From NP-completeness to DP-completeness: A membrane computing perspective

Mario J. Pérez-Jiménez

Research Group on Natural Computing Dpt. Computer Science and Artificial Intelligence University of Seville, Spain Academia Europaea (The Academy of Europe)

www.cs.us.es/~marper

marper@us.es

イロト イポト イヨト イヨト

18th Brainstorming Week on Membrane Computing Sevilla, Spain, February 4, 2020

Presumably efficient computing models

Efficient computing model: ability to provide polynomial-time solutions for **intractable** problems (with respect to the time).

Presumably efficient computing models

Efficient computing model: ability to provide polynomial-time solutions for **intractable** problems (with respect to the time).

Presumably efficient computing model: ability to provide polynomial-time solutions for **NP-complete** problems.

Presumably efficient computing models

Efficient computing model: ability to provide polynomial-time solutions for **intractable** problems (with respect to the time).

Presumably efficient computing model: ability to provide polynomial-time solutions for **NP-complete** problems.

- If $\mathbf{P} \neq \mathbf{NP}$ then every presumably efficient computing model is an efficient one.

 $\mathcal{R}:$ class of recognizer membrane systems

 $\text{PMC}_{\mathcal{R}}$: time complexity class of problems solvable by families from $\mathcal{R}.$

 $\mathcal{R}:$ class of recognizer membrane systems

 $\text{PMC}_{\mathcal{R}}:$ time complexity class of problems solvable by families from $\mathcal{R}.$

 $\star~ \text{PMC}_{\mathcal{R}}$ is closed under complement and under polynomial-time reduction.

 $\mathcal{R}:$ class of recognizer membrane systems

 $\text{PMC}_{\mathcal{R}}$: time complexity class of problems solvable by families from $\mathcal{R}.$

 $\star~ \text{PMC}_{\mathcal{R}}$ is closed under complement and under polynomial-time reduction.

If \mathcal{R} is a class of **presumably efficient** recognizer membrane systems then:

 $\mathcal{R}:$ class of recognizer membrane systems

 $\text{PMC}_{\mathcal{R}}$: time complexity class of problems solvable by families from $\mathcal{R}.$

 $\star~ \text{PMC}_{\mathcal{R}}$ is closed under complement and under polynomial-time reduction.

If \mathcal{R} is a class of **presumably efficient** recognizer membrane systems then:

* NP \cup co-NP \subseteq PMC_R.

・ロト ・四ト ・ヨト ・ヨト

 $\mathcal{R}:$ class of recognizer membrane systems

 $\text{PMC}_{\mathcal{R}}$: time complexity class of problems solvable by families from $\mathcal{R}.$

 $\star~ \text{PMC}_{\mathcal{R}}$ is closed under complement and under polynomial-time reduction.

If \mathcal{R} is a class of **presumably efficient** recognizer membrane systems then:

* NP \cup co-NP \subseteq PMC_R.

This lower bound for $\mbox{PMC}_{\mathcal{R}}$ can be improved.

・ロト ・四ト ・ヨト ・ヨト

The complexity class DP (difference class)

Introduced by C.H. Papadimitriou and M. Yannakis¹

* A language L is in the class **DP** iff there are two languages L_1 and L_2 such that $L_1, L_2 \in \mathbf{NP}$ and $L = L_1 \setminus L_2$.

Then, $L \in \mathbf{DP}$ iff there are $L_1 \in \mathbf{NP}$ and $L_2 \in \mathbf{co-NP}$ such that $L = L_1 \cap L_2$.

Class **DP**:

- * lies between the first two levels of the **polynomial hierarchy**.
- * is the second level in the Boolean hierarchy.

 $NP \subseteq DP \subseteq P^{NP}$.

 $NP \cup co-NP \subseteq DP \cap co-DP.$

¹C.H. Papadimitriou, M. Yannakis. The complexity of facets (and some facets of complexity). Proceedings of the 24th ACM Symposium on the Theory of Computing, 1982, pp. 229-234. $\Box \mapsto \langle \bigcirc \rangle \land \langle \bigcirc \rangle \land \langle \bigcirc \rangle \land \langle \bigcirc \rangle$

□ > < @ > < ≥ > < ≥ > ≥ 2000
5/10

Let $X_1 = (I_{X_1}, \theta_{X_1})$ and $X_2 = (I_{X_2}, \theta_{X_2})$ be two decision problems.

Let $X_1 = (I_{X_1}, \theta_{X_1})$ and $X_2 = (I_{X_2}, \theta_{X_2})$ be two decision problems.

