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Presumably efficient computing models

Efficient computing model: ability to provide polynomial-time
solutions for intractable problems (with respect to the time).

Presumably efficient computing model: ability to provide
polynomial-time solutions for NP-complete problems.

– If P 6= NP then every presumably efficient computing model
is an efficient one.
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A lower bound for PMCR

R: class of recognizer membrane systems

PMCR: time complexity class of problems solvable by families from R.

? PMCR is closed under complement and under polynomial-time reduction.

If R is a class of presumably efficient recognizer membrane systems then:

∗ NP ∪ co-NP ⊆ PMCR.

This lower bound for PMCR can be improved.
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The complexity class DP (difference class)

Introduced by C.H. Papadimitriou and M. Yannakis1

? A language L is in the class DP iff there are two languages L1 and L2

such that L1, L2 ∈ NP and L = L1 \ L2.

Then, L ∈ DP iff there are L1 ∈ NP and L2 ∈ co-NP such that L = L1 ∩ L2.

Class DP:

∗ lies between the first two levels of the polynomial hierarchy.

∗ is the second level in the Boolean hierarchy.

NP ⊆ DP ⊆ PNP.

NP∪ co-NP ⊆ DP∩ co-DP.

1
C.H. Papadimitriou, M. Yannakis. The complexity of facets (and some facets of complexity). Proceedings of

the 24th ACM Symposium on the Theory of Computing, 1982, pp. 229-234.
4 / 10



P

NP co−NP

DP co−DP
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Product of two decision problems

Let X1 = (IX1 , θX1 ) and X2 = (IX2 , θX2 ) be two decision problems.

The product problem X1 ⊗ X2 = (IX1⊗X2 , θX1⊗X2 ) is defined as follows:

– IX1⊗X2 = IX1 × IX2 .

– θX1⊗X2 (u1, u2) = 1⇔ θX1 (u1) = 1 ∧ θX2 (u2) = 1.

Proposition: If X1 is an NP complete problem and X2 is a co-NP complete
problem then X1 ⊗ X2 is a DP complete problem.

Corollary: If X is an NP complete problem, then X ⊗ X is a DP complete
problem.
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Main result

Let R be a computing model of recognizer non-cooperative P systems allowing
dissolution, object evolution and communication rules.

– If X1 ∈ PMCR and X2 ∈ PMCR then X1 ⊗ X2 ∈ PMCR.

Sketch:
For i = 1, 2,

– Let Π(i) = {Π(i)(t) | t ∈ N} a family of systems from R solving Xi in
polynomial-time.

– Let (codi , si ) be a polynomial encoding from Xi into Π(i).

A family Π = {Π(t) | t ∈ N} of membrane systems from R will be defined from
Π(1) and Π(2), providing a uniform and polynomial-time solution to X1 ⊗ X2.
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A thinner lower bound for PMCR

Let R be a presumably efficient computing model of recognizer
P systems allowing dissolution, object evolution and
communication rules.

– Then, DP ∪ co-DP ⊆ PMCR.

Proof: If X is an NP-complete problem such that X ∈ PMCR,
then X ⊗X is a DP-complete problem such that X ⊗X ∈ PMCR.
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