Drivers of Diel Vertical Migration in a Changing Climate

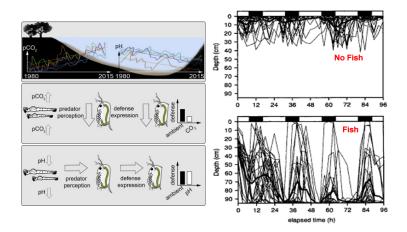
Manuel García–Quismondo

Icahn School of Medicine at Mount Sinai

February 2, 2020 at 18:44:37, New York, NY

1 Migration dynamics of *Daphnia pulex*

2 A case study


- 3 Model description
- 4 System simulation

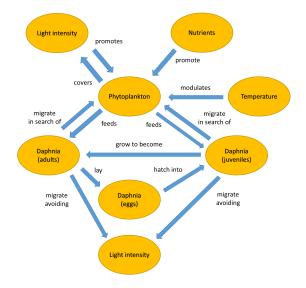
Migration dynamics of *Daphnia pulex*

- Daphnia pulex (commonly known as waterflea) is a freshwater crustacean species that lives in lakes.
- Top-bottom migration dynamics.
 - * Shallow waters are richer in algae (food source).
 - ★ Daphnia are more exposed to predators in shallow waters.
- Migration triggers.
 - ★ Ultraviolet (UV) light.
 - ★ Chemical cues emitted by predators.

Migration dynamics of Daphnia pulex

Climate change and Daphnia migration dynamics

- Climate change is altering rainfall patterns all across the globe.
- Rainy days are associated with cloudy days.
- The center of biomass of Daphnia is:
 - $\star\,$ Closer to the surface in cloudy days.
 - $\star\,$ Closer to the bottom in sunny days.


• Is climate change disrupting Daphnia migration dynamics?

• How do different levels of UV light intensity and fear of predation affect *Daphnia* migration dynamics?

- A Membrane Computing model on the migration dynamics of *Daphnia pulex* is proposed.
- Spatially-explicit, 2D (depth \times width) model.
- Based on data from The Jefferson Project at Lake George, NY, USA.

- An accurate model of this ecological system must represent continuous and discrete quantities.
 - ★ Membranes represent regions in the lake.
 - ★ Objects represent Daphnia.
 - Phenomena affecting continuous quantities are captured using discrete-time finite difference equations.

Model description

- A cross-section of the lake is modeled as a 2D (depth × width) membrane grid.
- Lake depth varies across regions \implies The number of membranes in each column varies.

Algae growth

 UV light intensity is attenuated by water turbidity and algae abundance UV light is less intense at greater depths.

★
$$Lim_{Light}(z, t) =$$

 $Lim_{Light} \times (I(0, x, t) - \frac{I(z, x, t))}{(Att(z, x, t) \times z_{max})}$

- UV light intensity promotes algae abundance, and low nutrient concentration (*P* and *C*) limits algae abundance.
 - ★ $[Ph(Conc_{z,x})]_{z,x} \rightarrow [Ph(Conc_{z,x} + Photo(z, x, t) PhMort(z, x, t) \sum_{i} num_{i,t} \times Conc_{z,x} \times gr)]_{z,x}$

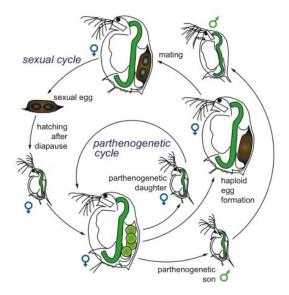
*
$$Photo(z, x, t) =$$

 $Lim_{Nut}(z, t) \times Lim_{Light}(z, x, t) \times Ph(Conc_{z,x})$

• Nutrient concentration is larger at greater depths.