The product problem $X_1 \otimes X_2 = (I_{X_1 \otimes X_2}, \theta_{X_1 \otimes X_2})$ is defined as follows:

Let $X_1 = (I_{X_1}, \theta_{X_1})$ and $X_2 = (I_{X_2}, \theta_{X_2})$ be two decision problems.

The product problem $X_1 \otimes X_2 = (I_{X_1 \otimes X_2}, \theta_{X_1 \otimes X_2})$ is defined as follows:

$$- I_{X_1 \otimes X_2} = I_{X_1} \times I_{X_2}.$$

$$- \theta_{X_1 \otimes X_2}(u_1, u_2) = 1 \Leftrightarrow \theta_{X_1}(u_1) = 1 \land \theta_{X_2}(u_2) = 1.$$

Let $X_1 = (I_{X_1}, \theta_{X_1})$ and $X_2 = (I_{X_2}, \theta_{X_2})$ be two decision problems.

The product problem $X_1 \otimes X_2 = (I_{X_1 \otimes X_2}, \theta_{X_1 \otimes X_2})$ is defined as follows:

$$- I_{X_1 \otimes X_2} = I_{X_1} \times I_{X_2}.$$

$$- \theta_{X_1 \otimes X_2}(u_1, u_2) = 1 \Leftrightarrow \theta_{X_1}(u_1) = 1 \land \theta_{X_2}(u_2) = 1.$$

Proposition: If X_1 is an **NP** complete problem and X_2 is a **co-NP** complete problem then $X_1 \otimes X_2$ is a **DP** complete problem.

Let $X_1 = (I_{X_1}, \theta_{X_1})$ and $X_2 = (I_{X_2}, \theta_{X_2})$ be two decision problems.

The product problem $X_1 \otimes X_2 = (I_{X_1 \otimes X_2}, \theta_{X_1 \otimes X_2})$ is defined as follows:

$$- I_{X_1 \otimes X_2} = I_{X_1} \times I_{X_2}.$$

$$- \theta_{X_1 \otimes X_2}(u_1, u_2) = 1 \Leftrightarrow \theta_{X_1}(u_1) = 1 \land \theta_{X_2}(u_2) = 1.$$

Proposition: If X_1 is an **NP** complete problem and X_2 is a **co-NP** complete problem then $X_1 \otimes X_2$ is a **DP** complete problem.

Corollary: If X is an **NP** complete problem, then $X \otimes \overline{X}$ is a **DP** complete problem.

Main result

Let \mathcal{R} be a computing model of recognizer non-cooperative P systems allowing dissolution, object evolution and communication rules.

- If $X_1 \in \mathsf{PMC}_{\mathcal{R}}$ and $X_2 \in \mathsf{PMC}_{\mathcal{R}}$ then $X_1 \otimes X_2 \in \mathsf{PMC}_{\mathcal{R}}$.

<u>Sketch</u>:

For i = 1, 2,

- Let $\Pi^{(i)} = \{\Pi^{(i)}(t) \mid t \in \mathbb{N}\}$ a family of systems from \mathcal{R} solving X_i in polynomial-time.
- Let (cod_i, s_i) be a polynomial encoding from X_i into $\Pi^{(i)}$.

A family $\Pi = {\Pi(t) \mid t \in \mathbb{N}}$ of membrane systems from \mathcal{R} will be defined from $\Pi^{(1)}$ and $\Pi^{(2)}$, providing a uniform and polynomial-time solution to $X_1 \otimes X_2$.

Let \mathcal{R} be a **presumably efficient** computing model of recognizer P systems allowing **dissolution**, **object evolution** and **communication** rules.

Let \mathcal{R} be a **presumably efficient** computing model of recognizer P systems allowing **dissolution**, **object evolution** and **communication** rules.

- Then, $DP \cup co-DP \subseteq PMC_{\mathcal{R}}$.

Let \mathcal{R} be a **presumably efficient** computing model of recognizer P systems allowing **dissolution**, **object evolution** and **communication** rules.

– Then, $DP \cup co-DP \subseteq PMC_{\mathcal{R}}$.

Proof: If X is an **NP**-complete problem such that $X \in \mathbf{PMC}_{\mathcal{R}}$, then $X \otimes \overline{X}$ is a **DP**-complete problem such that $X \otimes \overline{X} \in \mathbf{PMC}_{\mathcal{R}}$.

THANK YOU

FOR YOUR ATTENTION!

