFORMATICS EÖTVÖS LORÁND UNIVERSITY BUDAPEST, HUNGARY

SUPERVISOR:

PROF. ERZSÉBET CSUHAJ VARJÚ


BWMC18, SEVILLA, 2020

OUTLINE

- Introduction
- Membrane computing
- Reactions
- Reaction systems
- Reaction in P systems
- Evolutions Vs Reactions
- Communication vs Inhibition
- Initial model, Problems

MEMBRANE COMPUTING

The paradigmatic idea of membrane computing is to see whether we can construct computing devices that mimic living cells: structure and functioning.

-- Gheorghe Păun, 1988

.... CONTINUED

Membrane systems (P systems) are arranged in a hierarchical structure and processing multisets of symbol-objects.

Such a construct is a tuple

$$\Pi = (0, \mu, w_1, ..., w_n, R_1, ..., R_n, i_0)$$
, where

- 0 is an alphabet and its elements are called objects,
- μ is a membrane structure consisting of m membranes, labeled with 1, ..., n; n is called the degree of Π ,
- $w_1, ..., w_n$ are multisets of objects associated with the n cells of μ ,
- R_i , $1 \le i \le n$, are finite sets of evolution and communication rules over 0;
- R_i is associated with the cell i of μ . The rules are of the form $u \to v$, where u and v are multisets with $u \in O^*$ and $v \in (O \times \{1,2,...,n\})^*$. This means object in v are sent to other cells in μ .
- $i_0 \in \{1, ..., n\}$ is called output cell of Π .

REACTION SYSTEMS

- ➤ Reaction systems were introduced about 10 years ago, then the topic matured into a fruitful and dynamically evolving research area which attracted a noticeable group of researchers.
- ➤ The original motivation was the understanding of interactions of **biochemical reactions** in the living cell and since then reaction systems have developed as an innovative approach to formal modelling of **biological systems**.
- They have also become a popular novel model of **interactive computation**.

REACTIONS

A reaction is a 3-tuple a = (R, I, P) of finite nonempty sets. If S is a set such that $R, I, P \subseteq S$ then we say that a is a reaction in S.

The set R, also denoted by R_a , is the reactant set of a, the set I, also denoted by I_a , is the inhibitor set of a, and the set P, also denoted by P_a , is the product set of a.

..... CONTINUED

By rac(S) we denote the set of reactions in S. For a set A of reactions, we have

$$\begin{array}{ccc} \square & R_A = \bigcup_{a \in A} R_a \\ \square & I_A = \bigcup_{a \in A} I_a \\ \square & P_A = \bigcup_{a \in A} P_a \end{array}$$

Note:-

The reaction $(\emptyset,\emptyset,\emptyset)$ is called the empty reaction and denoted by Φ .

REACTION SYSTEMS

A reaction system, abbreviated rs, is an ordered pair A = (S, A) such that S is a finite set, and $A \subseteq rac(S)$. The set S is called the background (set) of A.

For a reaction system A = (S, A) and a set $T \subseteq S$, the result of A on T, denoted $res_A(T)$, is defined by $res_A(T) = \bigcup_{a \in A} res_a(T)$.

A reaction a is enabled on T if $R_a \subseteq T$, $I_a \cap T = \emptyset$. The result of a on T is P_a if a is enabled on T, otherwise it is the emptyset.

REACTION SYSTEMS, P SYSTEMS

Differences between Reaction systems and P systems:

- Reaction systems work with sets and P systems with multisets;
- Non-permanency: in case of Reaction systems if an object does not take part in any of the reactions performed simultaneously, then it disappears.

P SYSTEMS WITH REACTIONS

A P system with reactions is a construct,

$$\Pi_{rs} = (S, \mu, W_1, ..., W_n, A_1, ..., A_n, i_0)$$
 where S is the background set, μ is a membrane structure consisting of m membranes, labeled with $1, ..., n$; n is called the degree of Π , $W_1 ... W_n \in S$ are sets associated with the n cells of μ , called initial sets, $A_i, 1 \le i \le n$, are finite sets of reactions associated with the n cells of μ , and $i_0 \in \{1, ..., n\}$ is called output cell of Π_{rs} .

... CONTINUED

How these systems function?

The main idea is to associate the evolution rules of P systems with reactions of Reaction systems.

Communication rules can be simulated by the inhibitor set.

... CONTINUED

For example:

A P system with reactions can work as follows:

- In each membrane i there is a set of reactants T_i
- Reaction set A_i is applied to T_i
- The new set will be P_i ,
- Objects that belong to I_i are communicated to the neighbouring membranes

... CONTINUED

Problems:

What can we say about the dynamics of these systems?

What about the motion of (different) objects between the membranes?

Acknowledgment:

Research supported by project EFOP-3.6.3- VEKOP-16-2017-00002

THANK YOU FOR YOUR ATTENTION!

Európai Unió Európai Szociális Alap

BEFEKTETÉS A JÖVŐBE