Making neural cryptography great again With SN P Systems

Mihail-Iulian Plesa

January 2023

Mihail-Iulian Plesa Making neural cryptography great again

Table of contents

Introduction

- 2 Neural cryptography
- 3 Our work
- 4 Current research

5 Conclusions

Key Agreement Protocols

- Classical
- Post-quantum
- Quantum

- Based on hard problems from number theory (DH, DL)
- No mathematical proof
- Hope it will work

Diffie-Hellman (DH)

Conjecture

Given g, p, g^a and g^b there is no known efficient algorithm for computing g^{ab}

Conjecture

Given g, p and g^{\times} there is no known efficient algorithm for computing \times

Why do we need anything else?

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer^{*}

Peter W. Shor[†]

Abstract

A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.

Why do we need anything else?

Factoring integers with sublinear resources on a superconducting quantum processor

Bao Yan,^{1,2,*} Ziqi Tan,^{3,*} Shijie Wei,^{4,*} Haocong Jiang,⁵ Weilong Wang,¹ Hong Wang,¹ Lan Luo,¹ Qianheng Duan,¹ Yiting Liu,¹ Wenhao Shi,¹ Yangyang Fei,¹ Xiangdong Meng,¹ Yu Han,¹ Zheng Shan,¹ Jiachen Chen,³ Xuhao Zhu,³ Chuanyu Zhang,³ Feitong Jin,³ Hekang Li,³ Chao Song,³ Zhen Wang,^{3,†} Zhi Ma,^{1,±} H. Wang,³ and Gui-Lu Long^{2,4,6,7,§}
 ¹State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengchou 450001, China
 ²State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengchou 450001, China
 ³School of Physics, ZiU-Hangchou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Information Sciences, Beijing 100193, China
 ⁵Institute of Information Technology and Device, Zhejiang University, Hangzhou 310000, China
 ⁶Beijing National Research Center for Information Science and Technology and School of Jing University, China
 ⁷Frontier Science Center for Output University, Beijing 100084, China

Shors' algorithm has seriously challenged information security based on public key cryptosystems. However, to break the widely used RSA-2048 scheme, one needs millions of physical qubits, which is far beyond current technical capabilities. Here, we report a universal quantum algorithm for integer factorization by combining the classical lattice reduction with a quantum approximate optimization algorithm (QAOA). The number of qubits required is $O(\log N/\log\log N)$, which is sublinear in the bit length of the integer N, making it the most qubit-saving factorization algorithm to date. We demonstrate the algorithm experimentally by factoring integers up to 48 bits with 10 superconducting qubits, the largest integer factorization algorithm experimentally by factoring integers up to 48 bits with 10 superconducting qubits, the largest integer factorization algorithm. Our study shows great promise in expediting the application of current noisy quantum computers, and paves the way to factor large integers of realistic cryptographic significance.

- Based on hard problems from number theory (lattice problems)
- No mathematical proof
- Hope it will work

Different problems - same philosophy

- Based on quantum effects (collapse of the probability wave, entanglement, etc)
- No need for a mathematical proof
- It works

Introduction

Neural cryptography Our work Current research Conclusions

BB84

Alice's bit	0	1	1	0	1	0	0	1
Alice's basis	+	+	Х	+	Х	Х	Х	+
Alice's polarization	1	-	↖	1	ĸ	>	1	-
Bob's basis	+	Х	Х	Х	+	Х	+	+
Bob's measurement	1	1	ĸ	>	-	1	-	-
Public discussion								
Shared Secret key	0		1			0		1

¹https://www.cse.wustl.edu/ jain/cse571-07/ftp/quantum/

Neural Key Exchange

Secure exchange of information by synchronization of neural networks

Ido Kanter¹, Wolfgang Kinzel² and Eran Kanter¹

 Department of Physics, Bar Ilan University, 52900 Ramat Gan, Israel
 Institut für Theoretische Physik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

3. 9. 2001

Abstract

A connection between the theory of neural networks and cryptography is presented. A new phenomenon, namely synchronization of neural networks is leading to a new method of exchange of secret messages. Numerical simulations show that two artificial networks being trained by **Hebbian learning** rule on their **mutual outputs** develop an antiparallel state of their synaptic weights. The synchronized weights are used to construct an ephemeral **key** exchange protocol for a secure transmission of secret data. It is shown that an opponent who knows the protocol and all details of any transmission of the data has no chance to decrypt the secret message, since tracking the weights is a hard problem compared to synchronization. The complexity of the

Tree Parity Machine (TPM)

Tree Parity Machine

Definition

Two TPMs are synchronized if their sequences of weights are identical

Neural Key Agreement - In Theory

- Based on the synchronization of two TPMs
- No number theory assumptions
- Quantum secure

Neural Key Agreement - In Practice

- Geometric attack ¹
- Genetic attack ²
- Majority attack ³

An attacker can recover more than 90% of the key just by listening to the legitimate participants of the protocol

¹Klimov, A., Mityagin, A. and Shamir, A., 2002, December. Analysis of neural cryptography. In International Conference on the Theory and Application of Cryptology and Information Security (pp. 288-298). Springer, Berlin, Heidelberg.

