From NP-completeness to DP-completeness: A membrane computing perspective

Mario J. Pérez-Jiménez
Research Group on Natural Computing
Dpt. Computer Science and Artificial Intelligence
University of Seville, Spain
Academia Europaea (The Academy of Europe)

WWW.cs.us.es/ ${ }^{\sim}$ marper marper@us.es

18th Brainstorming Week on Membrane Computing
Sevilla, Spain, February 4, 2020

CC 1 A

Presumably efficient computing models

Efficient computing model: ability to provide polynomial-time solutions for intractable problems (with respect to the time).

RGNC

Presumably efficient computing models

Efficient computing model: ability to provide polynomial-time solutions for intractable problems (with respect to the time).

Presumably efficient computing model: ability to provide polynomial-time solutions for NP-complete problems.

Presumably efficient computing models

Efficient computing model: ability to provide polynomial-time solutions for intractable problems (with respect to the time).

Presumably efficient computing model: ability to provide polynomial-time solutions for NP-complete problems.

- If $\mathbf{P} \neq \mathbf{N P}$ then every presumably efficient computing model is an efficient one.

Cc (A)

A lower bound for $\mathrm{PMC}_{\mathcal{R}}$

\mathcal{R} : class of recognizer membrane systems
$\mathbf{P M C}_{\mathcal{R}}$: time complexity class of problems solvable by families from \mathcal{R}.

- 3

RGND

A lower bound for $\mathrm{PMC}_{\mathcal{R}}$

\mathcal{R} : class of recognizer membrane systems
$\mathbf{P M C}_{\mathcal{R}}$: time complexity class of problems solvable by families from \mathcal{R}.
$\star \mathbf{P M C}_{\mathcal{R}}$ is closed under complement and under polynomial-time reduction.

A lower bound for $\mathrm{PMC}_{\mathcal{R}}$

\mathcal{R} : class of recognizer membrane systems
$\mathbf{P M C}_{\mathcal{R}}$: time complexity class of problems solvable by families from \mathcal{R}.
$\star \mathbf{P M C}_{\mathcal{R}}$ is closed under complement and under polynomial-time reduction.

If \mathcal{R} is a class of presumably efficient recognizer membrane systems then:

A lower bound for $\mathrm{PMC}_{\mathcal{R}}$

\mathcal{R} : class of recognizer membrane systems
$\mathbf{P M C}_{\mathcal{R}}$: time complexity class of problems solvable by families from \mathcal{R}.
$\star \mathbf{P M C}_{\mathcal{R}}$ is closed under complement and under polynomial-time reduction.

If \mathcal{R} is a class of presumably efficient recognizer membrane systems then:

* $\mathbf{N P} \cup \mathbf{c o}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{R}}$.

A lower bound for $\mathrm{PMC}_{\mathcal{R}}$

\mathcal{R} : class of recognizer membrane systems
$\mathbf{P M C}_{\mathcal{R}}$: time complexity class of problems solvable by families from \mathcal{R}.
$\star \mathbf{P M C}_{\mathcal{R}}$ is closed under complement and under polynomial-time reduction.

If \mathcal{R} is a class of presumably efficient recognizer membrane systems then:

* $\mathbf{N P} \cup \mathbf{c o}-\mathbf{N P} \subseteq \mathbf{P M C}_{\mathcal{R}}$.

This lower bound for $\mathbf{P M C}_{\mathcal{R}}$ can be improved.

CC 1 A

The complexity class DP (difference class)

Introduced by C.H. Papadimitriou and M. Yannakis ${ }^{1}$
\star A language L is in the class DP iff there are two languages L_{1} and L_{2} such that $L_{1}, L_{2} \in \mathbf{N P}$ and $L=L_{1} \backslash L_{2}$.

Then, $L \in \mathbf{D P}$ iff there are $L_{1} \in \mathbf{N P}$ and $L_{2} \in \mathbf{c o}-\mathbf{N P}$ such that $L=L_{1} \cap L_{2}$.

Class DP:

* lies between the first two levels of the polynomial hierarchy.
* is the second level in the Boolean hierarchy.
$\mathbf{N P} \subseteq \mathbf{D P} \subseteq \mathbf{P}^{\mathbf{N P} .}$
$N P \cup$ co-NP $\subseteq \mathbf{D P} \cap$ co-DP.

[^0]

U
(ctin)

Product of two decision problems

Let $X_{1}=\left(I_{X_{1}}, \theta_{X_{1}}\right)$ and $X_{2}=\left(I_{X_{2}}, \theta_{X_{2}}\right)$ be two decision problems.

Product of two decision problems

Let $X_{1}=\left(I X_{1}, \theta_{X_{1}}\right)$ and $X_{2}=\left(I_{X_{2}}, \theta X_{2}\right)$ be two decision problems.
The product problem $X_{1} \otimes X_{2}=\left(I X_{1} \otimes X_{2}, \theta X_{1} \otimes X_{2}\right)$ is defined as follows:

CC (A)

Product of two decision problems

Let $X_{1}=\left(I X_{1}, \theta_{X_{1}}\right)$ and $X_{2}=\left(I_{X_{2}}, \theta X_{2}\right)$ be two decision problems.
The product problem $X_{1} \otimes X_{2}=\left(I_{X_{1} \otimes X_{2}}, \theta X_{1} \otimes X_{2}\right)$ is defined as follows:
$-I_{X_{1} \otimes X_{2}}=I_{X_{1}} \times I_{X_{2}}$.
$-\theta_{X_{1} \otimes \chi_{2}}\left(u_{1}, u_{2}\right)=1 \Leftrightarrow \theta_{X_{1}}\left(u_{1}\right)=1 \wedge \theta_{X_{2}}\left(u_{2}\right)=1$.