Daphnia mortality

- Daphnia can die of different causes:
 - ★ Natural mortality
 - \star Starvation
 - \star Predation
- Changes in *Daphnia* weight are modeled as follows:
 num_{i,t+1} = num_{i,t} Mort(num_{i,t})


★ $somat_{i,t+1} = somat_{i,t} - \frac{somat_{i,t}}{Mort(num_{i,t})} + num_{i,t+1} \times Conc_{z,x} \times gr \times (1 - GonProp(somat_{i,t} + gonad_{i,t}))$

$$\star \ gonad_{i,t+1} = gonad_{i,t} - \frac{gonad_{i,t}}{Mort(num_{i,t})} + num_{i,t+1} \times \\Conc_{z,x} \times gr \times GonProp(somat_{i,t} + gonad_{i,t})$$

- The number of *Daphnia* and the group weights are updated:
 - $\star \ [D_{s,num_{i,t},somat_{i,t},gonad_{i,t}}]_{z,x} \rightarrow \\ [D_{s,num_{i,t+1},somat_{i,t+1},gonad_{i,t+1}}]_{z,x}$
- Adults lay eggs proportionally to gonad weight.
 - ★ $[D_{A,num_{i,t}}, somat_{i,t}, gonad_{i,t}]_{z,x} \rightarrow [D_{A,num_{i,t}}, somat_{i,t}, gonad_{i,t} gonad_{i,t+1}//(eggw \times eggn), Egg_{0,eggn}]_{z,x}$

- Eggs incubate and hatch at time *H*:
 ★ [Egg_{t,eggn}]_{z,x} → [Egg_{t+1,eggn}]_{z,x}
 ★ [Egg_{H,eggn}]_{z,x} → [D<sub>J₀,eggn,somat_{0,t},0]_{z,x}
 </sub>
- Juveniles develop as egg-laying adults.
 - $\star \ [D_{J_s,num,somat_{i,t},0}]_{z,x} \rightarrow [D_{J_{s+1},num,somat_{i,t},0}]_{z,x}$
 - $\star \ [D_{J_a,num,somat_{i,t},0}]_{z,\times} \rightarrow [D_{A,num,somat_{i,t},0}]_{z,\times}$

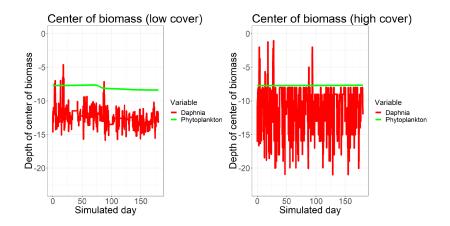
Daphnia lifecycle

- Daphnia groups explore their vicinity diff_z, diff_x.
- Daphnia hide from predators in deep, dark waters.
- *Daphnia* migrate to shallow waters where the algae abundance is larger.

Daphnia migration dynamics

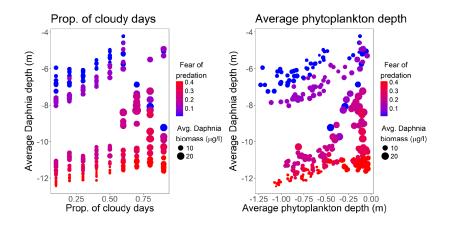
۰

$$[D_{s,num_{i,t},somat_{i,t}}]_{z,x} \xrightarrow{mprob} [D_{s,num_{i,t+1},somat_{i,t+1}}]_{z',x'}$$


•
$$z - diff_z, \dots, z', \dots, z + diff_z$$
 and
 $x - diff_x, \dots, x', \dots, x + diff_x$

- mprob = exp(-log(0.5) × (Conc(z', x') Conc(z, x))/ConcExpDiff)
- Neighboring regions are excluded if risk of predation $> PRP_{max}$ and UV light intensity $> I_{max tolerable}$

- The model was simulated for 2 years at a time scale of 1 hour and space scale of 1 meter under different cloud cover and fear of predation scenarios.
 - ★ UV light is brighter during daytime and dimmer during nighttime.
 - ★ UV light is dimmer in winter and autumn.


- A large proportion of cloudy days (low UV light intensity) increases *Daphnia* migration towards the water surface.
 - ★ Greater exposure to predators.

Center of biomass of *Daphnia* and algae

- *Daphnia* abundance is larger in scenarios where the center of biomass tends towards deep waters.
 - ★ Biomass gain in shallow waters due to algae abundance and greater grazing is not compensated by predation.
- Fear of predation has a larger effect on *Daphnia* abundance than proportion of cloudy days.

Effect of the proportion of cloudy days and fear of predation on *Daphnia* biomass

- Predation is modeled as a depth-dependent parameter.
 - ★ It is larger in shallow waters and decays exponentially with depth.
- Need for explicit predator dynamics predators as a (meta) species in the system.
- Water circulation plays an important role in re-distributing algae and nutrients in lake ecosystems.
 - ★ Include water circulation.
 - \star Need for 3D dynamics \implies 3D model.

Thank you!