²Ruttor, A., Kinzel, W., Naeh, R. and Kanter, I., 2006. Genetic attack on neural cryptography. Physical Review E, 73(3), p.036121

³Shacham, L.N., Klein, E., Mislovaty, R., Kanter, I. and Kinzel, W., 2004. Cooperating attackers in neural cryptography. Physical Review E, 69(6), p.066137.

Further improvements

- Input with feedback ¹
- Output with errors ²

Trade efficiency for security

¹Ruttor, A., Kinzel, W., Shacham, L. and Kanter, I., 2004. Neural cryptography with feedback. Physical Review E, 69(4), p.046110.

²Allam, A.M. and Abbas, H.M., 2009, June. Improved security of neural cryptography using don't-trust-my-partner and error prediction. In 2009 International Joint Conference on Neural Networks (pp. 121-127). IEEE

Anti Spiking Neural Tree Parity Machine P System (ASNTPM P System)

- SN P neuron model
- *K* the number of neurons from the hidden layer
- *N* the number of neurons from the input layer connected to a single hidden neuron
- L the maximum value of a weight

¹Plesa, M.I., Gheoghe, M., Ipate, F. and Zhang, G., 2022. A key agreement protocol based on spiking neural P systems with anti-spikes. Journal of Membrane Computing, pp.1-11.

ĸ	N	Syncronization time						
N			TPM	ASNTPM P system				
		Mean	Standard deviation	Mean	Standard deviation			
4	8	138.49	64.23	31.62	12.26			
4	16	135.16	63.81	39.02	16.39			
8	16	247.18	80.78	65.45	23.72			
4	32	138.77	52.06	49.99	17.44			
8	32	278.16	89.87	77.30	25.37			
16	32	450.63	90.65	112.78	32.68			
4	64	149.59	53.45	60.15	23.03			
8	64	319.74	102.59	86.39	29.78			
16	64	519.39	122.25	128.64	36.48			
32	64	727.02	130.50	188.32	54.15			

Our work

ASNTPM - Efficiency

f(x) = 0.00593 x^1.79512 + 19.55725

Mihail-Iulian Plesa Making neural cryptography great again

ASNTPM - Security

v	N	Mean entropy of the key				
R		ASNTPM P system	\mathbf{TPM}			
		Mean	Mean			
4	8	4.86	4.82			
4	16	5.87	5.79			
8	16	6.84	6.79			
4	32	6.86	6.78			
8	32	7.85	7.77			
16	32	8.82	8.77			
4	64	7.87	7.76			
8	64	8.85	8.76			
16	64	9.83	9.76			
32	64	10.83	10.76			

ASNTPM - Security

v	N	Mean synchronization percentage of the attacke					
n	1 N	ASNTPM P system	TPM				
		Mean	Mean				
4	8	0.05	0.68				
4	16	0.02	0.40				
8	16	0.01	0.45				
4	32	0.01	0.53				
8	32	0.02	0.40				
16	32	0.02	0.30				
4	64	0.02	0.34				
8	64	0.02	0.30				
16	64	0.03	0.34				
32	64	0.03	0.32				

ASNTPM - Security

Cryptography works with proofs

- Formal adversary model
- Formal security proof in that model

We need a "hard problem"

- Classical key agreement protocols: DH, DDH, Factoring, DL, etc
- Post-quantum key agreement protocols: SVP, CVP, LWE, RLWE, etc
- Quantum cryptography: entanglement, no cloning, the collapse of the probability wave, etc.

Prove that breaking the protocol is equivalent to solving a "hard problem"

Neural synchronization as a hard problem

- No hard problem is defined in neural cryptography
- No formal adversary model
- No formal security proof

ASNTPM - constructing a hard problem

Problem

Can we design an efficient algorithm for synchronizing two ASNTPMs without mutual learning?

ASNTPM - constructing a hard problem

Our strategy

Treat every attack on TPMs as a possible algorithm for synchronizing two ASNTPMs without mutual learning.