Product of two decision problems

Let $X_{1}=\left(I_{X_{1}}, \theta x_{1}\right)$ and $X_{2}=\left(I_{X_{2}}, \theta x_{X_{2}}\right)$ be two decision problems.

The product problem $X_{1} \otimes X_{2}=\left(I_{X_{1} \otimes X_{2}}, \theta X_{1} \otimes X_{2}\right)$ is defined as follows:

$$
\begin{aligned}
& -I_{X_{1} \otimes X_{2}}=I_{X_{1}} \times I_{X_{2}} \\
& -\theta_{X_{1} \otimes X_{2}}\left(u_{1}, u_{2}\right)=1 \Leftrightarrow \theta_{X_{1}}\left(u_{1}\right)=1 \wedge \theta_{X_{2}}\left(u_{2}\right)=1 .
\end{aligned}
$$

Proposition: If X_{1} is an NP complete problem and X_{2} is a co-NP complete problem then $X_{1} \otimes X_{2}$ is a DP complete problem.

CC (A)

Product of two decision problems

Let $X_{1}=\left(I_{X_{1}}, \theta_{X_{1}}\right)$ and $X_{2}=\left(I_{X_{2}}, \theta_{X_{2}}\right)$ be two decision problems.

The product problem $X_{1} \otimes X_{2}=\left(I_{X_{1} \otimes X_{2}}, \theta X_{1} \otimes X_{2}\right)$ is defined as follows:
$-I_{X_{1} \otimes X_{2}}=I_{X_{1}} \times I_{X_{2}}$.
$-\theta_{X_{1} \otimes X_{2}}\left(u_{1}, u_{2}\right)=1 \Leftrightarrow \theta_{X_{1}}\left(u_{1}\right)=1 \wedge \theta_{X_{2}}\left(u_{2}\right)=1$.

Proposition: If X_{1} is an NP complete problem and X_{2} is a co-NP complete problem then $X_{1} \otimes X_{2}$ is a DP complete problem.

Corollary: If X is an NP complete problem, then $X \otimes \bar{X}$ is a DP complete problem.

Main result

Let \mathcal{R} be a computing model of recognizer non-cooperative P systems allowing dissolution, object evolution and communication rules.

- If $X_{1} \in \mathbf{P M C}_{\mathcal{R}}$ and $X_{2} \in \mathbf{P M C}_{\mathcal{R}}$ then $X_{1} \otimes X_{2} \in \mathbf{P M C}_{\mathcal{R}}$.

Sketch:
For $i=1,2$,

- Let $\boldsymbol{\Pi}^{(i)}=\left\{\boldsymbol{\Pi}^{(i)}(t) \mid t \in \mathbf{N}\right\}$ a family of systems from \mathcal{R} solving X_{i} in polynomial-time.
- Let $\left(\operatorname{cod}_{i}, s_{i}\right)$ be a polynomial encoding from X_{i} into $\Pi^{(i)}$.

A family $\boldsymbol{\Pi}=\{\boldsymbol{\Pi}(t) \mid t \in \mathbf{N}\}$ of membrane systems from \mathcal{R} will be defined from $\Pi^{(1)}$ and $\Pi^{(2)}$, providing a uniform and polynomial-time solution to $X_{1} \otimes X_{2}$.

CC (A)

A thinner lower bound for $\mathrm{PMC}_{\mathcal{R}}$

Let \mathcal{R} be a presumably efficient computing model of recognizer P systems allowing dissolution, object evolution and communication rules.

RGNC

A thinner lower bound for $\mathrm{PMC}_{\mathcal{R}}$

Let \mathcal{R} be a presumably efficient computing model of recognizer P systems allowing dissolution, object evolution and communication rules.

- Then, $\mathbf{D P} \cup$ co- $\mathbf{D P} \subseteq \mathbf{P M C}_{\mathcal{R}}$.

RGNC
$9 / 10$

A thinner lower bound for $\mathrm{PMC}_{\mathcal{R}}$

Let \mathcal{R} be a presumably efficient computing model of recognizer P systems allowing dissolution, object evolution and communication rules.

- Then, $\mathbf{D P} \cup$ co-DP $\subseteq \mathbf{P M C}_{\mathcal{R}}$.

Proof: If X is an NP-complete problem such that $X \in \mathbf{P M C}_{\mathcal{R}}$, then $X \otimes \bar{X}$ is a DP-complete problem such that $X \otimes \bar{X} \in \mathbf{P M C}_{\mathcal{R}}$.

RGNC

THANK YOU

FOR YOUR ATTENTION!

[^0]: ${ }^{1}$ C.H. Papadimitriou, M. Yannakis. The complexity of facets (and some facets of complexity). Proceedings of the 24th ACM Symposium on the Theory of Computing, 1982, pp. 229-234.

