P versus B:

P Systems as a Formal Framework for Controllability of Boolean Networks

Artiom Alhazov¹ Rudi Freund² Sergiu Ivanov³

¹Institute of Mathematics and Computer Science, Chișinău, Moldova ²TU Wien, Austria

³Université Paris-Saclay, Univ Évry, France

NCMA 2022

Boolean Networks

Boolean variables + Boolean update functions

$$\begin{array}{rcl} f_{\mathbf{x}_1} &=& (\mathbf{x}_1 \wedge \overline{\mathbf{x}}_2) \lor (\mathbf{x}_1 \wedge \overline{\mathbf{x}}_3) \lor (\overline{\mathbf{x}}_1 \wedge \mathbf{x}_2 \wedge \mathbf{x}_3) \\ f_{\mathbf{x}_2} &=& (\mathbf{x}_1 \wedge \mathbf{x}_3) \lor (\overline{\mathbf{x}}_1 \wedge \mathbf{x}_2) \\ f_{\mathbf{x}_3} &=& (\mathbf{x}_1 \wedge \mathbf{x}_3) \lor (\overline{\mathbf{x}}_1 \wedge \overline{\mathbf{x}}_2) \end{array}$$

Synchronous dynamics: all variables are always updated

Stable states: 010, 100, 001.

Boolean Networks versus Biology

Controllability of Boolean Networks

Model disease, therapy, environmental hazards, ...

Boolean Control Networks BCN

$$f_{\mathbf{x}_{1}} = (\mathbf{x}_{1} \wedge \overline{\mathbf{x}}_{2}) \lor (\mathbf{x}_{1} \wedge \overline{\mathbf{x}}_{3}) \lor (\overline{\mathbf{x}}_{1} \wedge \mathbf{x}_{2} \wedge \mathbf{x}_{3})$$

$$f_{\mathbf{x}_{2}} = (\mathbf{x}_{1} \wedge \mathbf{x}_{3}) \lor (\overline{\mathbf{x}}_{1} \wedge \mathbf{x}_{2})$$

$$f_{\mathbf{x}_{3}} = ((\mathbf{x}_{1} \wedge \mathbf{x}_{3}) \lor (\overline{\mathbf{x}}_{1} \wedge \overline{\mathbf{x}}_{2})) \land \mathbf{u}^{0} \lor \mathbf{u}^{1}$$

Control inputs:

 $u^0 \leftarrow 0$ $u^1 \leftarrow 0$ freezes x_3 to 0freezes x_3 to 1

Célia Biane, Franck Delaplace. Causal reasoning on Boolean control networks based on abduction: theory and application to Cancer drug discovery. IEEE/ACM Trans. Comput. Biol. Bioinform. (2018).

A. Alhazov R. Freund S. Ivanov

BCN Dynamics

$$\begin{array}{rcl} f_{\boldsymbol{x}_1} &=& (\boldsymbol{x}_1 \wedge \overline{\boldsymbol{x}}_2) \lor (\boldsymbol{x}_1 \wedge \overline{\boldsymbol{x}}_3) \lor (\overline{\boldsymbol{x}}_1 \wedge \boldsymbol{x}_2 \wedge \boldsymbol{x}_3) \\ f_{\boldsymbol{x}_2} &=& (\boldsymbol{x}_1 \wedge \boldsymbol{x}_3) \lor (\overline{\boldsymbol{x}}_1 \wedge \boldsymbol{x}_2) \\ f_{\boldsymbol{x}_3} &=& (\boldsymbol{x}_1 \wedge \boldsymbol{x}_3) \lor (\overline{\boldsymbol{x}}_1 \wedge \overline{\boldsymbol{x}}_2) \end{array}$$

Sequential Controllability

Control inputs $U = \{u^i\}$ Control $\mu : U \rightarrow \{0, 1\}$ Control sequence $\mu_{[k]} = (\mu_1, \dots, \mu_k)$

Jérémie Pardo, Sergiu Ivanov, Franck Delaplace: Sequential reprogramming of biological network fate. Theor. Comput. Sci. 872: 97-116 (2021)

A Framework for Controllability

Make the master system explicit.

Capture both in a single formalism.

P Systems

Classic P Systems

$$\begin{array}{c|c}
\hline
a \rightarrow aa & a \rightarrow b \\
a \rightarrow (a, \text{out}) & b \rightarrow (c, \text{in}) \\
a & 1 & 0
\end{array}$$

- hierarchical multiset rewriting
- non-determinism and competition
- communication
- parallelism

P versus B

versus?

P systems are flexible.

Define a specialized P system variant for sequential controllability of Boolean networks.

11 / 19

Boolean P Systems

Boolean P Systems $\Pi = (V, R)$ States: $s : V \to \{0, 1\}$ and the corresponding subset Rules: $r : A \to B \mid \varphi$ • $A, B \subseteq V$

• φ a propositional formula over V, the guard

r is applicable to $W \subseteq V$ if $A \subseteq W$ and $\varphi(W)$ Apply *r* to $W \mapsto W \setminus A \cup B$ Apply $\{r_i : A_i \to B_i \mid \varphi_i\}$ to $W \mapsto \left(W \setminus \bigcup_i A_i\right) \cup \bigcup_i B_i$

set rewriting

no competition

Boolean P systems \supseteq Boolean networks

Let
$$f_{Y} : \{0, 1\}^{X} \to \{0, 1\}$$
. Simulation:

$$R_{y} = \left\{ \emptyset \to \{y\} \mid f_{y}, \ \{y\} \to \emptyset \mid \neg f_{y} \right\}$$

produce *y* if $f_{y}(W)$ remove *y* if not $f_{y}(W)$

Theorem: Natural extension to whole networks.

Evolution: Modes versus Quasimodes

P systems:

• A mode tells which rules to apply.

Boolean networks:

- A mode tells which variables to update.
 - all variables can be updated at any step
 - no competition

Boolean P systems:

• A quasimode $\widetilde{\mathcal{M}} \subseteq 2^R$ suggests the rules to apply.

The corresponding mode M: $M(W) = \{ \{ r \in m \mid r \text{ applicable to } W \} \mid m \in \widetilde{M} \}$

Composition of Boolean P Systems

- Compose the quasimodes: $\widetilde{M}_1 \times \widetilde{M}_2 = \{ m_1 \cup m_2 \mid m_1 \in \widetilde{M}_1, m_2 \in \widetilde{M}_2 \}$
- Compose the P systems:

A Framework for Controllability

Outlook

Complexity of Controllability

Work in progress: $CoFaSe \in PSPACE$ -complete?

Beyond CoFaSe

- P systems are:
 - generalmulti-paradigmunifyingflexible!

P systems = a tool for taking different perspectives.

