Biblio

Export 833 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
Paun, G., Pérez-Jiménez M. J., & Rozenberg G. (2007).  Computing morphisms by spiking neural P systems. International Journal of Foundations of Computer Science. 18(6), 1371-1382. Abstract
Paun, G., Sakakibara Y., & Yokomori T. (2002).  P systems on graphs of restricted forms. Publicationes Mathematicae Debrecen. 60, 635-660.
Paun, G., & Pérez-Jiménez M. J. (2012).  Languages and P Systems: Recent Developments. Tenth Brainstorming Week on Membrane Computing. II, 61-74. Abstract
Paun, G., Pérez-Jiménez M. J., & Stefanescu G. (2010).  Membrane Computing and Programming. Journal of Logic and Algebraic Programming. 79(6), 289-290.
Paun, G. (2004).  Membrane Computing: Some Non-standard Ideas. Lecture Notes in Computer Science. 2950, 322-337. Abstract
Paun, G., Pérez-Jiménez M. J., & Sancho-Caparrini F. (2002).  On the Reachability Problem for P System with Porters. 10th International Conference on Automata and Formal Languages. 1-3.
Paun, G. (2008).  Natural computing. Between necessity and fashion . International Journal of Computers, Communications and Control. 3(Proceeding), 119-120. Abstract
Paun, G., Rozenberg G., Maurer H., & Karhumaki J. (2004).  Theory is Forever. Lecture Notes in Computer Science. 3113, X+283.
Paun, G. (2004).  Membrane Computing (After the Second Brainstorming Week on Membrane Computing). Bulletin of the European Association for Theoretical Computer Science. 73, 159-170.
Paun, G., & Pérez-Jiménez M. J. (2008).  Spiking Neural P systems: An overview. (A. Porto, A. Pazos, W. Buno, Ed.).Advancing Artificial Intelligence through Biological Process Applications . 59-72. Abstract
Paun, G. (2007).  Spiking neural P systems with astrocyte-like control. Journal of Universal Computer Science. 13(11), 1707-1721. Abstract
Paun, G., & Rozenberg G. (2002).  A guide to membrane computing. Theoretical Computer Science. 287(1), 73 - 100 . Abstract
Paun, G. (2005).  Membrane Computing. Main ideas, basic results, applications. Molecular Computation Models: Unconventional Approaches. 1-31.