ASNTPM - constructing a hard problem

Algorithm 1 ASNTPM P System initialization 1: function INITIALIZE(Π, X) for i = 1: $i \le K$: i = i + 1 do 2: 3: for i = 1 i < N i = i + 1 do if X[i * N + j] < 0 then 4: $\overline{N}(\Pi, \sigma_{in_{i,i}}) = |X[i * N + j]|$ 5: 6: else 7: $N(\Pi, \sigma_{in_{ii}}) = X[i * N + j]$ 8: end if $W_{\Pi}[i][j] \stackrel{\$}{\leftarrow} [0, 2L]$ 9: 10: end for 11: end for for i = 1: $i \le K$: i = i + 1 do 12: $\overline{N}(\Pi, \sigma_{h_i}) = 0$ 13: $N(\Pi, \sigma_{h_i}) = 0$ 14: end for 15:16: $\overline{N}(\Pi, \sigma_{out}) = 0$ $N(\Pi, \sigma_{out}) = 0$ 17:18: end function

ASNTPM - constructing a hard problem

A]	lgorithm	2	ASNTPM	Ρ	System	running	

1: function $\operatorname{Run}(\Pi)$ for i = 1; i < K; i = i + 1 do 2: 3: for i = 1 i < N i = i + 1 do $\overline{N}(\Pi, \sigma_{h_i}) = \overline{N}(\Pi, \sigma_{h_i}) + W_{\Pi}[i][j] * \overline{N}(\Pi, \sigma_{in_{i,i}})$ 4: $N(\Pi, \sigma_{h_i}) = N(\Pi, \sigma_{h_i}) + W_{\Pi}[i][j] * N(\Pi, \sigma_{in_{i_i}})$ 5: 6: end for 7: end for 8: for i = 1: $i \le K$: i = i + 1 do 9: $\overline{N}(\Pi, \sigma_{out}) = \overline{N}(\Pi, \sigma_{out}) + \overline{N}(\Pi, \sigma_{h_s})$ $N(\Pi, \sigma_{out}) = N(\Pi, \sigma_{out}) + N(\Pi, \sigma_{h_i})$ 10: end for 11: 12: end function

...

C

ASNTPM - constructing a hard problem

A 1

...

o mi

1

Al	gorithm 3 The learning function
1:	function UpdateWeights(Π)
2:	for $i = 1; i \le K; i = i + 1$ do
3:	$\mathbf{if} \ [[N(\Pi, \sigma_{h_i}) = N(\Pi, \sigma_{out})] \lor [\overline{N}(\Pi, \sigma_{h_i}) = \overline{N}(\Pi, \sigma_{out})]] \mathbf{then}$
4:	$\mathbf{for} j=1 j \leq N j=j+1 \mathbf{do}$
5:	if $N(\Pi, \sigma_{out}) > 0$ then
6:	$W_{\varPi}[i][j] = ig W_{\varPi}[i][j] + N(\varPi,\sigma_{in_{ij}})ig $
7:	else if $\overline{N}(\Pi, \sigma_{out}) > 0$ then
8:	$W_{\varPi}[i][j] = \left W_{\varPi}[i][j] - \overline{N}(\varPi, \sigma_{in_{ij}}) ight $
9:	end if
10:	end for
11:	$\mathbf{if} W_{\varPi}[i][j] > L \mathbf{then}$
12:	$W_{\varPi}[i][j] = L$
13:	end if
14:	end if
15:	end for
16:	end function

ASNTPM - constructing a hard problem

```
Algorithm 4 The synchronization percentage
 1: function SynchronizationPercentage(\Pi_1, \Pi_2)
 2:
        total \leftarrow 0
 3:
        counter \leftarrow 0
 4:
        for i = 1 i \le K i = i + 1 do
 5:
            for j = 1 j \le N j = j + 1 do
                if W_{\Pi_1}[i][j] \neq 2L \wedge W_{\Pi_2}[i][j] \neq 2L then
 6:
 7:
                   total \leftarrow total + 1
 8:
                    if W_{\Pi_1}[i][j] = W_{\Pi_2}[i][j] then
 9:
                       counter \leftarrow counter + 1
10:
                    end if
11:
                end if
12:
            end for
13:
        end for
14:
        return counter/total
15: end function
```

ASNTPM - constructing a hard problem

Algorithm 5 Synchronization of two ASNTPM P Systems

- 1: function SyncA(Π_1, Π_2)
- 2: while SynchronizationPercentage(Π_1, Π_2) $\neq 1$ do
- 3: $x \stackrel{\mathbf{R}}{\leftarrow} \mathbb{Z}^{KN}$
- 4: INITIALIZE (Π_1, x)
- 5: INITIALIZE (Π_2, x)
- 6: $\operatorname{Run}(\Pi_1)$
- 7: $\operatorname{Run}(\Pi_2)$

```
8: if N(\Pi_1, \sigma_{out}) = N(\Pi_2, \sigma_{out}) \vee \overline{N}(\Pi_1, \sigma_{out}) = \overline{N}(\Pi_2, \sigma_{out}) then
```

```
9: UpdateWeights(\Pi_1)
```

```
10: UPDATEWEIGHTS(\Pi_2)
```

```
11: end if
```

```
12: end while
```

```
13: end function
```

ASNTPM - constructing a hard problem

```
Algorithm 6 Simple synchronization process of three ASNTPM
  function SyncB(\Pi_1, \Pi_2, \Pi_3)
       while SynchronizationPercentage(\Pi_1, \Pi_2) \neq 1 do
            T \stackrel{\mathrm{R}}{\leftarrow} \mathbb{Z}^{KN}
            INITIALIZE(\Pi_1, x)
            INITIALIZE(\Pi_2, x)
            INITIALIZE(\Pi_3, x)
            \operatorname{Run}(\Pi_1)
            \operatorname{Run}(\Pi_2)
            RUN(\Pi_3)
            if N(\Pi_1, \sigma_{out}) = N(\Pi_2, \sigma_{out}) \vee \overline{N}(\Pi_1, \sigma_{out}) = \overline{N}(\Pi_2, \sigma_{out}) then
                UPDATEWEIGHTS(\Pi_1)
                UPDATEWEIGHTS(\Pi_2)
                if N(\Pi_1, \sigma_{out}) = N(\Pi_3, \sigma_{out}) \vee \overline{N}(\Pi_1, \sigma_{out}) = \overline{N}(\Pi_3, \sigma_{out}) then
                     UPDATEWEIGHTS(\Pi_3)
                end if
            end if
       end while
       return SynchronizationPercentage(\Pi_1, \Pi_3)
   end function
                                  Mihail-Iulian Plesa
                                                              Making neural cryptography great again
```

ASNTPM - constructing a hard problem

function SyncC(Π_1, Π_2, Π_3)	
while SynchronizationPercentage(Π_1, Π_2) $\neq 1$	do
$T \xrightarrow{R} \mathbb{Z}^{KN}$	
$INITIALIZE(\Pi_1, x)$	
INITIALIZE (Π_2, x)	
INITIALIZE(Π_3, x)	
$Run(\Pi_1)$	
Run(II2)	
$Run(\Pi_3)$	
if $N(\Pi_1, \sigma_{out}) = N(\Pi_2, \sigma_{out}) \vee \overline{N}(\Pi_1, \sigma_{out}) = \overline{N}$	$\overline{N}(\Pi_2, \sigma_{out})$ then
UpdateWeights(Π_1)	
UpdateWeights (H_2)	
if $N(\Pi_1, \sigma_{out}) = N(\Pi_3, \sigma_{out}) \vee \overline{N}(\Pi_1, \sigma_{out})$	$= \overline{N}(\Pi_3, \sigma_{out})$ then
UpdateWeights(Π_3)	
end if	
if $N(\Pi_1, \sigma_{out}) \neq N(\Pi_3, \sigma_{out}) \land \overline{N}(\Pi_1, \sigma_{out})$	$\neq \overline{N}(\Pi_3, \sigma_{out})$ then
$distance = W_{\Pi_3}[1] - x $	
minimum = distance	
index = 1	
for $i = 2$; $i \le K$; $i = i + 1$ do	
$distance = W_{\Pi_3}[i] - x $	
if $distance < minimum$ then	
mininum = distance	
index = i	
end if	
end for	
$\underline{aux} = N(\Pi_3, \sigma_{h_{index}})$	
$N(\Pi_3, \sigma_{h_{index}}) = N(\Pi_3, \sigma_{h_{index}})$	
$N(\Pi_3, \sigma_{h_{index}}) = \underline{aux}$	
$N(\Pi_3, \sigma_{output}) = N(\Pi_1, \sigma_{output})$	
$N(\Pi_3, \sigma_{output}) = N(\Pi_1, \sigma_{output})$	
UpdateWeights(Π_3)	
end if	
end if	
end while	
return SynchronizationPercentage(Π_1, Π_3)	
end function	

ASNTPM - constructing a hard problem

Figure: Sync percentage of the attacker as K using the classical synchronization algorithm

$$\rho(\Pi_1,\Pi_3) = 2.7K^{-0.83}$$

ASNTPM - constructing a hard problem

Figure: Sync percentage of the attacker as N using the classical synchronization algorithm

 $\rho(\Pi_1,\Pi_3) = 0.49 N^{-0.36}$

ASNTPM - constructing a hard problem

Figure: Sync percentage of the attacker as K using the geometric synchronization algorithm

$$\rho(\Pi_1,\Pi_3) = 0.91e^{-0.004K}$$

ASNTPM - constructing a hard problem

Figure: Sync percentage of the attacker as N using the geometric synchronization algorithm

$$\rho(\Pi_1,\Pi_3) = 0.99e^{-0.003N}$$

ASNTPM - Conclusions

- Like quantum but cheaper
- Serious cryptography requires proofs, not intuition
- We cannot rely on the simple fact that "it works" (Shamir told us why)
- No previous work has attempted to do this